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TIONS

J. BECKERS'! , N. DEBERGH? and C. GOTTI®
Theoretical and Mathematical Physics,

Institute of Physics, B.5,

University of Liege,

B-4000 LIEGE 1 (Belgium)

(8.VII.97)

Abstract

Some generalizations of Darboux transformations have already been
proposed and related. We extend these considerations to their most
general forms including all the preceding approaches and get (very
easily) the maximal set of symmetries subtended by the physical ap-
plications corresponding to exactly solvable potentials. The multidi-
mensional matrix formulation of supersymmetric quantum mechanics
is particularly well-adapted to such generalized Darboux transforma-
tions, so that maximal invariance superalgebras come out very natu-
rally.
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1 Introduction

Physical applications characterized by exactly solvable stationary or non-
stationary potentials are very interesting parts of (nonrelativistic) quantum
mechanics which have to be exploited as far as possible. In particular, chains
of exactly solvable potentials have already been constructed and enlightened
through Darboux transformations [1] also in the recent contexts of super-
symmetric [2, 3] and parasupersymmetric [4, 5] quantum mechanics leading
in particular to specific remarkable invariance Lie superalgebras and parasu-
peralgebras.

Through the nonstationary developments, we want to take here advan-
tages of the study of Schrédinger equations and associated multidimensional
matrix Hamiltonians. Such a context can be presented in the following way.
Let us consider two nonstationary Schrodinger equations in a one-dimensional
space, i.e.

i 8, U(z,t) = Hy ¥(z,t), Hy = -8+ Vy(z, t) (1)

and
10 p(z,t) = Hy o(z,t), H = -0+ Vi(x,t), (2)

where 0, and 0, evidently refer to partial derivatives with respect to
time and space and where V; and Vi are potential energies defining a
first example of a chain of exactly solvable potentials. In fact, the Darboux
transformation solves the following problem : if we assume that the solutions
of eq.(1) are known for a fixed Vy(x,t) , we can derive a (set of) potential(s)
Vi(x,t) , so that the solutions ¢(x,t) of eq.(2) could be obtained through
the relation

¢ (z,t) = L ¥(z,1) (3)

where L is the so-called Darboux operator. As quoted very clearly by
Matveev and Salle [1], this gives to L and Vj the following forms in terms
of a particular solution - let us call it u(x,t) - of eq. (1)

L =20, — (Inu), (4)

and
Vl — VO -2 (ln u)m: (5)

so that the solutions of eq. (2) take the forms
e(z,t) = VUy(z,t) — (Inu(z,t)); ¥(z,t). (6)
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Knowing that the inverse problem is also well-defined, it is evident that we
have an example of the study of 2-dimensional matrix Hamiltonians already
considered in the literature [6] and directly connected to supersymmetric
quantum mechanical developments [2]. The important role being played by
the relation (3) and its explicit operator (4), let us notice that the latter can
be written in the form

L =Ly(z,t) 0z + Lo(z, t) (7)

with
Li(z,t) =1, Lo(z,t) = —(In u(z,t)). (8)

and that it can be generalized, after Bagrov and Samsonov [3], in the form
(7) but with

Li(z,t) = exp [fom(ln Ty - dt] , (9)
Lo(z,t) = —(In u(z,t)); Li(z,1). (10)

In that context we then get the second potential in the form
Vi(z,t) = Vo(z,t) — 2(in | u |)ze- (11)

Here we want to extend once more such a generalization and exploit
the idea in order to characterize different physical applications by structures
of invariance giving all the possible (super)symmetries of the corresponding
contexts.

The contents are distributed as follows. In Section 2 we summarize
some results already quoted in Matveev and Salle [1] and generalized by
Bagrov and Samsonov [3] but also extend the latter on the basis of very simple
arguments. In Section 3 we exploit our proposal and construct even and
odd symmetry operators leading in the supersymmetric context(s) to typical
invariance superalgebras. Section 4 is devoted to remarks and conclusions
as well as to the generalization to an arbitrary order N in the derivatives,
nowadays a purely mathematical but interesting context.
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2 Towards generalized Darboux transforma-
tions

Different steps have already been proposed (see Section 1) in order to
generalize effective Darboux transformations. Besides some extensions to
time-dependent potentials (and associated nonstationary Schrodinger equa-
tions) and some developments in super- and parasuper- quantum mechanics,
there are also other possible generalizations with respect, for example, to the
one proposed by Bagrov and Samsonov [3]. Let us first notice that, through
eqs. (8) and (9-10) , we immediatly see that Bagrov-Samsonov’s develop-
ments are more general than Matveev-Salle’s ones : they correspond to each

other only when
Im(ln u)ye = 0. (12)

Such a remark says that there is no reason at all to choose (In u),, as being
a real quantity. Secondly, here we want to stress the fact that, moreover,
there is no reason at all to limit ourselves to real functions L;(z,t) in eq.(9)
defining the operator L = (7) . Such a further simple remark will lead us
to new results and consequences which have to be exploited.

For example, in the supersymmetric context dealing with a 2-dimensional
matrix (super)Hamiltonian H

H=(%’£) (13)

and a supercharge () defined by

o-(20)@-(34)  w

possible choices of complex functions Li(z,t) open a more general discussion
coming from the condition

L (i 8, — Ho) ¥(z,t) = (i 8, — Hy) L ¥(x,t) (15)

which corresponds to ask for a Darboux operator L = (7) acting on the
solutions W(z,t) of eq.(1) and transforming ¥(z,t) into ¢(z,t) according
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to eq.(3). Let us also point out that the condition (15) corresponds to the
conservation requirement

0, —H, Q] =0. (16)

This leads to the following system of equations on Lo(z,t) and L,(z,t)
introduced in the Darboux operator (7) :

LI(CC, t) = Ll(t),

Lo(a, ) = Lo(t) = Lu(t) (i w), —+ P30, (7)
dL(t) 1d%L,(t) .dLy(t)

Li(t) Vo » — zT(ln U)z + 5z T Li(t)(In u)gzr + ¢ pT

2 (Lo(t) — Li(t)(in u)e — %dL;t(t)a:) (In W) se — iL1(t) (In w)at = 0.

Let us notice that the last condition can be directly exploited : by integrating
on the space variable and taking care of u as a particular solution of eq.(1),
we get

1d*Ly(t) , dLo(t) dL(t)

4 g T Tt g BV g

Such a condition implies that we will obtain more general results with respect
to the Bagrov-Samsonov ones if and only if we choose

(Inu)e x + 2Lo(¢) (In uw), = f(t). (18)

(lnu)x=a$+b+§,a#0, (19)

where a, b, c are arbitrary time-dependent functions included in the corre-
sponding Schrodinger solutions

u(z,t) =dzte e g4, (20)
By taking care once again of
LU = —Uggp + VU, (21)

the required solutions (20) lead to families of exactly solvable potentials of
the following form

Vo(z,t) = Alt) 2* + B(t) z+ C(t) + D(t) Inz + E(t) x> + F(t) ! (22)
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where

Alt) = a® + % a,, B(t) = 2ab+7i by,

C(t) =a+ b2 + 2ac + 1 dwldt, D(t) =y Ct, (23)
E(t)=c(c—1), F(t) = 2bc.

In the following section, we plan to consider a few examples entering
into such categories but here let us propose a further extension of these con-
siderations by including second order derivatives in the Darboux operator.
In fact, we now propose to generalize the formula (7) as follows

L = Ly(z,t) 82 + Ly(z,t) 05 + Lo(x, 1), (24)

so that all the preceding study corresponds to L, = 0 . Let us imme-
diatly point out that our proposal once again contains other approaches
[1, 3, 7, 8] but none of these does consider the possible complexification
of the Ly-function. We also notice another generalization [9] similar to the
one introduced in eq.(24) up to the important differences that the polynomial
expression of the Eleonsky - Korolev operator L connects different eigen-
functions of the same Hamiltonian (while in our approach two Hamiltonians
are connected ) and is independent of time.

Coming back now on the condition corresponding to eq. (15) but with
the expression (24) for the Darboux operator, we get a new system which
reads :

LQ(SL‘, lf) = Lg(t),

Ll(x, t) = Ll(t) = % dL;t(t) T — (lTL W(ul,’u.z))m Lg(t), (25)
Lo(z,£) = Lo(t) — é d jtﬁg(t) 22— % dL;t(t) £ — Lo(t) Vo(z, £)
Wi ) (5 7 = 1)) + 5 Lalt) (00 W ua,0)

g (W (1, w0))ee La() + 5 (1 W (ur, ), Lo(t),

Lo(z,t)zz + @ Lo(z,t); + 2Lo(x, t) (In W(uy, uz))ee + L1(z,t) Vo(z, 1),
+Lo(z,t) Vo(z,t)e = 0.
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The above expressions are evidently given in terms of the usual Wronskian
determinant

W (uy, up) = U1 Uge — Use Ua, (26)

where u; and wu, are two particular solutions of eq. (1) while we have
added a further Schrédinger equation ( with respect to eqgs. (1) and (2) )
quoted in the form

i 0, x(x,t) = Hy x(z,t), Hy=-0;+Va(z,t), x(z,t)=Ly(z,t). (27)
From Matveev-Salle’s contribution [1], we get through egs. (1) and (27) that
Vo(z,t) = Vo(z,t) — 2(In W(uy, u2))ex,

LQ(CC,t) = 1, Ll(.’L',t) = ——(ln W(ul,’hﬂg))I, (28)
LO(:Evt) = 1 (l’)’L W(uly’u@))xr % (l?’b W(’u’lvu2))t i d % (ln W(ul»u'l)):zr
"Vo(ﬂ? ),

while, from Bagrov-Samsonov results [3], we obtain

Va(z,£) = Vo(z, £) — 2 (In | W(ug, u2) Das,

Lo(z,t) = eap |2 [ Im (in] W (w1, u2) J)mdt]

Li(z,t) = —Lg(a: t) (In| W(uy,us) |)z, (29)

Lo(a,t) = La(w,0) [ 5 (1n | W(as,02) Das + 5 (0 | W (2, 0) D
+Ly(z,t) + ; (In | W (g, u) )2 — V(z, t)]

These expressions immediately show the more general character of Bagrov-
Samsonov'’s developments which can once again be extended through our
proposal by complexifying the L, -function. The interest of our generaliza-
tion is illustrated in the following section on specific applications.

3 Some physical applications and their (su-
per)symmetries

Let us call N the maximal order of derivatives included in the Darboux
operator we are constructing in each physical context and consider N = 1 or
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2 before giving some extensions in the last section.
A. a) The N = 1 - free case

It corresponds to the choice V5 =0 ineq. (1) and to its implications
in egs. (22) and (23). We immediately notice that, with a # 0 , a particular
solution of eq. (1) is given with

=i (2)7), b=t"!, ¢=0, d= t73 exp(—it™) (30)
by
.2
iz f) = £73 exp (—it™!) exp [E— + E} : (31)
4t t
This implies V; =0 and the system reduces to
i dL(t
L@ =L), Le)=—20irm, (@
1 d*Ly(t) dLo(t) y

2 Tae Tt
so that

Li(t)=ci+cat, Lo(z,t) = “'302 T +c3
and, consequently,

L(z,t) =(c1+cot) Op — % C2 T + C3. (33)
Due to the three arbitrary parameters c¢;,c; and c3; now included in the

Darboux operator appearing in the 2-dimensional matrix formulation (see
eq. (14)), we can construct six odd operators defined as follows :

Yi=0,0_, YITE—&E Oy, Ygz(tax*%a:) o_, YJE(-tax-f—-;—:c) Oy,

(34)
and

}/350-—: Y?ZTEU-H
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where o refer to the usual linear combinations of Pauli matrices. The cor-
responding supersymmetric context (with Vo = V; = 0) associated with the
formulation [(13),(14)] is here characterized by the ezpected Lie superalgebra
sqm(2) with the structure relations

{Q,Q"Y=H, @*=Q"" =0, [Q,H=[Q"H]=0, (35)
where we have identified
g=Y, Qi=Y, H=-8 (36)

Moreover this context admits a maximal invariance superalgebra readily ob-
tained by anticommuting the odd generators (34) and, in that way, by con-
structing seven even operators which, besides the unit matrix, are given by

Xlzﬁx, ngtag_.—§a:, X35_65=H, (37)

. ) . 1
X4E—t8§+%z3m+-ji(l—03), st—t26§+ixt8x+%t+~4-:r2,
XﬁEO’3.

It is easy to confirm that we get a closed structure which is the semi-direct
sum of the orthosymplectic superalgebra osp(2 | 2) and the superHeisenberg
one sh(2 | 2) , an expected result in connection with the maximal invariance
superalgebra for the (isomorphic) 1-dimensional harmonic superoscillator [10]
that we will aiso recover in the following, such resuits being nothing else than
the superextension of Niederer’s results [11).

A. b) The N = 2 - frce case

Let us start with V5 = 0 and with the particular solution wu;(z,t) =
(31) supplemented by another one given as

ug(z,t) = t71 (z — 24) uy(z, t) (38)

leading to the Wronskian determinant (26)

2. . 2 2
W (uy,ug) =t 2 exp —Yq exp [E + _:c] (39)
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and to its absolute value

| W (g, ) |= 2 exp zﬂ | (40)

Once again, the second potential V5 is equal to zero and we are led to
a second order Darboux operator depending on six arbitrary parameters, 1.e.

1
cat+est——= (co+est)z| Op

1
L(x,t)=(61+02t+§c3t2)83,+ 5

1 1

—§c33:2—§$05—£c3t+c5. (41)

This ensures the appearance of twelve odd generators and eight even ones.
Let us only point out that, in particular, we have

V=820, Y'=08la, (42)
as odd "charges” leading to
{n,Y} =8 = H’ (43)

and showing that we detect here a deformed superalgebra sqm (2) inside the
corresponding maximal invariance superalgebra subtending this context.

B. a) The N = 1 - harmonic (super)oscillator

By letting the usual angular frequency equal to unity, the potential
evidently is
Vo = z° (44)

in the 1-dimensional space context. Here we choose as an example
a=-1, b=0=¢, d=exp(—it) (45)

and get the particular

u(z,t) = exp (—it) exp (—-% 2:2) (46)

leading to
Vi(z,t) = Vi(z) = 22 + 2 (47)



224 Beckers, Debergh and Gotti

and to the system (17) easily exploited. We get

Li(z,t) = ¢ exp [—4it | + ca, (48)
Lo(z,t) = (ca — ¢1 exp [—4it ]) x + c3 exp [—21t ).

Here we can deal again with six odd generators which lead to the realization

Y, =exp [—4it] (8, —z) o_, Y =exp[4it] (-0, —2) o,
Y= (0 +1)0-, Y, = (=0 +1) oy, (49)
Y; = exp [-2it ] o_, Y] = exp [2it ] oy

It is easy to get the other six even operators leading once again to
the semi-direct sum osp (2 | 2) with sh (2 | 2) as expected [10] as it was
recovered in the free case. For convenience, let us also mention these six
even generators (besides the unit matrix)

X, =exp [2it] (0, +1), Xo=X]=exp[-2it] (-0, +1),

exp [4it] (=02 —2*—-1-21x8,), (50)
X3 =exp [—4it] (- 82-—:E2+1+2x8),

=-02+12’+03, Xe=-02+2>— 0.

5 B B
TR

B. b) The N = 2 - harmonic (super)oscillator

With v, (z,t) given by -eq. (46) we consider

1
ug(x,t) = 2 exp [—3it ] (ezp [—5 x>

) z (51)
as a second solution of eq. (1) with the potential (45). We then get
W (uy, up) = 2 exp [—4it | exp(—z?) (52)
and the second potential becomes
Vao(z,t) = Va(z) = 27 + 4. (53)

The Darboux operator is now dependent on six arbitrary parameters, so that
this context shows twelve odd and eight even generators, a result isomorphic
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to that deduced from (42). Let us point out here ( as iv (49) and (50) ) the

combinations
AX=F0,+z (54)

playing the role of annihilation and creation operators for characterizing su-
perpartners in the 2-dimensional matrix representation. Here again we obtain
a deformation of the superalgebra sqm (2) characterized by the relations

(nyly=HEH-1)H-3), =Y =0, (55)
(HY]=[HY!]=0,

and

(56)

_+_ .
Y, = (A )0, H:(A ol B )

0 A AT 43

Let us insist on the fact that the above deformation of sqm (2) is of second
order in the superhamiltonian.

C. a) The N = 1 - Calogero context
It is characterized by the so-called Calogero potential
Vo(z) = 22 + % + u, (A, pu = constants) (57)
and corresponds to
a=-1, b=0, c= %(1 +vV1+4)), d=exp[-it(1+2c+p)] (58)

suggesting the particular solution
2
u(z,t) = exp [—z’t(\/l +4A + 2+ ,u)] 2z VA4S egp (—%) . (99)

This implies in the second equation a potential

At/
Vi) =224 AF 1;4’\+1+

24 (60)
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and a Darboux operator depending on two arbitrary parameters. Effectively
we get

Lo(z,t) = [ca — ) exp (—4it)]x — [c1 exp(—4it) + co] {\/ 1+4X+ %} % (61)

and
Ll(CC,t) = C1 ETD (—4Zt) + Co. (62)

We thus point out here four odd generators
Y] = exp (—4it) [8 —(\/T—I——él-i- )% J o_,
Y] = exp (4it) [ O —(\/T:4—+ );1;
Yo = |:8:1:_ (me 5) E+$] s
v =[-0 - (ViFh+3) = 43| o

and four even generators which can be determined by anticommuting the
odd ones. This leads once again to a closed superstructure.

C. b) The N = 2 - Calogero context

By calling u;(z,t) the first particular solution as the one given in eq.
(59), let us add a second one in the form

2
g, 1) = ezp [—it(\/l +4X+ 6+ #)] 1 VI+ax+1 exp (_%)

i
[1+§\/1+4/\—$2 (64)
so that, through the Wronskian determinant, we get
A+2v/1440+4
Va(z) = 2% + = + 4+ u. (65)

The Darboux operator takes the form

L(z,t) = [c; + cp exp (—4it) + c3 exp (—8it)] 82 +
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+[22(c; — ¢3 exp (—8it)) — (V1 + 4\ + 2) é
(c1 + c2 exp (—4it) + c3 exp (—8it))] Ox
—}é (3V1 +4X +2X +3) (c1 + ¢y exp (—4it) + c3 exp (—8it)):—[:15
+(c1 — co exp (—4it) + c3 exp (—8it))z?
+(V1+4X+1) (c3 exp (=8it) — ¢1) (66)

and leads to six odd operators. Let us only mention one of them called Y;
and its hermitean conjugate Yf which are given by

1
Y, = (8§+(2$—(\/1+4/\+2) %)8x+%(3\/1+4x\+2/\+3)F

+2? — (VI+4x+1)] o,
(67)

1
¥ = [agu(zx— (VI+4X+2) %)8x+%(\/1+4)\+2/\— 1) =
+2? — (VI+ 4 +3)| o4

They lead to a deformed sqm (2)-superalgebra characterized by the following
anticommutation relation

Vi, Y} =H*— (2vV1+4X+2u+8) H+8v1+4)
+2u V1 + 4N+ 8u+ u® + 41+ 13 (68)

which is once again at most of the second order in the superhamiltonian
([ Hy O
H = ( 0 H ) . (69)

D. a) The N = 1 - Coulomb context

It is given by the potential

(70)



228 Beckers, Debergh and Gotti

with usual units for the mass and the charge appearing in the discussion.
Let us also recall that £(£+ 1) are the eigenvalues of the square of the orbital
angular momentum operator entering into these considerations.

The particular solution issued from simple Laguerre polynomials [12]
can be chosen with a = 0 in the form

it x +1
wplx,t) = exp (m) exrp (—2(£+1)) gt (71)

so that it leads to the second potential

1, (e+1)(+2)

= — 2
I/].(‘,‘U) T x2 (7"‘)
The corresponding Darboux operator becomes
{+1 1
B 1) =Lig)y=8 8, - 7

and depends only on one arbitrary constant. We have thus only two odd
(super)charges defined as follows :

14
QE(&C—" +1+ . )) o_, QTE(—&C—el_l—{— . )0+,

i 2(+1 20 +1)
(74)
leading to the sqm (2)-superalgebra (35) as expected but with
Hy 0O 1
H = e ]
( 0 H ) " 4(0+1)? (75)

D. b) The N = 2 - Coulomb context

Besides the first solution u ¢(z,t) given for arbitrary ¢ ’s by (71), we
consider as a second particular solution the following one

it x +1 T
) = eon (st ) e (- ') [ 02 -
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We are led to a second potential given by

V2($)2_2+(5+22§£+3) )

and to a Darboux transformation characterized by

3 2 +3 20+ 3
L(a:,t):L(x):cl(9I+cl(2(£+1)(E_'_Q)— " )&C
(+1) (£+3) 202 + 60+ 5 1
+Cl( p _2(E+1)(€+2)x+4(€+1)(€+2))(78)

showing that here again we only get two possible odd supercharges. They
are such that

202 + 64+ 5 a 1
4(£+1)2 (£ +2)2 16 (£ +1)2 (£ +2)?

{Q,Q"y=H+ (79)
Let us close this section and ask for some general remarks and conclu-
sions rather than by considering more and more contexts like those referring

to Morse, Posch -Teller, ..., potentials belonging to the category of solvable
problems.

4 Remarks and conclusions

We have learned, through very simple arguments, that it is possible to
generalize the Bagrov-Samsonov results concerning the Darboux operator,
such generalizations depending on the N = 1 or 2-values as discussed in
Section 3. Such an order N implying specific Darboux transformations, let
us add a few results which could have some interests in the future. Let us
indeed look at the generalization of our ideas to arbitrary values of N and
let us propose the Darboux operator

i (z,t) & (80)

admitting complex values for the function Ly(z,t). For 2-dimensional matrix
formulations, the corresponding condition (15) with L given by (80) leads to
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the following system where W is once again the Wronskian determinant cor-
responding to N particular solutions of eq.(1) including the potential Vy(z, t).
For each fixed value of N, we get systems of (N+2) conditions of the forms :

L. =0,

Lyt +2 L1z + 2 (In W(uy, ug,y ..., un))zze Ly =0,

iLN—l,t = QLN_QJ g LN—l,a:x + 2(ln W)mw Ly_1+ NLN‘/E)Sz = iff}, (81)
iLps +2Lp-12 — Lggr +2(In W)po Lo+ (£ + 1) L1 Vo 2

N!
Ly (0¥t =0,

1
+§(f +1)(£ + 2)L£+2V0,xz + ... + m

£=0,1,...N-2.

As an illustration, let us come back on the harmonic oscillator context
but with N arbitrary. We can choose N solutions u;(z,t) such that

i0; u;(z,t) = Ho u;(z,t), Vi=1,2,...,N, (82)

expressed in terms of Hermite polynomials [12] Hy(z) as follows

(s, 1) = exp [~i(2) — 1] exp [~32%] H,1(a) (83)
so that
(ln W)I = —N.’L’, VN(.’E) = Vo(.fl?) + 2N = 2132 + 2N. (84)

The system (81) then leads to (N 4+ 1) (N + 2) odd symmetries given in the
2-dimensional context by

O+, Ai 0+, A:F T4, A:t Ai Oty . ?(A+)k (A“)Tl—k O+, (85)

with k = O, 1, ..., N and A* given by eq. (54). In this oscillator context,
they lead to deformed superalgebras. In particular, it is always possible to
define the two supercharges

Q=AW Q' =ANY oy, (86)

which are such that

Q*= Q) =0 (87)
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and
{Q,Q"} = [I (H —25-1), (88)
(H,Ql=[H,Q"=0 (89)
with P 0
iy
HZ( 0 A*A++2N—1)' (0]

We thus get a deformed sqm (2)-superalgebra always included in the maximal
invariance superalgebra corresponding to this study for arbitrary N s.

All these results show that, on the one hand, supersymmetric quan-
tum mechanics and its (at least) 2-dimensional formulation are particularly
well exploited through the above developments associated with such Darboux
transformations. On the other hand, supersymmetries in quantum mechan-
ics have already been determined in a systematic study [13] for arbitrary
superpotentials simply related to usual potentials appearing in Schrédinger
equations. This approach gives a classification of all solvable interactions
and associates nontrivial invariance superalgebras with each context. It is
thus evident that these two points of views are not independent. Indeed,
we have already noticed in the four physical applications developed in Sec-
tion 3 (i.e. the free case, the harmonic oscillator, the Calogero and Coulomb
problems) that the results are strongly related to those contained in reference
[13] . Then, we immediatly deduce that all the physical applications different
with respect to the four preceding ones (i.e. Morse, Posch-Teller, ... poten-
tials) cannot be characterized by superstructures larger than the deformed
sqm(2)-superalgebras we are always constructing here in each context.
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