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Some Schrodinger operators with power-decaying
potentials and pure point spectrum,
11. The discrete case

By Christian Remling

Universitat Osnabriick, Fachbereich Mathematik/Informatik, 49069 Osnabriick, GERMANY
E-mail: cremling@mathematik.uni-osnabrueck.de

(6.VII.97)

Abstract. We construct deterministic potentials V' (n) = O(n~°) such that the discrete Schrodinger
operator (Hy)(n) = y(n — 1) + y(n + 1) + V(n)y(n) on lo(N) has dense pure point spectrum on
(-2, 2] for almost all values of V' (1). As a consequence of this construction, we also obtain power-
decaying potentials for which the spectrum is purely singular continuous on (—2,2) for all values
of V(1).

1 Introduction

This work is a sequel to my paper [12]. Here, I am interested in the discrete one-dimensional
Schrodinger operator (also known as Jacobi matrix) H on [5(IN):

(Hy)(n) = { y(n—1)+y(n+1)+V(n)y(n) (n=2)

y(2)+V(1)y(1) (n=1)
We will construct power-decaying potentials V' (n) = O(n™¢) (¢ > 0) so that H has dense
pure point spectrum in [—2,2] (i.e. 0o = [—2, 2], 0. = 0) for almost all values of V(1). Note

that by the instability of thick point spectrum [3], there must also be a dense G; set of
V(1)’s for which the spectrum of H is purely singular continuous in (-2, 2).

This is, to the best of my knowledge, even the first deterministic potential with dense
pure point spectrum and V(n) — 0. For random potentials decaying as V' (n) ~ n™¢ with
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c < 1/2, it is known that this spectral type is typical (see (7, 8, 7 1]), but, of course, these
works do not give much information on the particular structure a fi..ed potential must have
in order to generate pure point spectrum.

In [12], decaying potentials with pure point spectrum were constructed for continuous
Schrodinger operators. Obviously, this proof does not extend to the discrete case. The aim
of the present paper is to show that nevertheless the basic ideas of [12] can also be used to
obtain the result stated above. The representation will closely follow that of [12]. We also
refer to [12] for a more complete discussion of related works and for further references.

Some of the arguments used here are completely analogous to the corresponding consid-
erations of [12]; in this case, we will only sketch the ideas. As in [12], a modification of our
construction will yield power-decaying potentials with purely singular continuous spectrum

n (—2,2) for all values of V(1). The only other class of decaying (deterministic) potentials
which is known at present and which leads to this spectral type (namely, sparse potentials,
as introduced in [11]) has a considerably slower decay (see [7]).

I would like to thank A. Hof and S. Jitomirskaya for useful hints concerning the proof of
Lemma 3.2, the Deutsche Forschungsgemeinschaft for financial support, and I am grateful
for the hospitality of Caltech where this work was done.

2 Description of the model

We will investigate the following potential. Let L,, N, € N, W, € R, [, € Ny, and set
a :0, An41 :an—i—l—i—ln—i-LnNn.

Define V(m) as follows: For a, < m < any, let V(m) = W,, +1/N,, if m is one of the points
an+ 1+, +tN, (t=0,1,...,L, — 1) and V(m) = W,, otherwise. The main goal of this
paper is to show

Theorem 2.1 The parameters can be chosen such that:
1)V(n)=0(n"° (c>0)
2) For almost every E € (—2,2), the equation

yin—1)+y(n+ 1)+ V{(n)y(n) = Ey(n) (n € N) (2.1)

has an ly-solution.

The proof will be given in the following three Sections.

Note that an [-solution of (2.1) is an eigenvector of H if and only if y(0) = 0. On
the other hand, unless y(1) = 0, one can change the value of V(1) so that y(0) = 0 for
the new value V(1) (namely, take V(1) = V(1) + y(0)/y(1)). Thus spectral averaging and
2) imply that o.(H) = 0 for almost all values of V(1) (see e.g. [15]). Moreover, 1) shows



202 Remling

that the operator of multiplication by V' is compact, hence g.5s = [—2,2]. Putting these
two statements together, we conclude that, for almost every V' (1), H indeed has pure point
spectrum which is dense in [—2,2].

As in [12], the potential is built out of periodic pieces. The basic idea is to determine
these building blocks so that every energy is in (one of) the gaps sufficiently frequently.
The role of the various parameters will become clear in the course of the proof. We do
not aim at maximal generality; instead, we prefer to keep the discussion as transparent as
possible. Therefore, we have made a definite choice for the basic periodic potential from
the outset. The method applies in principle more generally, but the conditions one has to
impose are very cumbersome. Also, we will not try to optimize the exponent ¢ because it
seems impossible to come close to the borderline case ¢ = 1/2 anyway.

3 Preliminaries

Fix o € [0,7), and for E € (—2,2), let y(n, E) be the solution of (2.1) with initial values
y(0,FE) = sina, y(1, F) = cosa. We will use a Priifer type transformation (see (7] for a
comprehensive discussion). Because of statement 1) of Theorem 2.1, we clearly must have
W, — 0. Thus, if F € (-2, 2), we can define w,, = w,(E) for sufficiently large n by

2cosw, = E - W, wn € (0, ).

For a, < m < a,41, let

1 sinw, 0 yim—-1,E)
Y(m,E) = = = : g 3:1
( ) sin wy, ( —coswy, 1 ) ( y(m, E) (31)
and write Y (m, E) = R(m, E)(sin ¢(m, E), cos p(m, E))T with R > 0. Of course, this makes
sense only for large enough m; we will not mention such restrictions in the sequel. Mereover,
since only the direction of the vector determined by ¢ will matter, we need not worry

about the non-uniqueness of . It will become clear shortly why the rather odd-looking
transformation (3.1) is useful.

The transfer matrix T'(n, m; E') takes solution vectors Y at m to their value at n (requir-
ing this for two different values of o determines T completely). So by definition we have
Y(n,E) = T(n,m; E)Y (m, E). Beware of the possible confusion here: the name “transfer
matrix” is often used for the analogous object that updates (y(n — 1),y(n))7.

Because of the form of the potential V| there are three different types of transfer matrices
we have to deal with. On the segments {a, + 1,...,a, + [}, V has the constant value W,
and one infers easily from this that

coSwyly,  sinwpl,
—sinwpl, coswyly

T(an+1+1ly,a,+ 1, E) = ( ) = Rot(wnln), (3.2)

i.e., T" is simply rotation by w,l,. This is the property that motivated the transformation
(8.1
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On {an +141y,...,an41 — 1}, V is periodic. Therefore, we now collect some basic facts
about periodic potentials (compare also [16]). If V(n + p) = V(n) for all n, then obviously
also T(n+p,m—+p; E) = T(n,m; E). When applied to V' from above, this remark says that

T(an+ 141l +mNp,an +1+ 1, + Ny E) = To(E)™Y, m,le{0,1,...,L,}, (3.3)

where we abbreviated T(a, + 1+ I, + Np,a, + 1+ 1; E) = T,(E). A routine calculation
yields

T.(E) = Rot(w,N,) 1 ( COS Wy 8iN wy (N — 1) sinwyp sinw, (N, — 1) ) (34)

N, sinw, \ coswpcoswy (N, — 1) sinwy cosw, (N, — 1)

By constancy of the Wronskian, we have det T,,(E) = 1 (of course, this can also be verified
directly with the aid of (3.4)). Hence, denoting the trace of 7" by D (for the time being, the
dependence on n, E will not be made explicit), the eigenvalues of T are p, u~! with

p=-—=x4/——1. (3.5)

Here, we choose the sign so that |u| > 1. If |D| # 2, then T is diagonalizable, i.e.

0
e 2 2
(0 #‘)

for appropriate U. Note also that u is real and |u| > 1 if |D| > 2 and that || = 1if |[D| < 2.
This implies the following elementary estimates:

Lemma 3.1 a) If |D| < 2, then, for allv € C?, m € N,

Iicdl

T >
| o0 o

b) If |D| > 2, then there is an angle B such that |p — 3| > ¢ (mod 7) implies
IT™esll > =1
(writing e, = (sin @, cos )*).

The proof is straightforward and, moreover, identical with the proof of [12, Lemma 3.2]. It
will therefore be omitted.

Finally, we have that

T(an + 1,an; E) = Rot(wn-1) + ! ( 4 0 ) . (3.6)

sinw, \ €os(wn-1 —wy) —1 sin(wnp_y — wy)

The second term on the right-hand side comes from the change of w at a,.
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Asin [12], Lemma 3.1b) will be used to show that, roughly speaking, the solutions of (2.1)
are increasing on the segments {a,,...,an+1}, provided the Priifer angle ¢ does not lie in
the small exceptional set I, = (8 —¢, 3+¢). In this case, the interval {a, +1,...,a, +1+1,}
can be used to readjust the Priifer angles. The following result can thus be viewed as an
insurance against bad luck. Note also that this issue is more delicate here than in the
continuous case.

Lemma 3.2 There is a constant C' such that for any e > 0 and any measurable functions
Y, B, there exists an 1 € Ny, | < Ce~* with

Hwe S Y(w)+lw e I(w) (modm)}| < 4e.
Here, I.(w) = (B(w) —¢€, Bf(w)+¢€), S is a measurable subset of (0,7), and || denotes Lebesgue
measure.
Proof. 1t suffices to show that

Besd
% > {we S:yY(w)+iw e L(w)}] < 4e
1=0

for some L < Ce~* where C is independent of ¢,v, 3, S. This can also be written as

L-1
[dot 3 xu W) + 1) < 4e (3.7)
S 1=0

Notice that by the ergodicity of a rotation on the torus with irrational rotation number (see
e.g. [2]), the limit of the left-hand side of (3.7) exists as L — oo and equals 2|S|e/n < 2¢.
Therefore, we need to estimate the error term in the ergodic theorem. The method we will
use is similar to [5, Proof of Prop. 5].

For A > 0 let
M(A):{we(o,w) AP [N is VpGZ,qENl.
L T 4 q )
Then o o
0.\ M) c U U (Zﬁ arg P Awq-a) ,
g=1p=0 \ 9 q
thus -
[(0,7)\ M(A)| < 27A Z(q + 1)q_3 < And. (3.8)
q=1

Now fix w € M(A), and denote the mth convergent of the continued fraction expansion of
w/T by pm/qm (for the basic properties of continued fractions, consult e.g. [2, 10]). We set
go = 1, and, as usual, [z] denotes the largest integer < z. Any L € N can be expanded in
terms of the g, i.e. L = 37", biq; where n is determined by ¢, < L < ¢n4;. Furthermore, we
have that b; € {0,1,...,[gi+1/%)}, bn € {0,1,...,[L/qa]}. (We simply let b, be the largest
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integer with b,q, < L, then we determine b,_, analogously as the largest integer such that
bnGn + bn_1qn—1 < L etc.) Correspondingly, the sum 357! o in (3.7) can now be decomposed
into a number of sums with exactly g; terms (1 = 0,...,n). Moreover, there are precisely b;
such sums with ¢; terms. Since |w/m —p;i/q| < ¢;7° [2, Section 7.4], a standard error estimate
in the ergodic theorem (compare [2, Ch. 3, Lemma 4.1], [6, Theorem 1]) shows that for each
sum over g; consecutive terms we have

.7+Q1_] 2 €
Z ng(w + lw) % <2
=3 ™
Hence, using the decomposition of L,
2Le
Z X1 (U(@) + lw) € == +2(bo + ...+ bn).

The b;’s can be estimated as in [5], using the definition of the set M(A). This leads to the
inequality

1 2¢  12InL

— Z X {w ) +ilw) < — + (_AE)T/_Q,

valid for w € M(A) and L 2 2. Hence, taking (3.8) into account, we get for the integral
from (3.7)

23 12rIn L 3
/dw—ZX]( 'i‘l(.d) W‘f‘Aﬂ'.

Now (3.7) is established as follows: Given any € > 0, first let A = ¢/m3, and then take L
large enough so that (with this A) 127 (AL)"*2In L < e. Then (3.7) holds, and it is easy to
see that we can also achieve that L < Ce™%. O

4 Band structure

In this Section, we study 7,,(E) (see (3.4)) more carefully. The crucial quantity is the trace
of this matrix; that is, we have to analyse the function

sinwN
= 2 — . 4.1
Dy (w) coswN Nsinw (4.1)
For Ne Nandl € {1,...,N —1}, let
lm 1 5 1
V= — — = .
" N 2NZsin(ir/N)’ ' 2NZsin(ir/N)

Lemma 4.1 Fizn > 0. Then for N > Ny = Ny(n) and l € {[nN]+1,...,[(1 = n)N]} we
have:

a) Ifu_, + 61 +2N32 <w <y — 8§ 2N then |Dy(w)| €2 - R

b) If |w — vy < 6 —2N7%2, then |Dy(w)| > 2 + N73/2.
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Proof. For large N and w not close to 0 or 7, the inequality |Dy(w)| > 2 implies that
wN = lr + ¢ with | € N and ¢ = O(N™!). For these w, a routine Taylor expansion of (4.1)
shows that

1

T INTsn? (in/N)

(-1)'Dy(w) =2 - N} (w — y)? + O(N™Y).
Recall that if [ is an interval with |Dy(w)| < 2 for all w € I, then Dy(w) is monotone in J
(compare Theorem A.2). Now the assertions follow easily. O

For the application of Lemma 3.1, we will also need an estimate on the diagonalizing
transformation U:

Lemma 4.2 In the situation of Lemma 4.1a) or b), the matriz T from (3.4) (with w,
w, N, = N) can be diagonalized by a transformation U = U(N,w) satisfying ||U|] ||U}|
CN>2. Here, C is independent of w, N.

IA

The proof is completely analogous to the proof of [12, Lemma 4.2]. Note, however, that it
may be necessary to take Ny(n) even larger.

In the next Lemma, we show that for any compact subinterval I C (—2,2), we can find a
not too large number of small periodic potentials such that every energy F € I isin a “gap”
(i.e. | D] > 2) of at least one of these periodic potentials. More precisely, we prove:

Lemma 4.3 Fiz d > 0. Then there are C(d) > 0 and Ny(d) € N so that for any N > Ny,
there exist W1y, ..., W, with the following properties:

1)r<CN

2) |Wi| <4n/N (i=1,...,7)

3) For all E € [-2+4d,2—d), there is anm € {1,...,7} so that |Dy(wm(E))| > 2+ N75/2,

Recall that w,,(F) is defined by 2coswy, = F — Wy, wnm € (0, 7).

Proof. In this proof, we will use several expansions and estimates which hold for large
enough N; we will assume tacitly that N is sufficiently large in this sense. First, notice
that wy(E) € [n,m — 1] (n = n(d) > 0) for all m and E with |E| < 2 — d, provided the
W,, satisfy assertion 2) of the Lemma. Thus we may apply Lemma 4.1. To this end, given
(large enough) N, let E; (W) = 2cosv; + W (recall that v; depends on N). Then a Taylor
expansion shows that

|lwm(E) —u| < CL(d)|E — E(Wn)|.

Hence, by Lemma 4.1b), there is a constant Cs(d) so that |E — E;(W,,)| < CoN~? (for some
le{[nN]+1,...,[(1 =n)N]}) implies |Dy(wn,(E))| > 2+ N~%2. On the other hand, since
|2cosy;—2cos vy, | < 4n N1 (say), the interval [-2+d, 2—d] can be covered with not more
than [27rC5 ' N] + 1 sets of the form

[(1-n)N]
AW) = U [E/(W) — CoN72 E(W) + C,N7?

I=[nN]+1
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(where 0 < W < 47 N~! for all these sets). O

Lemma 4.3 suggests the following procedure for the choice of (some of) the parameters:
Given a sequence of integers N(s) — oo (s € N) (to be determined later), pick d(s) >
0,d(s) — 0 so that N(s) > Ny(d(s)) and, say, C(d(s)) < InN(s) for all s. For s =1,2,...,
choose inductively numbers Wj)41, . .., Wj(s)4r(s) Which satisfy the conditions of the Lemma
for d = d(s) and N = N(s). Here, we used the notation j(s) = ¥iZ; r(¢). Furthermore, we
set N, = N(s) forn=j(s)+1,...,5(s) +7r(s). The remaining parameters N(s), l,, L, will
be chosen in the next Section.

Note that the potential consists of a sequence of “blocks”, indexed by s, and each block
itself is built out of r(s) periodic pieces. Moreover, any E € (—2,2) is in a gap of at least
one periodic piece belonging to the block s provided s is large enough (this is, in a sense, the
defining property of the partition into blocks). For an index n € N, we will write s(n) for
the index of the block to which the nth periodic potential belongs. So, s(n) is determined
by j(s(n)) +1 < n < j(s(n) +r(s(n)).

5 Asymptotic estimates

As a final preparatory step, we have to ensure that for almost all £ € (-2,2), Lemma 4.1 is
applicable and, moreover, that the Priifer angle ¢ is not in the exceptional set (3 —¢€, 5 +¢€)
(see Lemma 3.1b)) if Lemma 4.1b) applies.

Lemma 5.1 Assume that Y22, N(s)~"/?In N(s) < oco. Then, for almost every E € (-2,2),
there is an ng = no(E) such that for n > ngy, we have either

a) | D, (wn(E))| £ 2~ N %2 or

b) | D, (wa(E))| 2 2+ N2,

Moreover, Lemma 4.2 applies in both cases.

This is a statement about the band structure of the periodic pieces; in particular, this fact
only depends on the form of the basic potential, i.e. the parameters W), (which enter through
the functions w,(F)) and N,. Also, recall that N, = N(s(n)) by construction.

Proof. The assertion is, of course, exactly the conclusion of Lemmas 4.1, 4.2 for w,(E)
instead of w and with N = N,,. Thus, if we let

Ap(d) ={F €[-2+d,2—d]: |wa(E) — vy £ 8] < 2N%2 for some 1}

(this notation means that the inequality is required to hold for either + or —), it suffices to

show that
{E : E € A,(d) for infinitely many n}| =0 (5.1)

for every d > 0. (Notice that A, is exactly the complement of the set covered by Lemma
4.1.) By the Borel-Cantelli Lemma, (5.1) will follow from ¥ |A,(d)| < co.
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Clearly, we have that |dE/dw,| < 2. Hence, since there are at most N, possible values
for | in the condition defining A4,(d), we obtain |A,(d)| < CN_3/2. The number of indices n
corresponding to a fixed s is r(s) < N(s)In N(s), so the proof is complete. O

In order to control the set where the Priifer angle ¢ is close to its exceptional value 3,
fix a sequence ¢(s) > 0, and introduce (again, writing d,, = d(s(n)) etc.)

B, ={FE €[-2+dn,2—d,]: |Dn,(wn(E))| > 2,|¢(an +1+1,,E) = Gu(E)| < €n}.

Now Lemma 3.2 together with (3.2) show that we can find {,, € {0,1,...,[Ce;"]} such that
{wn(E) : E € By}| < 4e,. As above, since |[dE/dwy,| < 2, it follows that |B,| < 8ep.

There is a subtlety here that needs to be clarified: Obviously, the actual value of [,
depends on the function ¢(a, + 1, ), i.e. on the parameters N;, L;, [;, W4, for i < n—1, but
we have not chosen the L; vet! So, strictly speaking, we should have fixed the L; first and
only then can the [; be chosen (inductively) as described above. However, any choice of the
L; would appear rather unmotivated at this point; therefore, we have reversed the logical
order of the steps. Of ccurse, this does not cause any lack of rigour, because we might as
well fix all the parameters from the outset and then run through the whole proof again.

With this understanding, we obtain

Lemma 5.2 Assume that 2%, €(s)N(s)In N(s) < co. Then there are l,, < Ce;* so that

{E € (-2,2) : E € B, for infinitely many n}| = 0.

Proof. By the remarks above, 3 |B,| < 8 ¢(s)N(s) In N(s) for appropriate {,,. O

We now fix sequences N(s), €(s) satisfying the hypotheses of the last two Lemmas. The-
5

orem 2.1 can be proved with many different choices; we take N(s) = s3,¢(s) = s7°.

We are now ready to establish the existence of rapidly increasing solutions for almost
all E. These concluding arguments are rather similar to the corresponding discussion in
[12, Section 6]. Therefore, we will only sketch the main steps. We will look at R,;(E) =
R(ap+1+1,+iN,, E) forne€ N,i € {0,1,...,L,}. Note that R also depends on the initial
condition a, but this dependence will not be made explicit. We will use the abbreviations
Ry = Rpgiy, So = s(ng). Moreover, L, will also depend on s only, so we can write L(s).

Lemma 5.3 For almost all E € (—2,2), there are constants C;(E) > 0,to(E) € N such

that
s(n)-1

s(n)
InRu(E)—=InRy(E)>C; S L)t ¥ -G, 5 e 1n’t

t=s0+1 t=so

ifan + 141, +iN, 2 any + 1+ 1y, + 20Ny, and so > 1.

Proof. Fix an FE which is not in the exceptional sets of Lemmas 5.1, 5.2, and let m be a
sufficiently large integer. According to Lemma 5.1, we have to distinguish two cases. Assume
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first that Lemma 5.1a) applies, i.e. |Dy,, (wn(E))| < 2 — N;32. Recall that Dy, (wn(E)) =
D.,(E) where D,,(E) is the trace of T,,,(F) from equation (3.4). So we deduce from (3.3
and Lemmas 3.1a), 4.2 that

InRpi(E) —InRpi(E) > —Clns(m) (0<:¢<j< Lp)

where C' > 0 is independent of m, ¢, 7. In particular, takingi = 0, j = L,, and recalling that R
is constant on {am+1,...,am+1+ln} by (3.2), we see that In R(ams1, E)—In R(am+1, E) >
—C'Ins(m). Moreover, since T'(am+1 + 1, ams1; E) — Rot(w,,) is of order O(N ') by (3.6)
and Lemma 4.3 2), we also have that

In R(ams1 + 1, E) —InR(am + 1, E) > —C'ln s(m). (5.2)

If, on the other hand, |Dy,, (wm(k))| > 2 + N;5/2, then (3.2), (3.3), (3.5), (3.6) and
Lemmas 3.1b), 5.2 show that

InR(ams1 +1,E) = InR(apm + 1, E) > CLips(m)™"%% — Cy1n s(m) (5.3)
with positive constants C; which are independent of m.

Now the assertion is obtained by summing up the contributions from (5.2), (5.3) and by
noting that for every s, there is at least one m with s(m) = s for which (5.3) is true (by
Lemma 4.3 3)). An additional argument is needed to handle the case when |Dy, (wn,(E))| >
2 + _7\/'”‘05/2 because Lemma 5.2 does not exclude the possibility that the Priifer angle at
Qno + 1 + lny + 10Ny, is close to the exceptional value 3. We refer to [12] for details on this
(technical) issue. O

Thus, if L(s) grows sufficiently fast, the R,; are also rapidly increasing. We can take,
for instance, L(s) = [s3'/4]; then, using some elementary (and crude) estimates, we get from
Lemma 5.3 for almost all £ and sufficiently large s

—C,(E)sdIn? s s(n) = sg,80 + 1

Cz(E)S(n)4 S(n) > 50+ 2 (5.4)

In Rpi(E) — In Ry(E) > {

where, as usual, the C; are positive constants which are independent of ng, 7, n, 2.

The proof of the existence of l>-solutions (given the existence of rapidly increasing so-
lutions) also follows the lines of [12]. The basic tool is the following reformulation of [9,
Theorem 8.1] (this Theorem, in turn, is modelled on results of [13]). In fact, we need a
slightly more general version here because the transfer matrix from (3.6) is not unimodular.

Lemma 5.4 ([9]) Assume that there is an increasing sequence T, — 0o such that:
1) [|T(Tny1, Tn; E)|| < C1(E) for all n

2) detT(z,, xo; E) = Co(E) #0 (n — o0)

8) There is a vector v € R? with ¥ ||T(z,, zo; E)v|| ™% < 00.
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Then either

a) There exists another vector u # 0 such that (writing pn, = ||T(@n, Zo; E)ul|, Ry = || T (@n, zo; E)v||)

2 < C(E) | R;? (i(Rn/&>2)2+R;2 -

i=n

or
b) pn/Rn — 00 if u is not a constant multiple of v.

A step-by-step check shows that the proof of [9, Theorem 8.1] still works in this slightly
more general setting (compare also [12]).

We can now proceed as in [12, Section 6] to prove the following facts: The hypotheses
of Lemma 5.4 hold for almost all E if z, is the sequence of the points a, + 1 + [, + iN,.
As for assumption 2), note that detT" = 1 for the transfer matrices from (3.2), (3.4) and
detT(a, + 1, a,) = sinwy,_1/sinw, by (3.6). Conclusion b) of the Lemma can be true only
for an E-set of measure zero (by an application of Theorem A.3). However, if Lemma 5.4a)
applies, then this estimate together with (5.4) ensure that there is an [;-solution for these
E. Since it is easy to see that, say, V(n) = O(n~'/?) (with the parameters specified above),
the proof of Theorem 2.1 is, finally, complete.

6 Singular continuous spectrum

In complete analogy to [12, Theorem 7.1], a “sparse” variant of the potential constructed
above leads to purely singular continuous spectrum in (—2,2). More precisely, for an increas-
ing sequence of integers s,,, introduce an auxiliary potential as follows: For a, < m < an41,
e (m)  s(m)€{si:i€N}

_j V(m s(m)e{s;:1€N
Vous(m) = { 0 otherwise '

To obtain the new potential V, readjust the l, so that (an analogue of) Lemma 5.2 holds
(use Lemma 3.2, of course). Of course, on the segments with V' = 0, we define R(m, E) =
I|Y (m, E)|| where now

1 sinw 0 y(m—1,F)
Y(m, B) = sinw < —cosw 1 > ( y(m, E)
and 2cosw = E (compare this definition with (3.1)). Then R is constant on the segments
where V = 0, so the above reasoning also applies to V/, i.e., for almost all F € (-2,2), R
increases. Using Theorem A.3 with an appropriate test function f (see [12] for details), we
see that H has no absolutely continuous spectrum. Moreover, if the segments separating

the blocks s,, are rapidly increasing, then no solution is in /o (again, details can be found in
[12]). Thus we get
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Theorem 6.1 If s, increases sufficiently rapidly, then the modified potential 1% satisfies
1)V(n)=0(n"° (e¢>0)

2) For arbitrary V (1), the spectrum is purely singular continuous in (—2,2).

A Appendix

In this Appendix, we compile some basic facts about Jacobi matrices for the reader’s (and
author’s) convenience. These statements are, of course, known, but it is difficult to find
suitable references for them.

We begin with the variation of constants formula. Write
y(n—1)+yn+1)+V(n)y(n) =: (ry)(n)  (neN)

for functions y : Ny — C, and denote the Wronskian of two such functions by W(u,v) =
u(n)v(n+ 1) — u(n + 1)v(n). If u,v both solve 7y = zy, then W (u,v) is independent of n,
as is easily verified.

Lemma A.1 Let u,v be solutions of (1 — z)y = 0 with W(u,v) = 1. Then the solutions of
(1 — z)y = [ are precisely given by

y(n) = crufn) + cru(n) + v(n) 3 w (k)£ () — u(n) 3 v(k)F(K)
k=1 k=1

with ¢; € C.

Proof. This is checked by a straightforward calculation. O

Clearly, this formula also holds with summation up to n — 1 (instead of n) in both sums.

Theorem A.2 Let Dy(E) be the trace of the transfer matriz T(N +1, 1; E), associated with
the equation Ty = Evy, and suppose that |Dy(E)| < 2 for all E in some interval I. Then
Dy 1is a strictly monotone function of E € I.

Proof. This is merely an adaption of the corresponding proof for the continuous Schriodinger
operator (see [4, Theorem 2.3.1]) to the discrete case.

Since the trace is invariant under similarity transformations, we may work with the
transfer matrix for the vectors (y(n —1),y(n))? where y solves 7y = Ey. Thus T is given by

u(N, E) v(N, E) )

T(N+1,1;E)= ( u(N+1,E) v(N+1,E)

where u, v are the solutions of 7y = Ey with u(0,F) = v(1,E) = 1, v(0,E) = u(1,E) =
0. In particular, Dy(E) = u(n, E) + v(N + 1, E). Differentiating the difference equation
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with respect to E (since the solutions are polynomials in E for fixed n, they are certainly
differentiable) and using Lemma A.1 yields (dropping F on the right-hand side)
N N N
Dy(E) = (v(N +1) —u(N)) > u(k) v(N) S u(k)? —u(N+1)> v(k)® (A1)
k=1 k=1 k=1

Since W (u,v) = 1, we see that
D%(E) = (u(N) —v(N +1))* + 4 + 4u(N + 1)v(N),

and combining this with (A.1) shows

4u(N + 1) Dy (FE i [2u(N + (k) + (u(N) = v(N + 1))u(k)]?
= N
—(4-D%) > u(k)®.
k=1

Hence D’y does not vanish in I and, therefore, has constant sign there. O

We conclude with an eigenfunction estimate often referred to as Schnol’s Theorem. In
principle, it can be proved with the methods of [1], but the following argument is simpler.
It is closely related to the ideas used in [9] (where considerably deeper results are obtained).
We consider the operator H defined in Section 1; as above, v(n, E) denotes the solution of
the equation 7v = Ewv satisfying v(0, E) = 0,v(1, E) = 1.

Theorem A.3 Fiz f(n) € [o(N). Then, for spectrally almost every E, we also have
fC)v(- E) € L.

Proof. Let dp(t) = d||E(¢)6,||* be the spectral measure of H for the vector d;(n) = 61,. Then
the usual spectral representation shows that [v(n, E)?dp(E) = 1 (cf. [9, Theorem 2.1D]).

Hence
[ (1wt BYF ) do(E) = 3= 110 < oo

n=1

proving the assertion, since ¢, is a cyclic vector. O
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