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Introduction

Non-relativistic quantum mechanics was founded on the correspondence principle of
Bohr : "When the Planck constant h can be considered small with respect to the other
parameters such as masses and distances, quantum theory approaches classical Newton the-

ory".
Making the Planck constant small in equations of quantum mechanics is a rather singular
limit and then many difficult mathematical problems occur. Until the years 1960/70 the
mathematical tools used came essentially from perturbation theory (like for example in the
book of Kato [92]). In the seventies, Maslov and Hörmander introduced a new efficient tool
which is now known as microlocal analysis and which contains in particular an accurate
calculus for classes of operators defined by Fourier integrals which is suitable for constructing
approximations for quantum propagators.
The goal of this report is to show how some mathematical problems arising in semi-classical

approximation have been solved using ideas coming from microlocal analysis, i.e Fourier
analysis in the phase space of the classical mechanics.
Let us say that all the Hamiltonians considered here are smooth. In particular Coulomb
potentials are not considered. Singular potentials need a separate study (see for example
[88]).

In this survey the following topics will be considered.

1. Propagation of quantum and classical observables. How can the classical evolution be

recovered from the quantum evolution?
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2. Time dependent WKB approximations.

3. Trace formulas and eigenvalue asymptotics.

4. Quantum signature of classical chaos.

5. Scattering states, limiting absorption principle, asymptotics for the spectral shift func¬

tion (scattering phase).

6. Propagation of coherent states or wave packets.

The parts 1 and 2 introduce the main technical mathematical tools used in the paper. In
the other parts we present more advanced results obtained during the last fifteen years on
the subject. The title of this survey is quite general. The topics we have selected here reflect

only the knowledge, the ability and the taste of the author.
I would like to thank the organizers of the Ascona conference (June 1996) on "Mathematical
Results in Quantum Mechanics", W. Amrein, M. Demuth, G.M. Graf, P. Martin, the participants

of this conference, in particular R. Brummelhuis, M. Combescure, for their remarks on

a preliminary version of this survey and P. Hislop for his careful reading of the manuscript.
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Main Notations used in the paper

• X R" with its natural Euclidean structure. For x e X,
x {xu---,xn), \x\ {x2 + ¦ ¦ ¦ + x2n)h and (x) (l + \x\2)1'2

• A'* is the dual space of X, Z X x A'* is the phase space, the natural duality between
X* and X is denoted by < x,Ç >, x G X, f € A'*.

• iS(A') is the Schwartz space of smooth, rapidcly decreasing complex valued functions
on X.

• S'(X) is the Schwartz space of tempered distributions on X.

• C(E, F) is the linear space of linear continuous maps from E to F where E, F are

topological linear spaces.

• If E F is a Hilbert space, the norm on E and the operator norm onC(E, E) are both
denoted by || ¦ ||, when it is not confusing.
If T is a linear operator in E, T* denotes the adjoint of T.

• For z 6 (C, ÏRz is its real part, 'Az its imaginary part, |z| its modulus, z the conjugate
of z.
For x € R, i+ max(a;,0), .x_ max(—x',0).

• If u(h) is a complex valued function of h g]0, 1], and {it3} a sequence of complex
numbers,

j>0

will denote an asymptotic expansion in the sense of Poincaré : VN 6 N, 3C/v such

that

\u(h) - Y, u3h"\ < CNhN+1, Vft e]o, l].

• V is the gradient operator on X, Dx i"'V.
The following notations are also used:

V := dx := £, 5° 921 ¦ ¦ ¦ d^, Df i-^d° where

|q| Qi + • ¦ ¦ + an.

• A is the Laplace operator on X, A Yj &pi-

• H denotes a generic classical Hamiltonian and // denotes a quantization of //.

• If F is a finite set, #F is the number of elements in F.
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1 Propagation of Observables

1.1 Hamiltonian classical mechanics

Let us begin with a quick review of classical mechanics to introduce our notation. (For
more details see Abraham-Marsden [1] or Arnold [9]). Let us start with some well known
facts in classical mechanics. Let us denote by X R" the configuration space of a classical
mechanical system with n degrees of freedom. The corresponding phase space is Z X x X*
which is a symplectic linear space equipped with the symplectic form defined as

°~{x, £; y, rf) y) - (p, x), x, y e X, £, p e X*.

A classical Hamiltonian is a smooth real function // : A' x X* i-> R. The basic example is

H(x,O ^ + V(x)(m>0).
The motion of the system is determined by the system of Hamilton's equations

dx OH, „

aï -^{T'°' (L1)

The equations (1.1) generate a flow i^H on the phase space Z, defined by $'w(x(0),^(0))
(x(t),Ç(t)); $°[{ H. (l>(/f exists locally by the Cauchy-Lipchitz theorem for O.D.E. But we
need more assumptions on H to define i>ln globally on Z. Moreover, <£>^, when it exists, is

a symplectic diffeomorphism (canonical transformation) group of transformations on Z, i.e

it leaves a invariant and satisfies ^>)fs <I>(W • $^.
Some elementary examples :

1) H(x,Ç) jgL, $lH(x,Ç) (x + i^,0> the flow is free motion along straight lines.

2) h(x,o ^ + if, $<„(x-,o îx(t),am, with,

x(t) XCos(-L) + J=sm{-j=), (1.2)
-1/771 Jm Jm

£(/) -Jfrïxsm{-F=)+^cos{—=). (1.3)
Jm Jm

So we see that $# 's a periodic motion along ellipses in phase space.
The main general properties satisfied by §lH are volume conservation and energy conservation.

That means that the Lebesgue measure on Z is preserved by &H and the level sets

Eg II~l(E) {z G Z, H(z) E} arc invariant under <I>f7/. Furthermore, if E is not a
critical value for H (i.e VH(z) / 0 for z S Eß), wc can define the Liouville measure on Eß
by dLs 4P&- which is invariant under $' (rfEE is the natural Euclidean measure on T,e)-
Let us recall here a proof of this last property which will be used later.
Let / be a smooth, compactly support function on Z such that for z G supp(/) we have

X?H(z) / 0. Then we have the following formula :

|z/(2)dz j/rR(|E f(z)dLE(z)^dE. (1.4)
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We can deduce, for each fixed Eq, the following identity

±f f(z)dz=f f(z)dLE(z). (1.5)
db Je0<u(z)<e j-£e

So the volume invariance of §lu in Z implies the invariance of the Liouville measure on E#.
A particular and interesting case appears when Eg is a compact subset of phase space. With
this property, the Hamiltonian flow is well defined, at every time t G R, on Eg. Moreover
the Liouville measure can be normalized as a probability measure vE on Eg, dLE JeA^e,
where jE LE{T,E)-

A classical observable A is a complex valued function (or a Schwartz distribution) defined

on phase space Z (Examples: coordinates of position Xj, coordinates of momentum £,-, kinetic
energy, etc.).
The time evolution of a C'-smooth, time independent observable can be easily computed

jtA(¥{z)) {H,A}{&(z)), (1.6)

where {H, A} is the Poisson bracket defined by

,TT dH OA dH dA „ „.<*A>= &•*-*"*¦ (1'7)

Remark 1.1 1) (1.6) is equivalent to (1.1).
2) The Poisson bracket is preserved by ^>lH.

3) A is constant along a trajectory of the motion of the Hamiltonian H if and only if the

Poisson bracket [H, A) vanishes along this trajectory.

1.2 Quantum evolutions

Let us start with the usual Schrödinger equation

ih^ -?-ArPAViP, (1.8)
at 2 77i

where A zZi<j<n Jj~> x (x\, ¦ ¦ ¦ ,xn), are coordinates for x and V is a real function

(potential energy) defined on the configuration space X.
Under mild conditions on V, the Schödinger equation has a unique solution tp(t,x) with
ip(t,Z) G L2(X) where tp(0,x) ipo(x) is the given initial data. For example, if V is

bounded below and V G L2oc(X) then H is essentially self-adjoint (i.e there exists a unique
self adjoint extension of // as a unbounded operator in L2(X) starting from the space of
smooth, compact support functions, see [93]). The quantum evolution is driven by the

unitary group Un(t) e~i", defined by the functional calculus [121].
Now let us introduce a quantum observable A, i.e a self-adjoint operator in L2(X). The
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time evolution is given by A(t) Ui[(-t)AUf{{t) and satisfies the Heisenberg-von Neumann
equation

where [H, A] is the commutator HA — AH. For the moment, we will not be careful about
the domain of definition of these operators.
Because we are concerned here with the correspondance between classical mechanics and

quantum mechanics, we shall consider quantum observables with a classical analogue, in
a suitable sense. So we have to define a correspondence between quantum and classical
observables A «-> A according to the Bohr prescription :

(i) A f-> A is linear
(ii) position observables : Xj <-> Xj : multiplication operator by Xj

n a
dx,-(iii) moment observables : fj <-> fj : differential operator -

Let us remark that if the observables A, B depend only on the position variable (or on the
moment variables) then AB A.B but, this is no longer true for a mixed observable. This is

related to the non-commutativity for product of the quantum observables and the Heisenberg
identity. More explicitly wc have [xj,fj] ih so, the quantum observable corresponding to

Xifi is not determined by the rules (i), (ii), (iii).
We do not want to discuss here the quantization problem in its full generality (see for example
[55]). One way to choose a reasonable and convenient quantization procedure is the following,
which is called the Weyl quantization (see [84]). Let Lç be a real linear form on the phase

space Z, where C (a,ß), Lc(z) ((,z), a G A'*, ß G A'. Lc is a well defined quantum
Hamiltonian (i.e a essentially selfadjoint operator in L2(A')). Its propagator Wj(t) eTT" <

can be easily computed; for tp G S(X), wc have explicitly

Wc(t)tp{x) eWtx+t'ß/2)ip{x + tß). (1.10)

So, the Weyl prescription is defined by the conditions (i), (ii), (iii) and

(iv) e'lL< <-> Wc(t).
Let us consider a classical observable A G S(Z). The inverse Fourier formula, where A
denotes the Fourier transform of .4 in variable z G Z, gives

A(z) {2n)-2n f À(C)e,<c'z)rfC-
Jz

A is clearly uniquely defined by the rules (i) to (iv). More explicitly, for ij) G <S(A'), we have

ÂtP (27t)-2nJzA(OW<(l)iPd( (1.11)

and with more computations, we get the usual formula

ÂtP(x) (27rft)-"// A (^p,f) éh~l<x-^(y)dyd4. (1.12)

Sometimes, we shall use also the notation A Op%A (ft-Weyl quantization).

Let us introduce now a suitable set of classical observables for which the ft-Weyl quantization

will have nice properties.
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Definition 1.2 A G ö(m), m G R, if and only if Z A G is C°° in Z and for every
multiindex 7 there exists C > 0 such that

A(z)\ < C(z)m, Vz G Z.

Let us denote ö(-foo) Umö(m). We have obviously C\,nO(m) S(Z).

For every A G 0(m) we have the following elementary properties:

1. A is a linear continuous mapping on S(X).

2. A* A and A is a linear continuous mapping on S'(X).

We have an operational calculus defined by :

The product rule for quantum observables
Let A,B G S(Z). We look for a classical observable C such that A ¦ È =¦ C. Some

computations with the Fourier transform give the following formula

ih
C(.T,f) exp(—a{Dx, D^; Dy, D,l))al(x,^)a2(y,p)\{X)f)=iy,v), (1.13)

where a is the symplectic bilinear form introduced above. By expanding the exponent we

get a formal series in ft:

1 A
C(x,i) Y, -^{Dx, Df; Dy,D,ì)yal{x,^)a2{y,iì)\{Xtf)=iyi,ì)t

]>oT z
(1.14)

We can easily see that in general C is not a classical observable because of the ft dependence.
It can be proved that it is a semi-classical observable in the following sense.

Definition 1.3 We say that A is a semi-classical observable of weight m if it exists h0 > 0

and a sequence Aj G 0(m), j G N, so that A is a map from ]0, fto] into 0(m) seitisfymg the

following asymptotic condition : for every N G N and every 7 G N"" there exists Cn > 0

such that for all ft g]0, 1[ we have

mp(zY
z

^-\A[h,z)- Y *M*)°- \ 0<}<N
< cNhN+l, (l.lf

A0 is called the principal symbol, Ai the sub-principal symbol of A.
The set of semi-classical observables of weight m is denoted by Osc(m). Its range in C(S(X))
is denoted Osc{m).

Now we state the product rule
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Theorem 1.4 For every A G ö(m) and B G 0(p), there exists a unique C G Osc(m + p)
such that A ¦ B C with C x Ylj>o h3C}. The Cj are given by

Çf(*.fl à Y {-^(Did?A).(D°xdfB)(x,0.
\a+ß\=j a-p-

Corollary 1.5 Under the. assumption of the theorem, we have the well known correspondence

between the commutator for quantum observables anil the Poisson bracket for classical
observables, i[A, B] G Os(.(m + p) and its principal symbol is the Poisson bracket {A, B).

Let us recall also some other useful properties concerning Weyl quantization. Detailed proofs
can be found in [84] and [122].

• if A G 0(0) then /1 is bounded in L2(X) (Calderon-Vaillancourt theorem).

• if A G L2(Z) then A is an Hilbert-Schmidt operator in L2(X) and its Hilbert-Schmidt
norm is

||i||//, (2^ft)-"/2(/_;|A(z)|2rL~)1/2.

• if A € O(m) with m < —2n then A is a trace-class operator. Moreover we have

tr(i) (27rft)-" / A(z)dz. (1.16)

• A, B G L2(Z) then A • B is a trace class operator in L2(A') and

tr(,4 B) (27rft)-" f A(z)B{z)dz.

Now, we come to the main result of this section which gives a proof of the correspondence
between quantum and classical dynamics. As wc shall see this theorem is a useful tool for
semi-classical analysis although its proof is an easy application of Weyl calculus rules recalled
above. The microlocal version of the following result is due to Egorov [49]. R. Beals [17]
found a nice simple proof.

Theorem 1.6 (the Semiclassical Propagation Theorem) Let us consider a Hamiltonian

H G ösc(2) satisfying :

\d]Hj(z)\<C7, for|7|+j>2; (1.17)

h~2{H - H0 - TiHi) G O.,c(0). (1.18)

Let us introduce an observable A G ö(m), m G R. Then we have :

(a) For ft small enough, II is essentially self-adjoint in L2(X), with core S(X), hence the
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quantum evolution Uu(i) exp(—j-H) is well defined for etil t G R.
(b) For each t G R, A(f) Uu(—t)AUu(t) G Osc(m). Its symbol has an asymptotic expansion,

A(t) x ]TJj>o h3Aj(t), in Osc(m), which is uniform in t, for t bounded. Moreover Aj(t)
can be computed by the following formulas

A0(t,z) A(&{z)), (1.19)

AAyfz) [t{A('V),Hl}¥r(z)dT (1.20)
Jo

and for j > 2, by induction,

A3{t,z)= Y n<*,ß)fmdptHk){dfdxßAl){V)]{&-\z))dr, (1.21)
I

°<C^j-l

with

ria ß) (-i)l/?l-(-i)|a|rl-i(^)iM 'P; a!/3!2H+l/'l

Sketch of proof
We admit here that H is essentially self-adjoint (for a proof see [122]).
Let us remark that, under the assumption of the theorem, the classical flow for Hq exists
globally. Indeed, the Hamiltonian vector field (O^IIq, —dxIIo) has a sublinear growing at
infinity so, no classical trajectory can blow up in a finite time. Moreover, using usual
methods in non linear O.D.E (variation equation) we can prove that /1(<I>') G ö(m) with
semi-norm uniformly bounded for t bounded.
Now, from the Heisenberg equation and the classical equations of motion we get

4-Ux{-8)%(t - s)UH{s) (1.22)
ds

Un £[Ä,j4o(t-*)]-{ff,4>}(*t~,)}tfo(*).

where Ao(t) _4(<I>(). But, from the corollary of the product rule, the principal symbol
of \[H, ÂQ(t — s)} — {H, /lo}($(_s) vanishes. So, at the first stage, using the product rule
formula, we get the approximation

UH(-t)ÂU„(t) - Âo(t) (1.23)

[u„{-s) (^[H,Â0(t - s)] - {iCAq}&-5) UH(s)ds.

Now, it is not difficult to obtain, by induction, the full asymptotics in ft. ¦

Remark 1.7 // // H0 is a polynomial function of degree < 2 on the phase space Z then
the propagation theorem assumes a simpler form : A(t) A($(w) and the remetinder term is
null. This comes from the following exact formula, for all B G ö(+oo):

l-[IÌ,B] {HB}. (1.24)
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In particular for H Lç we have

W{QBW(-0 Br, where Bc(z) B(z - Q. (1.25)

As a first application of the propagation theorem we show how to recover the classical
evolution from the quantum evolution, in the classical limit ft \ 0. Let us introduce the
standard Gaussian function i>o(x) (7rft)~"/4exp (—%-), and the Gaussian ipç W(—Ç)ipo,
peaked at the point £ of phase space.

Corollary 1.8 For every observable A G 0(m) we have

lim{ÂUH(t)tpc, Un{t)vc) A(¥„{Q) (1.26)
/i\0

and the limit is uniform in time, t on every bounded set.

Proof
Let us introduce the orthogonal projector, n^0, on ip0 and its classical analogue it^a such

that tt~ZZ0 n^0 (i.e 7r^,0 is the Wigner transform of tp0). A direct computation gives

7rv,(z)=2"e-^.

Now for every B G ö(m) we have

{BiJ,q,iPq) tr(BIIvJ (1.27)

(Tth)-nJzB(z)exp(-fêpj)dz. (1.28)

But we ha\-e

(ÀUH(t)<Pc,UH{t)<pc) tv[W(0UH(-t)AUH(t)W(-O^0}.

So by the propagation theorem we easily get

mcUÂUH(t)<p(,UB{t)V() \uii(irh'r [ Ai&iz + Oy^dz (1.29)

Ai&iC)). (1.30)

Remark 1.9 The last result has a long history beginning with Ehrenfest (1930) and continuing

with Hepp (1974), Robert [122], Wang [139]. In particular Wang proved that it can be

extended to time-dependent Hamiltonians and unbounded observables.

Corollary (1.8) still holds for more general Hamiltonians, but the proof requires more, refined
localization in the phase space (see below).
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Now let us give a geometrical interpretation of the above results by introducing the notions
of essential support and frequency set. These notions are the analogue for the semi-classical

approximation of the wave front sets in optics and micro-local analysis [84].
Let us begin with the following definitions.

Definition 1.10 (A. Voros[138]) Let us consider a map : ]0,ft0[-4 S'(Z).

1. A is said to be negligible (semiclassically negligible) in an open subset V of Z if for all
B G C'U=°(V) we have

(A(h),B) o(tn.
2. The essential support of A, denoted by ES[A], is the closed subset of Z defined by :

ES[A] is the complement of the greatest negligible open set of Z for A.

3. If A is a map from ]0,ft0[ into C(S(X), S'(X)) we call the essential support of A the:

set ES[A] where A is the Weyl symbol of A (A G S'(Z)). We shetll use the notation
ES[A] ES[Â}.

Remark 1.11 The Weyl quantization can be extcnted so that to every A G S'{Z) we can
associate A G C{S(X), S'(X)) and the. correspondence is bijective. This is the Weyl analogue

of the Schwartz kernel theorem (for a proof see]122]). A natural formula extending the. trace

duality, is the following. For u,v G S(X) let us denote by ttUi„ the Weyl symbol of the rank

one operator : iji >-¥ (ip,u)v,

(Âu,v) (2irh)-n(A,7tUtV), (1.31)

7TUi„ is called the Wigner function of(u,v).

A related notion is the following

Definition 1.12 (Guillemin-Sternberg [62]) Let Q be an open subset of X and consider

a map ]0,fto] —t V(ii). The frequency set of T, denoted by FS[T], is defined as a subset of
the phase space Z, by its complement, as follows :

wc say that z0 (x0, f0) $ FS[T] if there exists a neighborhood Ux V of (xq, f0) in X x A**

such that for every tp G C^(U) and every f G V we have

(t/7(.T)exp(-ift-1(i,f)),ri(ft)) 0(ft°°), (1.32)

uniformly in f € V. Tx(h) means that the distribution T(ft) acts in the x- variable.

FS[T] is clearly a closed subset of the phase space Z. The proofs of the following results

can be found in [122]. Let us consider a ft dependent state ip(h) for ft G]0,fto[, satisfying the

condition

(f) there exists M,e&H,C>0 such that ||(-ft2A + \x\2)-Mtp(h)\\ < Ctre.

Let us denote by t/>(h) ® ip(K) the operator u i-> (u,ip(h))ip(h).



Robert 55

Proposition 1.13 Under the condition (f) we have

ES[ip(h)®ip{h)} FS[ip}.

Moreover the following conelitions are equivalent

I- *b (xo,6>)*FS[#

2. There exists an open neighborhood w of z0 such that

VA G C0°», (ÀV(ft), W)) 0(ft°°).

5. There exists some A G Osc(m) such that A(z0) /0 f A0 is the principal symbol of A)
and \\Âip(h)\\ 0{h°°).

Example 1.14 1. FS[</>C] {(}.
2. Let us us consider a WKB state : tp(h) a(x) exp(z'ft~ S(x)) where a is a smooth

complex valued function and S is a smooth real valued function. The non stationary
phase theorem [121] easily gives

FS[V] Ç {(.T,f), x G supp(a), f VS(x)}.

Now we come to the following geometrical interpretation of the propagation theorem

Proposition 1.15 Let us consider the Schrödinger equation

ilM Hil>, (1.33)
at
ï>(0) tpQ,

where ||i/>o|| 1 and H satisfies the assumption of the propagation theorem. Then we have :

FSM*)] ^„„(FSlVoD, Vi G R.

Proof
If zo i $k„(FSM) then there exists B.t G C0°°(Z) such that ß_((<I'//o(z0)) ± 0 and

||B-tLV>o|| 0(h°°). Now let us consider È U„{t)Ë„tUH{-t). Then we have Bq{z0) ± 0

and HßVMII 0(h°°) so z0 £ FS[ip(t)]. Using that <I>(//o is a diffeomorphism wc get the
result. |

Remark 1.16 For an extension of the notion of the frequency set, taking into account
growth in the momentum variable (like in microlocal analysis), see Colin-Parisse [35].
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2 Time Dependent W.K.B Approximations

The starting point of the Wentsel-Kramers-Brillouin approximation for an ft-dependent quantum

state, tp(h) G <S'(A'), is the following ansatz

Mx) f eih~1*{x'fi)A(h,x,e)d9. (2.1)
/e

where 6 Rw is some Euclidean space ("frequency variables set"),
ep is a real phase, and A a complex amplitude which satisfies A(h, x,6) x 2~Ij>o h3 Aj(x, 9) in

a suitable sense to be defined. In particular tp(h) can also be the Schwartz kernel of some

quantum observable, by replacing the representation space A' by A' x Ä'.
The main application wc have in mind is to the propagator of the time dependent Schrödinger
operator K(h,t,x,y) which is the Schwartz kernel of the unitary operator Un(t) introduced
in section 1. So K(h) satisfies

ihjK{h,t,-,y) HK{h,t,-,y), (2.2)

K(h,0,x,y) 6{x-y). (2.3)

The ansatz is to write

K(h,t,x,y) [ ^h~1^t'x'e'v)A(h,x,e,y)de. (2.4)
Je

To give a rigorous meaning to (2.1) and (2.4) we review now some facts on classes of Fourier
integrals.

2.1 Fourier Integrals

We shall assume that the phase cp satisfies the following conditions,

ej> G C°°{X x 9, R), and Vy G NN+n, 3C > 0, such that

\dl0eP(x,0)\<C((x,e)f-^A (2.5)

3C > 0 such that C~l{{x,0)) < ((Vx<0ep(x,0),x)) < C{(x,0)) (2.6)

and that the amplitude A satisfies,

A(h) G C°°{X x 6,C),and 3m G R,V7 G fiN+n3C > 0,such that

\dleA(h,x,0)\<C((x, ()))'¦>. (2.7)

Wc shall denote by T(cp,A,h) the distribution defined by the r.h.s of (2.1), when it has a

meaning. So we have, for cp G S{X),

(T{é,A,h),<p)= f e,h~'^x'O)A(h,x,0)cp{x)deelx. (2.8)
Vex A'
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Now we recall the principle of the non stationary phase method in order to give a rigorous
meaning to the above Fourier integrals. Let us introduce x 6 Cg°(R), x(u) — 1 f°r u £
[—1,1]. To use assumption (2.7) we split the amplitude into two pieces,

A{h,0,x) A{0)(h,6,x) + A{l)(h.x,6), where (2.9)

AV\h,x,0) X(-^^A(h,0,x). (2.10)

To (2.9) corresponds the decomposition

T{4>, A, ft) T(eP, A<0), ft) + T{è, A'1», ft).

By choosing e > 0 small enough (independently of ft) we can see that on the support of
Am we have : (0) < C(x). Consequently, (T(ep, Aw, ft), tp) is well defined as an absolutely
convergent integral. To define T{ep,A^\tt) we use an integration by part procedure. On the

support of A^l we have IV^o^l / 0. We introduce the differential operator in A' x O

Vx.^-Vx,fl (2n)
i\VXi6e{x,0)r

which satisfies
ftAetA"1* e'fi"1*. (2.12)

By applying a large enough power of A, we get an absolutely convergent integral

{T(ó,Aw,h),<p) hk f c'^'^^CAflA^Ur^x^Mx^dxtW, (2.13)
J.xxe

where 'A is the transpose of A. So we define a temperate distribution T(ep, A, ft) by putting

(T(ó, A, ft), cp) (T(eP, /1<°>, ft), cp) + (T(eP, .4«1', ft), tp), (2.14)

where the r.h.s is well defined by (2.9). This definition is independent of the procedure as we
shall see now. Another logically independent way to define the Fourier integral (T(ep, A, ft), ip)

is to pass through the limit with a cutoff. Let us introduce some F G S{X x 0), F(0) 1,

and denote A, F(ex, e9)A{x, 6). Combining integration by parts and the dominated

convergence theorem, wc can prove the following proposition (sec [74] for detailed estimates).

Proposition 2.1 For every ip G S[X),

\im(T(eP,At,h),ip) {T{è,A,h),cp), (2.15)

where T(cp, A, ft) is the tempered Schwartz distribution defined by (2.14).

Let us recall, as an elementary application of this proposition, the Fourier decomposition
theorem 5{x - y) (27rft)-" fx c'^'^-y^dp.
We can now define a large class of Fourier integral operators. Let us introduce cp and A
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defined in X x Q x X where the above assumptions are satisfied by taking 0 x X as a new
frequency set. Furthermore we assume that </> satisfies

3O0 such that C-l({x,0,y)) < ((VXte<f>(x,0),x)) <C{{x,6)}, (2.16)

C-l((x,0,y)) < ((V0,y<P(0,y),y)) < C((x,9,y)). (2.17)

Under assumptions (2.16), using the oscillating integral procedure, we define a continuous
linear operator from S(X) into <S'(A') by

(1(<P, A,h)VuVa)= [ eih'1*^A(h,x,e)<p1(y)ip2(x)dedydx. (2.18)
JXxBxX

The basic properties of this class of Fourier Integral Operators (FIO) are summed up in the

following

Proposition 2.2 (see [74]) 1. T(cp,A,h) is a continuous linear operator m S(X) und

lue have the following properties

2. The adjoint operator I(tp, A, ft)* is in the same class, T{cp,A,h)* T(tp*, A*,h), with

cp'{x,e,y) -cP(y,8,x), A'(x,0,y) Â(y,6,x).

3. I(cp,A,h) is a linear continuous operator in S'(A').

4- The product of two FIO is a FIO. More precisely,

T{ePi,Ax,h)-l{eP2,A2.h)=T{eP,A,h), (2.19)

where

0 9, x X x 02, (2.20)

A(x,6,z) Al(x,el,y)A2(y,e2,z), (2.21)

é(x, 6, z) Mx, 0i, ll) + MV> S2,z), (2.22)

with 9 (6i,y,92). In particular A G Om(X x 0 x X) where m ni[ + m2 and

A, G Om{X x&,x A).

Remark 2.3 For applications it is often necessary to consider more restrictive classes of
amplitudes.

2.2 Semi-Classical Approximation of Quantum Propagators

To be specific let us start with the basic example of quantum Hamiltonians defined by

H(V) -ft2A + V, (2.23)
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where V is an electric potential which is assumed to be smooth and satisfy the following
decay estimates,

Va, multiindex, 3Ca such that Vx G R",

\%V{x)\ < CQ(x)(2-|a|)+. (2.24)

More generally H can be choosen as in the propagation theorem. We shall see later that
this growth condition can be overcome by using a suitable localization, In particular for
application to bound state energies.
From the above considerations, we make the following ansatz for the kernel of the propagator
of the Schrödinger Hamiltonian,

K(h, t, x, y) (27rft)-n f e^M^-M)'^ hjAj{t, x, p))dp, (2.25)
j>0

with the following conditions at time / 0,

S(0,x,V) (x,V), (2.26)

A0(Q,x,V) l, (2.27)

A0,x,rj) =0, for j > 1. (2.28)

Now by writing the equation

(ih--HK(h,;y)) 0

and formally computing the ft-expansion, we get the following equations

dtS{t,x,T]) + H{x,dxS{t,x,n)) 0, (2.29)

5(0, x, rj) (x,p),

which is the Hamilton-Jacobi (or eikonal) equation, and the transport equations

idtAo{t,x,ri) C{x,v,Dx)A0{t,x,v), (2.30)

4,(0, x, 77) 1,

idtAj(t,x,p) C(x,rhDx)Aj{t,x,V) + Fj(A0,---,AJl), (2.31)

Aj(0,x,v) 0, 0>1),
where

C(x, rp DX)B deH ¦ DXB + (2i)-1[tr(9|iÇ//(x, 9,5) ¦ d\x A d\pH{x, dxS)]B

and Fj is a polynomial expression in a finite number of derivatives of Aq, • • •, Aj with
uniformly bounded coefficients.
Under our assumptions, the derivatives of order >2oìH are uniformly bounded, hence we

can solve the equations (2.29) and (2.30) for |i| small enough. So we have a sequence of
approximations Un^(t) for Un(t) which satisfy

Theorem 2.4 ([73]) There exists T > 0 small enough such that
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1. The Hamilton-Jacobi equation (2.29) has a unique solution S(t,x,p). Moreover it is
the generating function of the flow <I>/7 i.e, we have

^-Hl(x,dxS(t,X,p)) (d,S(t,X,7l),7,))

and satisfies

\d]S(t,z)\<C(z) (2-ItIU

2. The transport equations (2.30) have a unique solution Aj(t,x,p), solved by induction,
defined and C°°-smooth in \—T,T] x Z, and satifies estimtttes

\%d!A}(t,z)\ < C, V(*,z) G \-T,T\ x Z.

3. Let us introduce the. Fourier-Integral operator :

UnAtMx)
(27Tft)-n / c«-1(s(«.x,,)-<»,,»( £ njAj{t,x,n)My)dydV. (2.32)

Z 0<j<N

Then we have a remainder term estimate in L2-norm

snp \\UH(t)-UHtN(t)\\=0(hN). (2.33)
\t\<T

Sketch of proof (see [122] for details)
The Hamilton-Jacobi equation is solved by the usual method (integration along the classical

flow). The time T is determined by the presence of caustics. Furthermore we have here to
take care about the estimates. The transport equations are solved by induction and direct
integration along the classical flow.
The error estimate is a consequence of the above equations which give

(ihdt-H)UH,N(t) RN(h,t), (2.34)

where /?yv(ft, t) is a Fourier-Integral operator

RN(h,t)tp(x) {2nh)-n j e!ft"1(s(('I'")-<v'"))7>(ft,t,x,7/)dxd7,. (2.35)

where the amplitude h~N~lrN(h,t,-) is in 0(0) for t G [-T,T], ft G]0;fto]. From this we can

prove there exists C > 0 such that

\\RN(h,t)\\ < ChN+\Vt G [-T,T\, Vft G]0;fto]. (2.36)

Now we want to construct approximations for Uu{t) for every time t. This can be

done using the group property. Let us fix T\ g]0,T/2] and consider the time interval t G

\kT\, (k + 1)T,[. Assume first fc > 1. We have

UH(t) U„(t-kTl)-UIf(T,)k,
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which can be approximate by

VH,N(t) UHAt-kT1)-UH,N(Ti)k-

We can get easily, from the Theorem (2.4), that the following estimate is true

sup \\UH(t) - VHiN(t)\\ 0(hN). (2.37)
*:Ti<(<lt+ l

It remains to show that Vn^it) is a Fourier-Integral operator. By applying the product rule
for FIO (2.2), we get V„,N{t) =T(ep,B,h) with

cp{t,x,9,y) S{t - A.-T1,x,7/A:+1) - (yk+i,Tik+l) + Y 5(Ti;j/j+i,7jj) - {yj,pf),
!<7<*

y-Vi,0= (T}i,V2,V2,---,yk+i,Vk+i) e (R")2fc+1,

j=k
B(h,t,x,9,y) AW(h,t- kTux,iik+x ft A^(h,TuyJ+1,7h),

7 1

where

A^\h,t,x,r1)= Y tiAj{t,x,rj).
0<}<N

We have an analogous formula for fc < —1 by taking the FIO

V„,N(t) U„,N(t - kTf) ¦ UhA-Ti)-".

In particular (2.37) still holds.
From this we can easily compute the frequency set of the Schwartz kernel K(h,t) of Un(t)
using the non stationary phase theorem.

Corollary 2.5 We have the following result

FS[K(h,t)} {(x,f,y,-77) £ZxZ, ¥H(x,0 (y,n)}.

Remark 2.6 A lot of methods have been introduced to compute semiclassical approximations

for Un(t). The most popular in physics is the approach by Feynman integrals which,
although very intuitive, is hard to prove rigorously. Recently Ben-Arous and Castell proposed
a probabilistic approach using an almost analytic extension from the heat kernel [14]. The

analytic approach explained here ejives a quite complicated Fourier-Integral Operator, when
the time t becomes large, because caustics may appear. Hence, to get a better representation
we have to use the Hörmander-Maslov theory (see [54, 84])- In section 6 of this survey we

shall present another approach, using coherent states, which avo'iids the difficulties coming
from caustics.
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3 Trace Formulas and Eigenvalue Asymptotics

In this section we will consider the stationary Schrödinger equation and its bound states, i.e

(Ê-E)i> 0, E e li, tp e L\X), ||V>|| 1. (3.1)

The most popular example is the harmonic oscillator II — ft2A + |x|2, for which one can
compute an explicit orthonormal basis of eigenfunctions in L2{X) (bound states), ipa, with
eigenvalues Ea(h) (2|q| + l)ft.
Let us introduce some global assumptions on the Hamiltonians we want to consider here.
We start with a quantum Hamiltonian H coming from a semiclassical observable //. We

assume that H(h,z) has an asymptotic expansion:

tf(ft,z)x Y tiHj(z), (3.2)
0<j<+co

with the following properties:
(As,) H{h, z) is real valued H, G C°°(Z).
(As2) H0 is bounded below : there exits Co > 0 and 70 G R such that cq < H0(z) + y0.
Furthermore Hq(z) +70 is supposed to be a temperate weight, i.e öftere exist C > 0, MeR,
such that :

Hq(z) + Jq < C(H0(z')+j)(l + \z- z'\)m Vz,z' g Z.

{AS3) Vj > 0 V7 multiindex 3c. > 0 such that: \d]H}\ < c(Hq + 70).
(AS4) VN > N0, V7 3c(N, 7) > 0 such that Vft G]0,1], Vz G Z we have:

\d][H(h;z)- Y ftJ7YJ(2)]|<C(N,7)ftA'+1, VftG]0,l].
0<j<N

Under these assumptions it is well known that H has a unique self-adjoint extension in

L2(X) [93] and the propagator:
UH(t):=e-'i6

is well defined as a unitary operator in L2(X), for every t G R.
To simplify the notations the subscript H is sometimes omitted and we write U and $
instead of Uh and $77- Sometimes we also implicitly assume that H Hq.

Examples of Hamiltonians satisfying (As\) to (As^)

1.

H -ft2(V - ia{x))2 + V{x).
The electric potential V and the magnetic potential a are smooth on Rn and satisfy:

liminfV.(x) > E,
|i|->+oo

37 > 0 such that Va, |d£V(x)| < ca(V{x) + 7),

3M > 0 such that |V(x)| < C{V{y) + 7)(1 + |x - y\)M, (3.3)

|ai"a(x)|<Cû(V(x)+7)1/2.
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H -h2YdI,gtJ(x)dXjAV(x),
V is as in example 1 and {gif} is a smooth Riemannian metric on R" satisfying:

3C a real number 3p(x) (x G R") such that

^KI2<lE^W^I<^(x)|f|2,
with - < /i(x) < C(V{x) + 7). (3.4)

Let us also give an example of a non local Hamiltonian:

3.

// \]m2 - ft2A + V(x), (3.5)

with 777 > 0 and V(x) as above.

In this section we are interested in this section in bound states. So, let us consider a classical

energy interval Icc =]A_,A+[, A_ < A+ and assume:
(As5) H~ (Id) is a bounded set of the phase space JR.

This implies that for every closed interval J [£_, E+] C Ice, and for ft > 0 small enough,
the spectrum of rY.in J is purely discrete ([73]). In what follows we fix such an interval J.
For some energy level E GjiJ-, E+[, we assume :

(Asq) E is a regular value of Hq. That means:

Hq{x,0 E^V(xa)IIq{x,Q^O).
So, the Liouville measure dvE is well defined on the energy shell

Ef° := {z G Z, Hq(z) E).

A useful tool in analyzing the spectrum of H is the following functional calculus result proved
in [73].

Theorem 3.1 Let H be a semiclassical Hamiltonian satisfying assumptions (Asi) to (As^).
Let f be a smooth real valued function satisfying f G 5r(R), r G R, which means

VieN, 3Ck, \f(k\t)\<ck(ty-k.
Then f(H) is a semiclassical observable with a semiclassical symbol Hf(h, z) given by

Hf(h,z)xYtiHfij(z). (3.6)

In particular we have

Hf.0(z) f(H0(z)), (3.7)

HfA(z) H(z)f'(HQ(z)), (3.8)

and for, j > 2 HfJ Y (-^)k(kl)dj,k{H)f{k)(H0), (3.9)
1<1<2j —1

where d]k(H) are universal polynomials in d]H((z) for d]H((z) \j\ + £ < j-
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Remark 3.2 The starting point of the proof is a careful study of the resolvent (II — z)~l
(corresponding to /(A) (A — z)_1 In this case wc can construct a parametrix with a good
control in ft and z for z G C\R. For f holomorpliic in a neighborhood of the real axis we
can use the Cauchy integral to define f(H). That works in particular with /(A) (70 + A)'.
Then using the Mellin transform we can prove the theorem for general smooth f. This is
the strategy followed in [73]. An alternative and more direct strategy was introduced in [45]
using almost analytic extension.

From this theorem follows the following trace formula

Theorem 3.3 Let us assume that assumptions (Ast) to (As5) a7-e satisfied. Then we have

1. For every closed interval J := [E_,E+] C Ice, and for ho small enough, the spectrum
of H in J is purely discrete Vft G]0,fto].
Let us denote by Uj the spectral projector of II in J. Then

2. Ylj is finite dimensional and the following estimate holds

tr(Uj) 0(ft~"), as ft \ 0.

3. For all g G C03O(/c^) g(H) is a trace class operator and we have

tr[g(H)}xYti-nTj(g), (3.10)
7>0

where T3 are distributions in I. In particular we have

T0(g) (2it)-n j/g(HQ(z))dz, (3.11)

T,(g) (2*)-" [ g'(Ho(z))H(z)dz, (3.12)
Jz

Tj(g) (2tt)-"/ Y (-l)k(k\)d^k(H)g^(H0(z))dz (3.13)
JZ 1<1<2j-1

for] >2.

Let us denote by Ej(h), 1 < j < N, the eigenvalues of H in J, each enumerated with its

multiplicity. (N 0(ft~")). Let us introduce now the density of states defined by

pj(h)= Y S(E-Ej(h)), (3.14)
1<j<N

or equivalently its ft-Fourier transform

Sj(h) Y e^m"'EjW (3.15)
1<J<N

ti-[YljUfI(t)}. (3.16)
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It is convenient to smooth out the spectral projector Ylj and consider instead

Sx(h) tr[X(H)UH(t)), with x € Cg°(J). (3.17)

The first information we can get now is a result known as the Poisson relation proved by
Chazarain [28, 29] and extended to more general Hamiltonians by Helffer-Robert [73, 122].

Theorem 3.4 The frequency set of the distribution Sx(h) satisfies

FS[Sx(h)} Ç {(t,r), such that r G J and 3z G Z,H0(z) -t,¥Uo(z) z). (3.18)

Sketch of proof
Let us remark that the results of section 2 do not apply directly to Un(t) because the
conditions on the derivatives arc not satisfied globali}'. But wc have introduced an energy
localization x an(l the essential support of x(H) is a compact set of the phase space Z. So we
need here a semiclassical approximation for UniX := Uu(t)x(H). This can be constructed as

in section 2 because everything is localized in a compact set of the phase space. Hence we can
construct a Fourier integral operator UhiX,n(1) for short time such that £///>x,/v(0) x(LI)-
Using the group properly, we get approximations for arbitrary time t. The phases are the

same as in section 2 but they arc defined only on bounded set; it is sufficient here because
the amplitudes are compactly supported.
Then the theorem is easily proved by computing the critical points of the phase ep and using
the non stationär}' phase theorem.

Example 3.5 Let us consielcr the one dimensional harmonic oscillator

û-Jf-Ê- a!
2 rix2

+
2 '

with eigenvalues Ej(h) (j + l)h, j G IN. Tfte7i we get a Schwartz tempered distribution

s(h) Yc"iiJ+ì)

and using the well known Poisson formula

£/(fc)e«fc* 27r£/(x + 2fc7r),
kdlL kzTL

it is an exercise to prove

FS[S] {(2fc7T,T),T>0}uRx {0}.

Let us remark that the period set of the Hamiltonian II(z) ^j- is 2itlL.

The next step in the understanding of the discrete spectrum for general Hamiltonians
is to analyze the contributions of the periodic trajectories to the distribution Sx(h). The
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main result in this field is known as the Gutzwiller trace formula. The simplest model is the
classical Poisson formula recalled above.
As remarked in particular by Guillemin-Uribe [64] and Helffer [70], the general Gutzwiller
trace formula is obtained by applying the stationary phase theorem to (Sx(h), cp) for any ip G

Cq°(R), using the W.K.B approximations of the propagator. This is not very difficult if tp is

supported in a small interval around 0. But if <p is supported in an arbitrary compact interval
the problem is not so easy. As wc have seen in section 2, the phase of the Fourier-Integral
operator which is a semi-classical approximation of the propagator is quite complicated.
Let us remark also that after a suitable energy localization we can assume that II satisfies
the assumptions of Theorem (2.4).
To state the result, we need an assumption on the classical trajectories. Let us introduce

r,; {(T, z) G R x E,;, *£(z) z}; EE {z G Z, H(z) E],

where Ee]E-,E+[.

Definition 3.6 The Hamiltonian flow $(w is said to be clean on JZe if the following conditions

hotels :

1. F e is a smooth submanifold of Tie x R
2. At each point (z,T) G Fe, the tangent space is determined by

T(2,T)rE {(C, r) G R x T.. tHu(z) + VA>',,(z) ¦ C C}>

where TLn(z) (VHI(z), —VxH(z)) (Hamiltonian vector field).

Remark 3.7 This notion of cleanness was introduced by Duistermaat-Guillemin [48] and

Guillemin-Uribe [64]- The condition 2 comes naturally by differetitiation of the equation
&H(z) z.

Theorem 3.8 (Gutzwiller trace formula; [70, 47, 105, 112]) Let II be a semiclassical
Hamiltonian satisfying (As,) to (As6). Then, there exists jk G T>'(Ii) such that for every
tp G C°°(R), with Fourier transform tp G C03O(R), we have

Y JKlxi:^^'. (3.19)
E,-(rt)e[E-.E+] v h / j>o

The Tj are distributions in R with support on the set of periods of the closed trajectories.
In (3.19) the distributions Tj are oscillating in ft. They have the following structure. Let us
denote by [Fe] the set of connected components o/F/r, then

T](tp)= Y ft"-1+(1-<il')/2e,'^e,^aj,K, (3.20)
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where dy dim(E), Sy is the action along T-periodic paths, aY my\, my G 2Z is a

Maslov index.
In particular for the leading term we have

a0,y (27r)-(1+^)/2 J é&(pdvy,
ly

where ß(z,T) /0TH\(<bl(z))dt, tp(z,T) tp(T) and Vy is a natural density on Y. In
particular for Y Eg x {()}, vy is the Liouville measure on E/;.

Corollary 3.9 Let us assume that all the. paiodic orbit 7 on Eg are non degenerate i.e.

their Poincaré map P1 docs not have the eigenvalue 1. Then the cleanness assumption is

fulfilled and we have

Y tp (MLJl\ x (2,Tft)-" L(Q)LBCLE)h + Y CQj(<P)ti) +
E}(t,)eiE-.E+) \ n I \ }>2

u;/iC7'e

• T* is the primitive period of 7.

• cr-, m7j with 7777 G 2Z, the Maslov index ofj.
• S-, is the classical action along 7.

• Coj eirc distributions supported in {0}.

• c7J are distributions supported in Ty.

The first line in (3.21) is the contribution of 0 (biggest contribution) and the. second line

represents the contributions of the other periods which are in supp(tp).

Remark 3.10 During the last 25 years the Gutzwiller trace formula was a very active subject
of research. The history started with the non rigorous works of Balian-Bloch and Gutzwiller.
Then for elliptic operators on compact manifolds some spectral trace formulas extending
the classical Poisson formula, were proved by several poeplc: Colin de Verdière [30, 31],
Chazarain [28], Duistermaat-Guillemin [48]. The first proof in the semi-classical setting
is given in the paper [64] by Guillemin-Uribe (1989) who have considered the particular
ca.se of the square roeit of the Schrödinger operator on u compact manifold. But their work

already cemtains most of the geometrical ingredients used for the general case. The case of
the Schrödinger operator on Rn was considered by Brummclhuis-Uribe (1991). Complete
proofs of the Gutzwiller trace formula were obtained during the period 1991/95 by Dozias
[47], Meinrenckcn [105], Paul-Uribe]110]. Recently, in his thesis [95], Khuat-Duy proved a

trace formula for degenerate critical energy levels.
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In the Gutzwiller trace formula there is a big contribution at T 0, given by the first
line of (3.21), which gives the well known Weyl formula. Let us denote by Nj(h) the number
of bound states of H in J [/?_, E+]. The following results hold.

Theorem 3.11 (Weyl asymptotic formula) Untier the assumptions (Asi) to (Asq), if
F± G Li, are regular values for Ho, then we have:

Nj(h) (27Th)-nVolz{H-\j)} + 0(ft1-n). (3.22)

Remark 3.12 When end points of Ici are critical for II0 but are non degenerate then a

Weyl formula holds, with a leading term depending on the geometry of the critical manifold
(sec Brummclhuis-Paul-Uribe [21]).

The remainder estimate in (3.22) can be improved, if we add the following condition
(As-;) The. Liouville measure of the closed trajectories on Eß is zero
(that means: vE{(x,Ç) G E,.;. 3t / 0, <I>'(-T,f) (x,f)} 0).

Theorem 3.13 Let us assume that the assumptions of theorem (3.11) hold and that (Any)
holds for E E- and E E+.
Then we have a two term asymptotic expansion :

Nj(h) (2itTi)-1'Volz{H^(J)) + Clft'-" + «(ft1-"), (3.23)

with

Cl (2n)-"([ HxdLE_-\ HldLE+
\JZb_ Jve+

The remainder estimate in (3.22) is the semi-classical analogue of a basic result of
Hormander [83]. It has been proved in [29, 73, 87] under different assumptions. The remainder

estimate (3.23) is the semi-classical analogue of a theorem of Duisteimaat-Guillemin
[48] and was proved in [113, 87]. In [114] the authors extend to this setting a nice result of
Safarov [131] giving an oscillating second term in the general case i.e without the condition
(As7).
A simple example of Hamiltonians, in R2, satisfying the assumption (As-j) is the following

H -ft2A + a2x2 + b2y2,

with a > 0, b > 0, | not rational.
The difficult part of the above Weyl formula (3.22) is surely the remainder estimate or the
second term for (3.23). Let us remark that in the general case it is not possible to improve
the 0(ft1_") estimate. This is easily seen from the example of the harmonic oscillator where
the term

hn-l(Nj(h)-coh-n)
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is oscillating as ft tends to 0.

Let us remark that using the functional calculus stated in Theorem (3.3) it is not difficult
to get a less accurate estimate : for every 5 g]0, l/2[

Nj(h) (2nh)'nVolz{Hä1(J)} + 0(hs~n). (3.24)

Until recently the accurate estimate with 5 1 was proved only by time dependent methods.
Diniassi-Sjöstrand [45] succeeded improving the functional calculus and gave a stationary
proof of the 0(hl~n) estimate.
Here wc shall explain the time dependent method introduced by Levitali and Ilörmander
[83]. The first step is to consider the Gutzwiller trace formula with test functions supported
in a small time interval ] - T,T{, T > 0. So for 0 G Q°(] - T,T[) let us introduce

Go(h,E) Yx(Ej(h))ê (Ej{h)h~ E) (3.25)

tr[X(H) JUH(t)9(t)e™dt), (3.26)

where y e C^]E-c, E+e[; x 1 on [E-e/2, E+c/2}. We can use the W.K.B approximation
for Un(t) introduced in section 2. We remark that 0 is the only period of the classical flow
in ] — T,T[, for T small enough, with energy E. Applying the stationary phase theorem [84],

we get

Theorem 3.14 Let us assume that J0 [E0 - e,E0 + f] with e > 0 small enough, Ju C Id
and Jq is non critical for II0. Then for every E G Jo and every N > 1 we have

Go(h, E) (27Tft)'-"[ Y tilj(9, E) + 0(hN+1)\. (3.27)
0<j<N

Moreover the estimate is uniform in E £ Jq and the leading term is given by

7o(9,E) 9(0)x(E) [ clLE.

Furthermore if 0(f) 1 in a neighborhood of 0 and if x(t) 1 in a neighborhood of Jq

then the coefficients "fj are related to the coefficients computed in the weak form of the trace

formula (see Theorem (3.3)), for E G Jq, and

TACE) Y 4a([ djk(H)dLB), (3.28)
Kk<2j-1 aa VEE 'l<fc<2j —1

d_
"d~E¦;., 7^(^ IhdLE). (3.29)

The second step in proving the Weyl formula with 0(ft1_n) estimate consists in energy
localization and a taubcrian argument. Let us first remark that for the weak form of the
trace formula it is sufficient to estimate

l\(h,E)= Y x(Ej(h)),
Ej(h)<E
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where x £ C^(]E+ - t, E+ + e[), e > 0 small enough, \ > 0. Let us remark that we have

d_

dE"
(27th)-1Ge(h, E) — (Nx(h) * Cr,)(E),

where Çh(u) (2irh) l9(—u/h) hence we have / Çr,(u)du 0(0). This explains why a

tauberian argument concerning convolutions gives the conclusion of Theorem (3.11) (sec
[73] for the details).
The proof of Theorem (3.13) uses the same tools but it is more difficult because we have

to increase the time interval for the 9 function and to control the periodic trajectories (sec

[113, 122] for the details).
It is also interesting to consider the moments of eigenvalues, which are called Riesz means
of order 7 > 0, and defined as

R^(h,E)= Y x(Ej)(E - Ej(h))l,
E,(h)<E

where E € J, X € C^°(I), \ 1 in ./. (if we know that Hq1] - 00, Eo] is compact we can
take x 1 and E < E0).
For 7=1, R\(h,E) is related to the ground state of a system with Z Fermions where
Z ft"3. Lieb and Thirring [98] consider the usual Schrödinger case H — h2A + V with a

potential V satisfying liminf V(x) > 0. A natural problem is the existence of a universal
|x|-t+oo

constant L7i„ such that for all V wc have

/?7(ft, 0) < Lyjrn J Vf+n/2(x)dx, (3.30)

where L7,„ depends only on 7, 7 > 7nax(0,1 — ?i/2) and n. It is known that L7i„ exists for
n 1,7 > 1/2; ri 2,7 > 0; 77 3,7 0. We shall see below that for suitable V anil
E < 0 wc have

lim ft'%(ft, 0) (277)-" Jz(E - V - \p\2)ldxdp

L™nfx(E-V)l+n/2dx. (3.31)

We have clearly L7i„ > L7'?l. Moreover

'TCI
is non-increasing. It was proved by Aizenmann-Lieb-Tliirring ([3, 98]) that the smallest 7
for which L7,„ L!?'n is 7,. 3/2. The following result is proved in [76]

Theorem 3.15 1. Let us consider the same assumptions as in Theorem (3.11). Then

we have
(]=N+bA \

/?.7(ft, E) ft"" Y tiCj,y(E) + 0(ft1+7+/v) (3.32)

where, we. have Cjn(E) X\ * Cj.q(E) and [7]+ 7 if 7 € N, [7]+ [7] + 1 if
7 G [0, +oo[\N, [7] is the largest integer smaller than 7.
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2. Let us consider the same assumptions as in Theorem (3.13). Then in the asymptotic
expansion (3.32) we can replace the estimate big O by a small o, in particular that
means that if 7 G IN we get one term more in the asymptotics.

The above results concern the density of states. Under stronger assumptions it is possible
to get asymptotics for invidual eigenvalues. Let us assume that conditions (Asi) to (AS5)
hold and introduce the following periodicity condition :

(Ass) For every E G [E-, E+] the Hamiltonian flow <I>'//o is periodic on E/j with a period Te-
Furthermore we assume that E/j is connected and the subprincipal symbol H\ is null.
Let us first recall a result in classical mechanics (Guillemin-Sternbcrg, [62]) :

Proposition 3.16 Let 7 be a closed path of energy E and period Te- Then the action
integral J(E) Lpdq defines a function of E only, C°° in E and such that J'(E) Te- In
particular for one degree of freedom systems we. have

J(E) / dz.
Jllo(z)<E

Now we can extend J to an increasing function on IR, linear outside a neighborhood of J.
Let us introduce the modified Hamiltonian K (2n)'iJ(H). Using results stated in section
1, wc can see that K has all the properties of H and furthermore its Hamiltonian flow is

27T-periodic in EF I<öl(F) for F G [F-,F+] where F± J(E±). So in what follows we

replace H by K, its "energy renormalization".
Let us denote by a the average of the action of a periodic path on E£° and by it G 7L its
Maslov index, (a A. f^pdx — 2irF). Under the above assumptions the following results are

proved in [77] using ideas introduced before by Colin de Verdière [31] and Weinstein [143].

Theorem 3.17 ([143, 31, 29, 77]) There exists C0 > 0 and ft] > 0 such that

spect(N) n [F.,F+] ç ökeZIk(h), (3.33)

with
Ik(h) [-a + (k - '-)h - C0h2, -a A (fc - Mft + C0ft2]

for ft e]0, fti

Let us remark that this theorem gives the Bohr-Sommerfeld quantization conditions for the

energy spectrum, more explicitly,

Ffc(ft) := J(Ek(h)) (fc - £)fi - a + 0(ti2).

Under a stronger assumption on the flow it is possible to give a more accurate result.
(As9) $k0 has no fixed point in E{T° VF G [F_ - e, F+ + e] and V£ g]0, 2tt[.

Let us denote by dk(h) the number of eigenvalues of A' in Ik(h).
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Theorem 3.18 ([31, 29, 77]) Under the above assumptions, fork small enough and —a +
(fc — ^)ft G [F_, F+], we have :

dk(h) x YTi(~a +(k~ j)K)ti-n, (3.34)
7>1

4

with Fj G C°°([F_,F+]). /?i particular

r,(F) (27i)-"/" dLF.
JzF

In the particular case 77 1 wc have p 2 and a — niin(//0) hence (4(ft) 1. Furthermore
the Bohr-Sommcrfeld conditions take the following more accurate form

Theorem 3.19 ([77]) Let us assume n 1 and a 0. Then there exists a sequence
fk G CX([F^,F+}), for k > 2, such that

Fe(h) + Y hhfk(Fi(h)) (!+ hh + 0(ft°°) (3.35)
k>2 l

forldTL such that (£+ |)ft € [F-,F+\.
In particular there exists gk G C°°([F_,F+]) such that

Ft(h) (t+ hh + Y iik9k((e + \)h) + 0(h°°), (3.36)
1 k>2 l

where t&Z such that (t + \)h G [F-, F+\.

When H~l(J) is not connected but such that the M connected components are mutually
symmetric, under linear symplectic maps, then the above results still hold [77].

Let us consider for example the particular case of the double well problem in one degree of
freedom for simplicity. Let us consider a C°° smooth potential V(x) such that

V(-x) V(x), V > 0, liminf V(x) > 0,

|T(x) 0} « {x ±Xq}, V"(xq) := to2 > 0.

The spectrum of H in ]0,a\ is a sequence of simple eigenvalues, {Fj(ft)}j6M, where a
lim inf|x|_n.oo V(x). The eigenvalue Fj(ft) is associated with an eigenfunction of the same

parity as j. Let us introduce the notation E2j(h) F|(ft) and F2j+i(ft) E°(h). The above
construction (sec [77]) shows that E"(ft) and EeAh) have the same asymptotics in ft i.e. we
have

E°}(h) - E°j(h) 0(ft°°),

under the condition E°Ah) G [Ch,a], for C > 0 large enough.
The same property is also true in the interval [0,Cft] but it is proved by an other method.
Furthermore the splitting between two consecutive eigenvalues has the following expansion
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Theorem 3.20
eSo/n[Eo{h) _ Ee{h)] x fii/2-j £^ (3 37)

where Sq /f°0 JV(x)dx. The cAk are numerical classical coefficients. In particular

_ Y^L+1
il

2^+1l^u! "Ti¬

ro \/2 '(X)Y- 2? + lia;
(lime2'exp{-2/ -^ -dx}). (3.38)'-* ¦/-•0+« 2,//2v7(V^

Several people contributed to this result: E. Harrel[68], HclfTcr-Sjöstrand [75], B.Simon[135]
Recently V. Sordoni proved that the above formula agrees with a formula computed heuristically

by Coleman using the method of instantons, path integrals, and generalized determinants

[136, 128],

After this discussion of results connected with periodical paths we consider in more detail
the signature of the existence of a non periodical path on the energy spectrum. The following
result, is a quantum mechanical analogue of a simple and beautiful result due to Helton [81]
for elliptic operators on compact manifolds.

Theorem 3.21 ([38]) Under the assumptions (Asi) to (Asa) for H, assume furthermore
that there exists on EE a non periodical trajectory for the flow $//„• Then for every c >
0, 6 > 0 and every ft0 > 0 the set:

TE,6 ¦= Wjk(h), Ej(h), Ek(h) G [E - eh1'6, E + eh1-6}, 0 < ft < ft0)

is dense in R, where ujjk(h) '
h ¦

Proof : Let us reproduce here the proof given in [38]. Let / G C0X>(R) be such that / 0

on Te,6- We have to show that / 0 on R. Let us introduce x € C%°(] — c, c[) with x(0) 1.

Following Helton[81] we consider the operator:

ÀEj(h) f f(t)U(-t, h)ÂE(h)U(t, h)dt, (3.39)

with AE(ft) x(fr^f)Âx(fr=f), A G C%°(H2ti). By inverse Fourier transform, we also have:

ÂEj(h) 2nY f("ik(h))x (Eji^E) x (Ek(lpE) n^n;> (3-4°)

where n^ is the projection on the state tpk.
From (3.39), (3.40) we have:

j f(t)U(-t,h)ÂB(h)U(t,h)dt 0, VA G O(0). (3.41)
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From (3.41) wc would like to prove that / 0 by going to the classical limit ft \ 0. To do
that we first use the semi-classical propagation theorem (section 1) and functional calculus
with parameters for pseudodifferential operators ([44]). We test (3.41) by computing the
trace of the product with any operator B, B G 0(0). We get easily, MB G 0(0),

limi
ft\0

i(2irft)".Tr (ÂEJ(h).Ê) j j f(t)A (*'„„(*))) B(z)dzdt 0. (3.42)

So we get

j f(t)A (V(z))) dt 0, Vz G EE. (3.43)

Now, choose Zo G EE such that t —» ^(zo) is not periodic, we should like to deduce from
(3.43) that / 0. Using the same arguments as in [74] (p.866-867) we can easily get the
following

Lemma 3.22 For T > 0 we can find pr > 0 such that the mapping <F : (t,z) i-» (/,<I>'(z))
is a diffeomorphism from ] — T,T[xDPT(zq) onto an open neighborhooel A/7- of the curve:
{(I>'(zo), — T < t < 7'}; where DPT(z0) is the euclidean ball with center z0 and radius pT in
the orthogonal plane to the curve at time 0.

Furthermore, for every g in Cq?(] — T, T[) we can construct some A G C0X)(R2") such that:
q(t) A(<I>((z0)) + h(t), Vt G R with:
(i)Supp(h)n}-T,T[=<t),
(ii) sup |ft| < sup \g\.

A sketchy proof : Starting with the diffeomorphism F, let us choose u G C0x(DPT(z0)),
u(zo) - 1, 0 < U < 1. We define B(t,z) := g(t)u(z) for (t, z) G -D,,T(zo) and A(z) :

B(F~1(z)) for z G JVT. We have clearly ^(^(zo)) g(t) if |t| < T. For \t\ > T and

$'(z0) G MT wc have ¥(z0) $>\(z) with |r.i| < T, z G DPT(z0) so h(t) -g(t{)u(z) and

we get the announced properties for ft. I
So, with the above notation, using the above lemma and (3.43) we get:

[f(t)g(t)dt ff(t)h(t)dt < sup M f \f(t)\dt,
J J R J\t\>T

taking T large, we have clearly / 0 hence / 0. I

Remark 3.23 Using results obtained by S.Dozias in her thesis [47] we can see that the

theorem (6.1) admits a partial converse: if H\ =0 a7i</ if the set Te,s defined in Theorem

(6.1) is dense in R with S < | then the global flow <I>( is not periodic on Eg. Indeed if the

global flow $! is periodic on Eg, Dozias proves that there exists 70,71,^7 G R; e > 0 such

that:

spectrum[/7] n [E - eh1'6, E + ch1-6} C [j [7o + 7l/cft - Cft1+£, 7o + 7ifcft + Cft1+£]. (3.44)
JtgZ
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Clearly (3.44) entails that Te,h is not dense in R. So the two conditions:
(i) Te,6 is dense in R,
(ii) there exists a non periodical path on Eg,
(7,7'c "almost equivalent".

4 Quantum Signature of Classical Chaos

From a mathematical point of view the starting point of the story is a theorem announced
and partially proved by Schnirelman in 1974 concerning the cquirepartition of eigenfunctioiis
for the Laplacc-Beltrami operator, AA/, on a constant negative curvature compact manifold
M. This theorem was proven rigorously in 1984 by Zelditch [146] whose proof was simplified
by Colin de Verdière [33]. Let us recall here the statement. Let tpk be an orthonormal basis

of eigenfunctions of Am,
AMtpk + Eki[)k 0,

where {Ek} is the increasing sequence of eigenvalues of -Aa/ with their multiplicities. Then
we have the following cquirepartition theorem

Theorem 4.1 There is a subsequence {Ek } of density one, i.e

#{k,Ek<E}
E/+~#{j,Ffcj <E}

such that for every smooth open set f2 Ç M we have

1,

.lim /fcJ^W^, (4.1)
j/"+oo7f! VOl(M)ol(M)

where cìVm(x) is the Ricmanniatin volume form on AI.

In 1987, Hclffer-Martincz-Robcrt [72] have proven a semiclassical version of the Schnirelmann
theorem that wc want to explain now.
Let us introduce a first chaotic assumption :

(As\o)The elynamical system [EE, duE, *£//„) is ergodic which means: for every continuous
function A on T,e, we have, for almost all z G Eg :

lim i /TA(<FUo(z))dt= j AduE
/+<x I Jq JzeT/+00

Let us recall that ve is the Liouville probability measure on Eg.
It is not obvious how to construct Hamiltonians H on Z R2", for 77 > 2, with an ergodic
flow on energy shell Ejj. If n 1 and if EE is connected then the assumption (Asio) is

fulfilled. For n 2, examples where constructed by Knauf [96] (see also [46]).
Let us remark for future use that if n > 2, condition (Asia) entails (As7).
Let us consider now ft-dependent energy intervals: 1(h) [E—5(h), E+ô(h)}, with limJ(ft)
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0, 6(h) > e2h, for some e2 > 0. Let us denote: A(ft) {j, E3(h) G 1(h)) and N,ih) #A(ft).
Let us introduce the orthonormal system of bound states tpk, Htpk Ek(h)tj;k, where Ek(h) G

J and the matrix elements a.jik (Aipj,ipk) for A G 0(0).
In [113] (see also [72]) the following result was implicitly proved.

Theorem 4.2 Let us consider A G 0(0) and assume (As,) to (AS7). Then there exists

Co > 0 such that for every e > 0 there exists C( and ?/£ > 0 such that for every interval
I C]E - jp, E + 7?€[ and every ft g]0, fto[ we have

tr(in, - (27rft)-" j _]
A(z)dz

where Fii denotes the spectral projector of II on I.

< ecoft1"" + CJi2~n, (4.2)

From this theorem we get easily the following result (see also [20]), concerning the semi-
classical limit of Nr(h) trIl/(R) when the size of 1(h) is proportional to ft.

Corollary 4.3 For c > 0 let us elcnote Ic(h) — [E — eh, E + eh}. Then wc have

limft"-1N/cW(ft) ^rrfLE(E£).

More generally, for every A G 0(0), we have

lim ftn-'tr (ÂFlj m)) -r^T- I AdLE.
r,\o V W>) (27t)"7e£

Corollary 4.4 Under the same assumptions as above, we have:

lim %^ I AdvE- (4.3)
ft\o #A(ft) JsE

Remark 4.5 The corollary (4-4) i-s still valid under assumptions (Asi) to (Asq) with 6(h) >
Cha for some C > 0 and a < 1. With this order of wieiih for the energy level window it is
not necessary to assume (As-).

The first result on quantum signature of classical chaos is the following :

Theorem 4.6 (Ergodic Semi-Classical Theorem) ([72]) Under the assumptions (As\)
to (Asq), n > 2, and (.4si0), for every ft > 0, there exists

M(ft) Ç A (ft), depending only on the Hamiltonian H, such that :

nm
ft\o V

/#M(ft)\~~l)=l, and lim a3J(ti) f AduE, VA G 0(0). (4.4)
#A(ft) J [h\o,j<=M(h)\ Jjy ' JzE ' w
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Remark 4.7 The following question is still open : can we take A/(ft) A(ft) in the conclusion

of the. above lemma, if n > 2?(it is true for n 1).

An idea of the proof of the ergodic semi-classical theorem
We have clearly

(M.tfi) k [T(Uii(-t)AUlr(t)iPj,i,j)dt. (4.5)
1 Jo

From the propagation theorem (section 1) we have

1 rT
a" fL (M*H)*i,1>i)dt + OT(h).

Imagine for a moment that we can invert the limits ft tends to 0 and T tends to oo, wc get

easily etjj '-4 /E AdvE. The exact proof is trickier.
Let us replace the Weyl quantization by a positive quantization, the anti-Wick quantization,
which is defined in the following way, for A G 0(0),

opr(A)tp (27Tft)-" / / A(0(tp,tpc)tpcd(,
J JR2'1

where tp^ is the Gaussian coherent state centered at defined in section 1.

We have the three following useful properties (see [72]) :

(Awl) A > 0 => oplw(A) > 0.

(Aw2) oplw(A) admits an ft-Weyl symbol Aw(h) given by:

Aw(h,x,0 (rift)-" / / A(y,V)Cxp(-k(x - V? A (f - V?])dydn.
' J JlV" It

(Aw3) For every A G O(0), \\op%°(A) - op%{A)\\ 0(h) as ft \ 0 where opfL(A) Â.

Thus we can define Radon measures (Husimi measures) on the phase space Z,

fAdpLj=(ovT(A)tPj,iPj), AeS(Z). (4.6)

The distribution d/tj is indeed a Radon measure because a positive distribution is a Radon

measure according to a well known theorem of L. Schwartz. Let us introduce now the

averaged measure

_ EjgA(ft) dp j
#A(ft)

'

From the corollary (4.4) and (Aw3) we have, in the sense of weak convergence for Radon

measures,
lim dm dvE- (4-7)
ft\0

Now using ergodicity the important step, not detailed here (see [72]) is to prove the following
proposition
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Proposition 4.8 Under the assumptions (As,) to (Asq), n > 2, and (Asiq), for all e > 0,

for all A G 0(0), we have

hin /#{j€A(ft), \SAdlij-JAduE\<fy ^ }

h\o V #A(ft)

From this proposition the semi-classical ergodic theorem follows easily.

Now we want to introduce in the semi-classical context some ideas initiated in the high
energy case by S.Zelditch [147]. The point is to estimate the non diagonal matrix elements

ajk. Wc follow here the presentation given in [37]. We begin with a crude estimate which
nevertheless explains further restrictions on energy localization.

Proposition 4.9 ([37]) Under the assumptions (A.S\) to (As*,), for every A G 0(0) there

exists cq > 0 such that we have:

\ajk(h)\ < ^]Ek{h)^Ejm VF;, Ek G Ja, E,(h) / Ffc(ft). (4.8)

Proof : Let \ be a smooth cutoff, \ 1 on J^ and compactly supported in R. Wc have

clearly:
([Â,x(H)H)tpj,tpk) (Ej(h) - Ek(h))(Àtpj,tpk).

But from the ft-Weyl calculus (see section.1) wc have the well known commutator estimate:

||[i,x(//)/î]|| O(ft)asft\0.

The proposition follows. I

Remark 4.10 (il The proof of the proposition (4-9) can be iterated to get for every N the

,EzlE |) •

(ii) The proposition shows that it is sufficient to study a]k for level spacings of order h (only
this case is considered in the physics literature).

Let us formulate a second crude result coming easily from Theorem (4.6):

Proposition 4.11 Let us assume (Asi) to (As-j) and n > 2. Tfte7i for every ft > 0 there
exists O(ft) Ç A(ft) x A(ft) such that

lim f"ffi. 1, and lim ajk 0. (4.9)
ft\o#A(ft)2 [n\o,(j,k)ea(h)}

3
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Proof : Using Parscval equality for orthonormal systems in Hilbert spaces we get:

Y M* E (n/(ft)Â¥>j,iy>j)
Ü,fc)6A(fi)2 j6A(ft)

< y: (iVi.vi). (4.10)
jeA(ft)

But we know that lim #A(ft) +co (see [113]) So, using corollary (4.4) we get:
7i\0

^*ww,S.,|Oi"|1=0
and we get the proposition using the following abstract lemma whose proof is implicit in [72]

(part.3-17.319) I

Lemma 4.12 Let us consider a mapping :

]o,+oo[3ft>-»fi(ft)e;F(N),

where ZF(N) is the set of all finite subsets of integers. Let us consìelcr a serie of complex
numbers (depending on h): {(aj(ft)}JgN such that :

ft\o #U(ft) ign(ft)

iften there exists Q(h) Ç Î7(ft) such that :

#Ö(ft)
Inn 1 and lim aj(ft) 0.
R\o #fi(ft) [ft\o,j6n(ft)l

A connection between classical chaos and the behaviour of non diagonal matrix elements

was established by Zelditch [146] for the Laplace-Beltrami operator on a compact negative
curvature manifolds. In [37] these results are extended to the semi-classical setting. Let us

formulate now the results concerning the non diagonal matrix elements and classical chaos.

Theorem 4.13 (Ergodic case[37]) We assume that the assumptions (As,) to (Asq) and
(As\q) are fufilled.
Let us consider an observable A — op™ (A) with A G O(m). Then we have :
(i) For every e > 0 there exists Te > 0 and he > 0 such that:

Vj G M(h), Vfc G A(ft), 0 < ft < ft£; j ± fc; |F,(ft) - Ek(h)\ < ^ => \ajk\ < e. (4.11)

(ii) For every family of matrix elements {ûjfc}y,fc)eîl(ft) satisfying :

(a) Ü(K) Ç A(ft)2 and (j, k) G ü(h) => j ^ k,
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(ß) Um (W)-EM\=Qi
[ft\o, ü,fc)efi(ft)] \ h J

U/ n\o \#A(h)J
there exists fi(ft) Ç fi(ft) swcft that :

Ihn „^ ' 1 and lim a,-t 0, uniformly for (j, k) G Ù(h). (4.12)
ft\0 #fi(ft) h\0 JK V.7, 7 V 7 V 7

Tfte atone statement rneatis : for ail c > 0, there exists hc > 0, such that for every 0 < ft < ft,,

and for every (j,k) G il(h) we have \ojk\ < c.

Furthermore, the set M(h) is the same as in Theorem (2-1) and the set H(ft) of (ii) can also
be chosen independently of the observable A(h).

Remark 4.14 (l)Thcrc exists a lot of non diagonal families satisfying the assumptions of
Theorem (3.5) (ii).
(2) Let us consider the harmonic oscillator in one degree of freedom. For E > 0 it is not
difficult to construct A(h) such that (A(h)tp3,tpj+X) —» 1 and (2j + l)ft —> E as ft \ 0 (take
a(x, f x for |x| < \JE + 1 We can compare this fact with (21).

To give further results we introduce a stronger assumption :

(A.Sn) The dynamical system (E^:, dvE, $*) is mixing, that means:

lim
!/"+oo

I^A(&(z))A(z)dvE(z)) (J^A(z)dvE(z))'

Let us also introduce the weak-mixing property :

(Asjj) The dynamical system (Ee, duE, $') is weak-mixing, that means:

/+oo2y/-t(/E A(*t(*))A(*)*'B(z))dl=(Jîs A(z)duE(z)

Theorem 4.15 (Mixing case, [37]) Let us assume (Asf) to (Asq) and (Asu). Let A be

an observable as in Theorem (4-13).
(i) There exists M (ft) Ç A(ft) (M(h) is the same as above) such that:

lim t^ff 1, lim aifc 0, VA G 0(m).
ft\o #A(ft) [ft\,o jaM(ft), fcgA(ft), &k] J

(ii) For every family of matrix elements {a_j/fc}(j,it)e«(/i) such that:
(a) ü(h) Ç A(ft)2 and (j, k) G Û(H) =*¦ j ^ k,

(ß) 3t e R such that lim f E3(h) - Ek(h)\
[ft\o, ü.*)en(»)] Vft/
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im mf > 0,h) hm im [ - -, j
h\Q \#A(h)J

there exists U(h) C O(ft) such that:

li»1 "777T7TT 1 an<l Hmajt 0, uniformly for (j, fc) € fì(ft). (4.13)
h\o #il(h) h\o ]K } u' ; v ' v '

The set il(h) of (ii) can also be chosen independently of the observable A.

Let us remark that the observable A need not be bounded. This can be applied, for example,
to the position or momentum observables (conductivity).
Now we shall discuss some other aspects of Zelditch's work in the semi-classical setting.
Let us consider first the mapping A i-r A(i>1) Vt(A) as a unitary group in L2(E/j) (Koop-
man operator). By Stone's theorem we have

(A(<I»'),A)= / étTdpA(r), (4.14)

where pA is a Radon measure on R (spectral measure).
On the quantum side let us introduce the Radon measure m^ defined as

I !dmA HXnA £ /(^V^l^l2- (4'15)
Jn #A(ft) Ekem;E,eJ

V h '
Then wc have

Proposition 4.16 Let us assume (Asi) to (AS7). Then for every f G O(R) we have

Inn
ft\0

/ fdmA / fdpA
Jn Jr

Idea of Proof: Let us recall the notations À(f) U(-t)ÂU(t), uj]k E>fiEt. Using the
Parseval identity, we get

ti(FlmÂ(t)*Â) Y ^"\ajk\2AO(rn. (4.16)
EtüW^jeJ

It is enough to consider / G <S(R). Hence using the inverse Fourier transform and the

Lebesgue convergence theorem we get the result as in [148]. ¦
Now we want to discuss a definition given by Sunada [137] and Zclditch [148] concerning

quantum ergodicity and quantum mixing (in a semi-classical sense).
Let us recall the following spectral characterizations (see [8]).

• The classical flow <E>( is ergodic in E/? if and only if 1 is a simple eigenvalue of Vt.
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• The classical flow <I>' is weak mixing in E/.; if and only if the constant functions are the
only eigenfunction of Vt in L2(E/.-).

Let us denote by S0(E) the set of observables A such that A G S(Z) and /E AdvE 0.

Let us introduce

FT(T)A ±f\-'tTVt(A)dt.
We have the following consequence of Wiener theorem

s- lim Ft(t) PT, (4.17)
T—>oo

where PT is the orthogonal projector onto the eigenfunctions of Vt with eigenvalue e~'tT. On
the quantum side the following limit exists too

Mt) '¦= -^ fT <riiTÂ(t)dt, then w - lim Ät(t) À(t). (4.18)
21 J-T 7-Joo

Following Sunada and Zclditch,

Definition 4.17 1. The quantum evolution U(t) is scmi-cleissically-quantum-ergoelic at
the energy level E if the following condition holds, for all A G So(E),

I

#A(ft)
n;(7,)A(o)n7W||2fS 0(i). (4.19)

2. The quantum evolution U(t) is semi-classically-quantum-weak-mixing at the energy
level E if the following condition holds for all A G S0(E), for all t G R,

^y||n/(;i).4(r)n/(M||2;i. 0(l). (4.20)

Let us remark that we have, by an easy computation,

||n/(ft)Â(r)n/(ft)|2Hs Y M2-

It is known that classical ergodicity (resp. classical mixing) entail quantum ergodicity (rep.

quantum mixing) ([148, 37]). In the high energy case Zclditch asked the following questions:
does quantum ergodicity (rep. quantum mixing) entail classical ergodicity (resp. classical

mixing)? The answer is still unknown. Sunada[137] and Zelditch[148] have proven that
quantum ergodicity (rep. quantum mixing) plus a condition (*) entails classical ergodicity
(resp. classical mixing).
The following properties are proved in [37].

Theorem 4.18 1. If the classical system is ergodic on Eg then the quantum evolution
U(t) is semi-classically-ejuantum-ergodic at the energy level E and furthermore we have,

for all A G 50(F), Vf > 0 3<5f > 0, ft£ > 0 such that

W ÏT7M E \ajk\2 < e, \/h e\0,K}.
it'A'11 Ekei(h),\u,Jk\<ô<
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2. If the cleissical system is weak mixing on Ee then the quantum evolution U(t) is semi-
classically-quantum weak mixing at the energy level E and furthermore we have, for
all A G S„(E), for nil r G R, Vf > 0 36c > 0, fte > 0 such that

(**)
1

#A(ft) Y |ajt|2<f, VftG]0,ftf].
Eker(h), \ujJk-T\<6€

The following result is a semi-classical translation of Sunada [137] and Zclditch [148].

Theorem 4.19 1. The condition (*) holds if and only if the classical system is ergodic

on the energy level E.

2. The condition (**) holds if and only if the classical system is weak mixing on the energy
leved E.

Proof:
Let us assume (*) holds. From [37] we get

E
1

2jk\
sin u)jkT

u)jkT

#m E,tr{n

where o(l) is for ft —> 0 (depending on T).
For every 6 > 0 we have

Y \ajk\
/T,-6/(ft), Bk€J;\wjh\>S

1

Y (A^ATg>j,^Pj)Ao(T),

sin u)]kT

ujk T
<

T6 Y M
E,eì(h), Ek£j

From the corollary (4.3), we have

fun sup
7i->0

E M2
BJ-£l{i\),SkeJ;luJk\>ó

sin DjkT
uj]kT

C_

T6'

(4.21)

(4.22)

(4.23)

where C is a constant independent on T. Now using (4.21) and corollary (4.3) again, choosing
6 5f, we get

L 2fLA^dt dvE < f +
C_

T5'

So, VA G (7°°(Ee) such that (A) 0 we have proven

T-»H
lim / — / A(&)dt
->+<x>JzF 2T J-T

duE 0. (4.24)
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By an easy smoothing argument wc can extend (4.24) for A G L2(T,E) such that (A) 0.

Now we conclude using the spectral characterization of ergodicity. If A G L2(EE) such that
A(<I>() A and (A) 0, then by (4.24) we have A 0, a.e on EK so $' is ergodic. |

Now let us assume (**) and prove that the system is weak mixing. We already know
that the system is ergodic i.e. 1 is a simple eigenvalue for the Koopman operator.
As in [37] let us introduce the function 9 such that

^ (^r)2' w-4-4),
so we have

Y \ajk\%{ujk - A) f élT6T(t)(tpj,A(t)A*tpj)dt + 0(h), (4.25)
BkdJ

uniformly in T > 0, r G IR, Ej G 1(h).
So, as in the ergodic case, we get easily, for every A G C°°(E/j), r / 0,

JeitT9T(t)CA(t)dt 0, (4.26)

where CA(t) is the autocorrelation function

CA(t) f A(¥(z))A(z),Iue(z).
JzE

As above, we can extend (4.26) to every A G L2(Ee). Let us consider now an eigenfunction
A of the Koopman operator with eigenvalue e"!(r, r / 0, A G L2(EE), A(<I>() c~IiTA,
Vf G R.
Using (4.26) we get A 0 a.e on Ee- I

Before closing this section let us mention here three other interesting subjects concerning
semi-classical asymptotics for bound states. Wc refer to the original papers for statements
and proofs.

• Hamiltonians invariant with respect to a symmetry group (finite or compact) [51, 50].

• Integrable Hamiltonians and systems of several quantum commuting observables [34,
27]/

• Semi-classical limit of the Berry's phase [11, 60].

Let us remark that it is an interesting open question to study the Berry phase and its
semi-classical limit for chaotic systems [15].
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5 Semi-classical approximation in Quantum Scattering
Theory

In this section we want to report on some results concerning semi-classical spectral analysis
of long range perturbations of momentum dependent Hamiltonians on R" such that their
difference is short range. Typical examples arc Schrödinger Hamiltonians: Hj —ft A + Vj
with Vj(x) 0(\x\-5), j 1,2, V2(x) - Vx(x) 0(\x\-'') with 6 > 0, p > n. Wc can
also consider perturbations by magnetic fields and cases where A is the Laplace-Bcltrami
operator for asymptotically Hat metrics on R".
For the scattering pair (II2,IIi) a natural time delay operator can be defined and also an

average time-delay, rD(ft, A), depending on the energy A and the semi-classical parameter ft.

It is related to the spectral shift function and also to the scattering phase. We shall consider
here asymptotics for these spectral functions. We shall follow essentially the paper [127].
There are many other interesting results known in semi-classical scattering: behaviour of the

scattering cross sections, many body problems, resonances. Wc choose here to report only
on one subject more or less related to some trace perturbation formulas. Let us begin by

introducing some of the quantum scattering notions involved.

5.1 Time Delay - Spectral Shift - Scattering Phase

Let us consider two quantum Hamiltonians H\ and II2 acting in the Hilbert space TL. Hi and

H2 being self-adjoint operators, they generate unitary groups: Uj(t) cxp(—itH3), j 1, 2.

Let us consider a family of bounded operators in TL: {Pr}r>q such that lim Pu 11«,
R—>4*oo

strongly on TL; 11^ being the identity on TL (Pn are used to localize quantum particles).
For tp in TL, the local sojourn time of Hj in Pu is defined by

/+0O ||P„^(/)V7||2d/. (5.1)
-oo

Assume now that H2 is a short range perturbation of Hi in the sense that the wave

operators:
n±= um t/2(-0iM0nae(£i)

t—>±oo

exist and are complete, where Ilar(H\) denotes the projection on the absolutely continuous
subspace of H\.
In [120], Jauch-Misra-Sinha gave the following definition of Time-Delay for the pair (H2, Hi):
Let us assume that: (TliKt/'> 4') < +°° a"d (T2jAl-4>Al-4>) < +oo.
The local time-delay in Pr, for the system in the state tp, is defined as the difference:

(T£V, i>) (r2>/Ai_V, fi-VO - (Ti,rÌ>, 4')- (5-2)

Using the intertwining property of the wave operators:
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il-Ui(t) U2(t)Q,-, wc have also (Amrein-Cibils [6])

Ui(-t)(iV_.P2RÇl--P2)Ui(t)dt. (5.3)
-oo

The total time-delay of the system in 7{ is defined by:

(TDtP,iP)= lim (t£VvA>, (5.4)
/7.-H-00

whenever the limit exists.
For the usual Schrödinger pair, we have: Hi II0 — Aj A and II2 Hq A V acting in the
Hilbert space L2(R") where V is supposed to be smooth and such that for a p > 1 we have:

|d°V(x)| < Ca(l + |x|)-'-N
It was proved independently by Wang [140] and Nakamura [108] that, taking for the
localization operator: PriP(x) x(^)1P(x) with x smooth with compact support on R and

x(7) 1, for |?| < 1, the time-delay TD exists as a self-adjoint operator in L2(ïï")
(unbounded, with a dense domain) commuting with Hq. Furthermore they proved that in the
spectral representation of IIa, TD is related with the scattering matrix 5(A) of the pair
(11-2, Hq) by the Eisenbud-Wigner formula

rD(A) -iS(A)'Ä (5.5)
dA

Anirein-Cibils [0] considered also the case when x IS n°t smooth.
The local time-delay operator Tj( commutes with II0 (see (1.3)) so it has a diagonal form in
the spectral representation of II0 and the local-average time-delay can be defined by:

r/f,(A) tr(T»(A)), (5.6)

tr being the trace functional in L2($"_1) Sn_1is the unit sphere in R") Furthermore, if V
decreases quickly enough (p > n), we know that T°(X) is a trace-class operator on L2($"~'),
so that wc can define the average time-delay at energy A for the scattering process (II2, Hi),
by:

r»(A) tr(TD(A)).

As it is expected, wc have : lim i~,?(A) td(X). Moreover the average time-delay td(X)
77—>+oo

is connected with the spectral shift function of Krein and also with the scattering phase for
(H2,lli). The spectral shift function s(h, A) is defined as a distribution on R by :

tr(/(//2) - /(//,)) -f™f'(\)s(h,\)d\, (5.7)

V/ G C0°°(R).
The (total) scattering phase: 0(h, A), is defined by

det(5(A)) exp(27Ö(ft,A)). (5.8)

A famous result of Birman-Krein [16] (see also the book by Yafaev [145] for complete and
accessible proofs) says that on ]0, +oo[ we have: 0' its'
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From the Eisenbud-Wigner formula we have: T/j(ft, A) —20'(ft,A).
So the following three notions: average time-delay, spectral shift function and scattering
phase, coincide with different physical meanings.
Several papers stated results about the asymptotics for rD(h, A) in the usual Schrödinger
case (Hq, Hf) in the high energy regime (A /• +00) or in the semiclassical régime (ft \ 0)

(see [22, 31, 61, 117, 129, 122, 123]).
In the next section we shall give a unified presentation and extensions of these results when
Hq is replaced by a long range perturbation Hi of IIQ and H2 is a short range perturbation
oi Hi. The detailed proofs appeared in [127].

5.2 Perturbations of the Laplace operator

Let us consider long range perturbations of the Laplace operator in R": Hu — ft2 A obtained
with a Riemannian metric g, a magnetic potential A and an electric potential V. g and A
are determined by their coefficients: g {g]k}, A (Ai,A2,...,A„). As usual we denote
G det(s), -fy*} {gjk}-\
The natural quantum Hamiltonian to compare with Hq in L2(R") is

H(g, A, V) -G~l/A. Y (ndl + iAj)Gl/2gjk(hdk + iAk)G~,/4 + V. (5.9)

l<k<n

The data g, A, V arc supposed to be smooth and satisfy the following decay assumptions:

36 > 0 such that Va, multiindcx, 3Cn such that Vx G R",

\d"x (g(x) - g0(x)) I + \<%A(x)\ + \%V{x)\ < Ca(l + \x\)~s~^, (5.10)

where g0 is the flat Euclidean metric. Let us consider the two Hamiltonians:
Hk H(gk, Ak, Vk), k 1, 2. Wc assume that gk. Ak,Vk satisfy (5.10) and that:

3/7 > 1 such that Va-, multiindcx, 3Ca such thatVx G R",

\d:(g2(x)-g\x))\A\d^(A2(x)-A1(x))\
+ \dnx (V2(x) - Vl(x)) I < Ca(l + |x|)-"-H (5.11)

For all results stated below we shall assume that the pair (Hi, II2) satisfies (5.10) and (5.11)
for 6 > 0 and p > n. Let us denote by rD(h, A) the relative time-delay for this pair. To

prove pointwise energy asymptotic results for rD(ft, A) in the high energy limit (A /*¦ +00)
or in the semiclassical limit (ft \ 0) is a rather difficult problem. It is well known that the

same problem is much easier after some regularization procedure in the energy variable A

is applied. The point is, if wc want to fix the energy, we have to get information on the

propagator for every time, due to the time-energy uncertainty principle.
As a preliminary result we begin with asymptotics in weak sense in the energy variable.
Under the previous assumptions, we have:
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Theorem 5.1 (weak asymptotic trace formula) For every f in the Schwartz space <S(R),

f(H2) — f(H\) is a trace class operator and we have the full asymptotics:
(i) as ft \ 0

tr(f(IÌ2)-f(ÌIì))7<h-"Y<-2](fyi23- (5.12)
7>0

The coefficients c2j(f) are distributions in f, in principle: computable in terms of the symbols

of H2 and Hi ¦

(ii) Assume ft 1. Then as ß\0 we have:

tr (/(/57/,) - /(,/1/7,)) x ß-»A Y Cj(f)ßj. (5.13)

The coefficients C2j(f) and Cj(f) arc distributions in f, m principle computable in terms of
the symbols of H2 and If

This preliminary result is a direct consequence of the functional calculus for pseudodifferen-
tial operators, as presented in [73, 44, 122](see section 3). An interesting approach concerning
Schrödinger operators is due to Melin [100].

Let us state sonic more accurate results:
In what follows, opp(L) denotes the set of eigenvalues of II; o(H); aac(H); asc(H) will
denote respectively the whole spectrum; the absolutely continuous spectrum and the singular
continuous spectrum of H.

Theorem 5.2 (High energy asymptotics) i) The relative lime-delay s(ft, A) is C°° in
}0,+<x[\(cjpp(Hl)Uapl)(H2)).
ii) Assume ft fixed i.e. ft 1. // the metrics gk, (k 1,2), have no trapped geodesies, then

there exists Xq > 0 .sucft that s(h,-) is C°° in ]A0,-t-oo[ and VA: G N, 4^£(A) has a complete
asymptotic expansion for A /* +co

^(AîxA-^-'fcafAA (5.14)

In particular wc have:

ao] =c(ri)J
n

(dug? -dvg<),

where dvg denotes the volume form defined by g and c(n) is a universal constant depending
only on the dimension n:

47r("+l)/2
c(n) FWTTy

Let us consider now the case when A > 0 is fixed and ft \ 0. To formulate the next result we
consider the ft-principal-symbol IIk of Hk which is given by Hk(x,Ç) (gk(x)(Ç + Ak(x)),£A
Ak(x)) + Vk(x).
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An energy interval J C ]0, +oo[ is said to be non trapping for the classical Hamiltonian H if
for every A G ./, every classical path for the flow <I''W on the surface of energy A escapes to
infinity as times goes to plus or minus infinity (see below for a more precise definition).

Theorem 5.3 (Semi-classical Asymptotics) // ./ is a compact interval, J C ]0, +oo[,
non trapping for Hj, j 1, 2, tlien for ft small enough wc have:

s(h, A) x ft"". Y ('j(A)ft' as ft \ 0, uniformly for A G J. (5.15)
j>0

Furthermore this expansion can be differentiated in A to any order.

Remark 5.4 /. // follows from the non trapping conelition and virial theorem that for ft

small enough Hj has no eigenvalues in J.

2. The above asymptotics in the. high energy case and semi-classical case above were proven
in this form in [125], For Hi —ft A the asymptotic have been proven in [33, 61,

117, 100, 124] under various assumptions on the perturbation, in the high energy case.

The semi-classical case, was proven the first time in [130] for g cepial to the flat metric
g0 and A 0.

The particular case //[ — ft2 A shows that full asymptotics as in Theorem 1.1 and 1.2

cannot hold in general if some classical path is trapped. In particular it was proved in [59]

that a Breit-Wigner formula holds for ||. We shall come back to this point below. However,

even if there are classically trapped rays, we still get estimates for the scattering phase s(ft, A)

similar to Weyl estimates, well known for the number of bound states (sec section 3).
It is also interesting to formulate the result for the Riesz means of the average time-delay
which are defined as we did for the discrete spectrum in section 3. The Riesz mean of order

7 for s(h) is defined by :

s7(ft, A) / (A — p)7ds(Ji, /i).
^—00

To state the next results wc replace the non trapping assumption by weaker control of the
resolvent close to the continuous spectrum. So, let us introduce the resolvent: Rj(z)
(Hj - z)_1, and the following conditions:
There exists positive numbers s0, S, k, C, such that for 0 < \t\ < 1, A G J, ft G]0,1], we
have:

|| < x >-so Rj(X + it) < x >-*o || < Cexp (Srrk) (5.16)

and, for ft 1, 0 < |r| < 1. A > 1, we consider:

|| < x >"so Rj(X + it) < x >-"> || < Cexp (SXk). (5.17)

Theorem 5.5 (Riesz means Asymptotics) For every 7 > 0, we have:

i) Let us assume that J is a non critical compact interval for Hj, and (5.16) holds for
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j 1, 2. Then we have the following finite asymptotic expansion as ft \ 0 and uniformly
for X e J :

j=M+
s7(ft,A)=ft-n Y cJn(X)h3 + 0(h-"+1+1). (5.18)

7=0

Furthermore if on the energy surfaces: {Hj A} for j=l, 2, the set of closed trajectories is of
measure 0 for the Liouville measure, then the remainder term can be improved to o(ft-n+7+1)
and we get a term more ifjC.fi.
In particular, for 7 0, ?7;e have the Weyl law:

s(h, X) 7i7(A)/rn + 0(ft1_n), (5.19)

where:

w(X) (2ir)~n [ (f de - / dAdx. (5.20)
JR" \7772(x,0<A Jh,{t,(;)<>. J

ii) Assume that ft is fixed, ft 1 and (5.17) holds for Hj, j 1, 2. Then we have the

finite asymptotics as X /*¦ +oo:

i=M+
s7(ft,A) A"/2+7 Y a„A-J + 0(A("-1)/2). (5.21)

7=0

Furthermore if the set of closed geodesies for gfj 1,2 is of measure 0 for the Liouville
measure, then the remainder term in (5.21) can be improved to o(A'n_1'/'2) and we get a term
more if 7 G N.
In particular, for 7 0, wc get that s(X) satisfies the following Weyl law:

s(X) We\? +0(X!1i1). (5.22)

We have:
We d(n) [(dvgt-dvgi), (5.23)

where dvg denotes the volume form defined by g and d(n) is a universal constant depending
only on the dimension n:

2vr"/2+i
d{n)

„r(n/2 + l)-

Remark 5.6 For H\ II0 —ft A it is proved in [129] that the above results hold without
assumptions (5.16) or (5.17). Even so, conditions (5.16) and (5.17) seem to be very weak

conditions. In particular they are satisfied for H2 — ft2A + V when we are in the situation
of the "well in an island" (see [59]).
In the high energy case the first proof of a Weyl estimate for the scattering phase was given
by Melrose [105], for compactly support perturbations in odd dimensions, using his estimate

on the number of scattering poles.
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The above results are corollaries of a more general result which is an ft-asymptotic trace
formula proved in [127]. Before stating this result let us introduce some notations and
definitions. In scattering theory wc need to control the observables when the particle escapes
at co, so wc have to introduce suitable classes of observables involving some control at infinity
in position variable.

Definition 5.7 (i)IfÇi is an open set in R2", k, p G R, we shall say that A G Sn(/t,k) if
A G C°°(fi) and satisfies there, for every multiindex a, ß,

|flfSfi4(j:,0l O (< x >"-N< e >*) (5.24)

We shall use the simpler notations: Sq(p) Sn(p, — oo), S(p) 5R2..(p).
As usual, Sn(ß, k) is endowed with the structure of Frechct space defined by the neitural semi-

norms.
(ii) Wc shall say that a formal series in ft: A(ft) x Y.jyoh1 Aj is a h-admissiblc symbol of
weight p if the following properties hold:

Vj G IN, Aj G S(p-j); V/V > 1; ft"A' I A(ft) - Y K''Al is uniformly bouneied m S(ft-N),
\ j</v-i /

as ft g]0, 1]. Wc shall denote by Sa(t(ß) the set of ft-admissible symbols of weight p.

Now we can state the trace formula which essentially reduces the study of the gobal

average of the time-delay to a local one in the configuration space R". We sketch a proof of
this theorem in section 5.5.

Theorem 5.8 (Asymptotic Representation Formula) Let J c]0, +oo[ be a compact
interval. There exists b0 > 0 large enough such that for every Ç G C03O(R") satisfying:
£(x) 1 for |x| < &o we can find h-admissible symbols K± G Sad(—p) (p was defined in
5.11) such that for every A € J we have:

5'(ft, A) tr(c(^(A)-^(A))c)
+tr (k+Rq(X + 70)) + tr (Â_/Î0(A - i0))

+tr (x±Ri(X ± iO)Y1±R0(X ± iO)Z±)

+tr (A2±/Î2(A ± iO)Y2±Rq(X ± iO)Z?) (5.25)

m the two last lines we mean that we have a (+) and a (-) term.
Xp, Yj, Zp, are negligible operators in the following sense: VA/,V/V, we have for j 1, 2,

|| < x >M Yj±Rq(X ± iO)Zf < x >M Ht, 0(hN),
|| < x >A/ Xf < x >M || 0(TiN), (5.26)

0(h' being uniform in the. energy parameter X G J. Furthermore formula (5.25) can be

differentiated in X to any order and we have also estimates like (5.26).
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Remark 5.9 For short range perturbations of the Laplace operator the above result can be

replaced by a much, simpler one which was introduced in Robert-Tamura [129]

s'(h,\) ±tT[(2V(x)+x-VV(x))^},

using the generator of the dilation group. Notice that this formula has to be interpreted
correctly because the operator involved is not trace class.

Comments
First, by a standard scaling argument, it is not difficult to see that the high energy asymptotics

(A /* +00) is a particular case of the semiclassical asymptotics (ft \ 0) for another
pair of Hamiltonians. So we will consider only the .semi-classical case for a more general
pair of Hamiltonians coming from long range perturbations of a fixed momentum dependent
Hamiltonian.
The second and third term of the r.h.s of (5.25) clearly have ft-asymptotics because they
essentially involve the free resolvent.
The first term is compactly supported in the configuration space and will be checked by the
well known method of Hörmandcr-Levitan ([83, 123]) explained in section 3.

The last term will be considered as a remainder term and for checking it wc need estimates
on the boundary values of resolvents close to the absolutely continuous spectrum.
The main ingredient in the proof is a construction of a long time parametrix by a method
initiated by Isozaki-Kitada [86] for time dependent Schrödinger equations. By following
carefully the estimates in the Isozaki-Kitada construction it is possible to control the difference

of two propagators, obtained by long range perturbations of the same free translation
invariant Hamiltonian. We shall explain these points in more details in subsection 5.5

5.3 Long Range Scattering and Propagation Estimates

Let us consider scattering theory with a free Hamiltonian //0 to(TiD) on Rn, n > 1. Let
// //0 + Q be a perturbation of Hq. We make the following assumptions on uj,

(A0) u is non negative on R" and lim uj(Q +00.
|£J->+oo

(Ai) üj is smooth on R" and for each multiindex a there exists ca such that:

|%M0l<Ca(l + U7(0),V£ GR".

(A2) There exists c > 0 and some A/ > 0 such that:

ix' (77) < c(l Aoj(0) <Ç-V > VÇ G R", andV7/ G Rn

This generalized kinetic energy term to is sometimes called dispersive ([134]). The perturbation

term Q is assumed to be an ft-admissible pseudodifferential operator, that means that
it is the Weyl quantization of the ft-asymptotic symbol:

Q(h;x,()^YhJ-Qd*>0,
7>0
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where (x, £) is a point in the classical phase space.
Let us introduce the following assumptions:
(A3) There exist c0 > 0 and fo > 0 such that:

Qo(x, 0 + w(0 + c0 > fo (1 + w(O), V«, e G R".

(A4) There exists 5 > 0 such that for every multiindex a, ß and every j > 0 there exists

C(j, cc, ß) such that for all f G R", we have:

\dPdlQj(x,t)\ < C(j,a,ß) < x >-ä-l°l (l+a;(0).

The asymptotic expansion holds in the following sense:

(A5) For every integer N > 1, every multiindex a, ß there exists C(N,n,ß) > 0 such that
V(x, 0 G R2" Vft G]0,1] we have:

(5.27)

d^dl \Q(h;x,£) - Y VQi(x>0
\ 0<j<N-l /
C(N,a,ß)hN < x >-'5-|q| (1 + w(0).

Remark 5.10 (i) Assumptions (Ai) to (A5) arc clearly satisfied by the. pair defined in
subsection (5.2), lì IÌ(g,A,V); H0(h) -h2A.
(ii) If f is a non negative, smooth real function such that:

a
Citi

(A) <c(l + |A|r(l + /(A)),

then the pair (f(H);f(HQ)), also satisfies (Ai) to (A5) with ù(Ç) /(w(£)). This is an

easy consequence of the functional calculus for h-admissible operators established in [73].

Under the above assumptions H is essentially self-adjoint for ft small enough. So, the

propagator U(t) exp(—ith~lH) is well defined for every t in R. Furthermore, it is easy to

see that the difference of resolvents, (H — i) — (Hq — 1) is compact, hence, by the Weyl

perturbation theorem, the essential spectrum of // coincides with the essential spectrum of
Hq, which is equal to the range of w.

Scattering theory is related to the absolutely continuous part of the spectrum of quantum
Hamiltonians. So, let us consider an energy band / =}a, b[, an open non critical interval for
ui. Then it is well known that I C\ o(Hq) Ç aac(Ho). Thus we can get some preliminary
spectral information using the conjugate operator method of Mourrc [89]. It is convenient
here to introduce the following operator (see also [134]):

V (2i)"1(l + ui(hD))-[ (x ¦ Vcw(ftD) + VfLü(hD) ¦ x) (1 + u>(hD))~l,

which is the analogue of the usual dilation generator for Laplace operator. To apply Mourre's
results the main point is to have a Mourre's inequality. In this context it is an easy
consequence of ft-functional calculus ([73] and section 2), stated in the following lemma.
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Lemma 5.11 Let I be an open, bounded, non critical interval for w. Then:
Vx € Cq°°(I) it exists 7o > 0 and some h-admissible operator A satisfying (A4) and (A5)
such that, for all ft G]0,1[, we have:

x(H)i-1 [H,v]X(H)>hx(H).(1Q + Â)x(H).

In particular, x(H)Ax(H) is a compact operator in L2(R").

From the above Lemma and [89] we easily get the following :

Proposition 5.12 With the notation of the Lemma 2.2, for every compact interval J C /,
and every ft g]0, 1], cr(II) n J is absolutely continuous with at most a finite number of
eigenvalues for II (with multiplicities).

Furthermore applying the full results of [89] we get propagation estimates for each fixed
ft:

Proposition 5.13 Let J be such that JC\app(II) 0.

(i) For every real s > 1/2, < x >~s (H - X ± i0)~l < x >"s exists in the operator norm on
L2(R"), for every X in J. In particular asc(H) 0.

(ii) For every s > | + k, < x >~" (II — X ± i0)_1 < x >~s is of class Ck of X m J and

dk
— {< x >-' (// - A ± i0)~l < x >~s) =k\ < x >" (H - A ± îO)-*"1 < x >-s
a A

(iii) For every x € C^°(.I) and 0 < r < s there exists cj(x,t,s) such that

|| < x >-« x(H).U(t). < x >'s || < c(x,t,s) < t >~T, Vt G R

Now we consider two perturbations Qx and Q2 of H0 satisfying (A3), (A4),(A5), and
such that Q2 is a short range perturbation of Qi in the following sense:

(A0) There exists p > 1 such that for every multiindex a and ß, and for ever}' N > 1,

there exists r > 0 such that for every ft in ]0,1] and (x,£) in R2", we have:

\dPdf (Q2li(x,0 - Qld(x,0) \<c< x >-"-H (1+07(0). (5.28)

daxd'l Q,(ft, x, 0 - Qi (ft, x, 0- Y V(Q2,j(x, 0 - Qi,j(x, 0)

chN <x>-'-|a| (1 + 07(0). (5.29)

Let us introduce the propagators: U3(t) exp(—ih~lH}) where Hj H0 + Qj.
The last proposition and Cook's method imply the following corollary (see [89]):
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Corollary 5.14 Under the above assumptions for every interval J such that JC\avp(Hi)
0, the wave operators :

n±(j) tfimo[/2(-i)L/1(i)£;/Vi(j)

exist and are complete. (EA(J) denotes the spectral projector of the self-adjoint operator A

on the interval J).

Because we are interested here in semiclassical asymptotics, a first step is to state the prop-
agation estimates controlled m the semiclassical parameter. For that, we need a basic

assumption on the classical systems. With Z/(x,f) a classical Hamiltonian on the phase space
R2", let us consider the flow defined by it,

$tl1(x,ti) (9(t,x,t:);p(t,x,0)-

Definition 5.15 We say that an energy interval J C R is non trapping for II if for every
R > 0 there exists Tn > 0 such that:

If H(x,£) G J, \t\ > TR, |x| < R then \q(t,x,(f)\ > R.

In the following we denote by Hj(x,Ç) the ft-principal symbol of Hj, i.e Hj(x,tf)
w(0 + Qjfi(x,0- When the index j is fixed we drop it. Then the following results hold.

Theorem 5.16 1) If the open interval I is non critical for u> and non trapping for H then

wc have:

(i,)Vs > k- 1/2, || < x >"s (H - X A i0)~k < x >~s || 0(h~k)

uniformly for X in each compact subset of I, as ft \ 0.

(i2) For every x £ Cq'(I) and 0 < r < s there exists c(x, t, s) such that:

|| < x >"s x(H)U(t) < x >-' || < c(x,t,s) < t >"T

for every t in R and every ft in ]0,1],
2) Conversely, if (ii) holds with k 1 or (i2) holds with some 0 < t < s then I is non
trapping for H.

Sketch of Proof:
The method to prove the direct part (which is due essentially to [56]), involves a modification
T>i of the conjugate operator V. By replacing V by T)x in the Lemma (5.11, then the Mourre
inequality holds with A 0; i.e. wc have:

x(H)i-x [H, V,} x(H) > Johx(H)2. (5.30)

Let us remark that by the virial theorem, [107], it follows from (5.30) that H has no
eigenvalues in / for ft small enough.
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The main steps of the proof are the following.
First, using standard properties of the calculus for ft-pscudodiffcrential operators, it is sufficient

to construct a function F G C°°(R2") such that the Poisson bracket {H, F} is positive
on H~l(J) where J is a compact subinterval of / and //(x,0 u>(£) + Qo(x,Ç). F is
constructed as follows. Let us consider:

X e Co°°(R), 0 < x < L X(x) 1 for |x| < 1 and X(x) 0 for |x| > 2. Let us denote:

Xr(x) x(|) and

f+ OO

Kr(x,0 - XR{q(t,x,0)dt.
Jes

The non trapping assumption easily ensures that Kr is a bounded, C°° function on Il~l(J).
Then wc introduce:

F(x,0 c1xMr(x)Kr(x,0 + Fo(x,0,
where

l'a(X,t.) - — 777-
1+07(0

So, we first choose R large enough such that there exists some 6q > 0 with {H,F0} > 2<5o

for |x| > R and H(x,Ç) G J. Then we choose ci > 0 and M > 0 large enough such that we
have:

{H,F}>60\nirl(J).
The method to prove the second part uses a nice trick due to Wang [140].
Let us repeat here the argument for it is rather simple and it is not so often that we have a

non trivial necessary and sufficient condition in semi-classical analysis. Let us assume that
(ii) holds with k 1. Then by //-smoothness techniques (see [121]), for s > 1/2 we can get
a constant 7 > 0 such that

j \\(x)->x(H)U(tWdt < 7IIVII2, (5.31)
j it

Vt/) G L2(R"), Vft G]0, 1]. It is convenient to transform this inequality using traces. Let us

introduce
Â2s(t) U(-t)x(H)(x)-2sx(H)U(t),

then using (5.31), for every density operator È (i.e B is a non negative observable of trace
class in L2(R") with tr(S) 1), we have

/ tr(Â2s(i) ¦ B) < 7. (5.32)
Jr

Let us remark that, using the semi-classical propagation theorem, the principal symbol of
Â2s(t) is A2s(i,x,0 x2(H(x,Ç))(q(t,x,Ç))~2s. So for every T > 0 there exists CT > 0 such

that for every B G S(R2"), B > 0, and /Rs„ B(x,£)dxdÇ 1, we have

/ / A2s(t,x, i)B(x,Cidxdidt < 7 + CTh. (5.33)
J-T Jn2"

Now, taking B(x,t) (7rft)_,lexp( —i((x — y)2 + (f — r/)2)) and making ft \ 0 we get

X2(H(y,r,)) I (q(t,y,V))-2°dt < 7. (5.34)
Jn
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If A G /, wc choose x sucn that xW 1- Hence, for (y,p) G //"'(A) wc get from (5.34)
that

lim su]) \q(t, y, ?/) | +oo.
|f|->+oo

We conclude by a well known argument in classical mechanics that

lim \q(t,y,p)\ +00
\t\-> + oo

(for more details see [124]).

5.4 Long Time Approximations for Propagators

Let us consider a Hamiltonian of the form // u>(hD)+Q satisfying assumptions (A0) to (A6)
of subsection (5.3). Wc shall report here on the method introduced by Isozaki-Kitada [86]

to construct accurate approximations for the propagator U(t) exp (—ith~lH) uniformly
in time t G R. The semi-classical version of this construction is due to Robert-Tainura [129]
where it is proved that the estimates are uniform in the semi-classical parameter ft.

According Isozaki-Kitada we look for an approximation for U(t) of the form:

UM(t)=J(<p,A)U0(t),

where tp(x,Ç) solves the time independent Hamilton-Jacobi equation:

//(x,a.,:¥7(x,0)=o'(0, (5.35)

in outgoing or incoming areas of the phase space and J(tp, A) is a Fourier-Integral operator
associated to the amplitude A according to the usual formula:

J(tp,A)u(x) (2nh)~n [ exp{}(^(x,0- < y,t >)}A(x,Ç)u(y)dydÇ.
Jn2n ft

Following the Isozaki-Kitada method, we solve (5.35) by localization in outgoing and

incoming region of the phase space. Let us introduce the speed vector field v(£) Vcoj(0
and the notations:

< x f >
cos(x, o i nri for x yt 0, Ç 0,

F±(J,a,R) {(x,0 6 R2" : |*| > R, o.(0 € J ,±C0s(x,«(0) > -a},

where R > 0, a G] — 1,1[, J is a compact interval such that ti(0 0 if oj(0 € I, I being a

neighborhood of ./.

Following [124] we state an extension of theorem (2.5) in [86].
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Proposition 5.17 For every compact interval J Ç I and every —1 < a < 1 there exist
R > 0 and tp± G C°°(R2") such that:

H(x,dxip±(x,F))=w(ti) iiiF±(J,±a,R). (5.36)

Moreover the following estimates hold:

|d£9f(<p±(x,0-<*,£>) I ^ Cnß<x>1-6-^, (5.37)

\d2.^±(x,0-H\ < 1/2, V(x,OeR2", (5.38)

where 6 is defined in the assumptions on 11 anil dxitp denotes the hessian matrix, of the

function tp in the variables (x,F)

An idea of the proof: Without going into the details of the proof let us recall here the

strategy (see [127] for all the details).
We consider the time dependent Hamilton-Jacobi equation :

~ H(x,OxS(t,.r,0),

5(0, x,0 <x,£>. (5.39)

From classical Hamilton theory we know that the solution 5 of (5.39) is connected with
the Hamiltonian flow generated by H:

<I>((x,0 (q(t, x, 0;p(t,x,0).

S being a generating function for (J>( wc have:

V5S(/,x,0 q(t,x,VxS(t,x,0, (5.40)

Ç p(t,x,VxS(t,x,0-

Assume for example that (x.F) G F+(J,a,R). Then we shall prove that:

lim |Vf5(7J,x,0| =+00 and VTi^(x,0 lim (VxS(t,x,Ç)) exists.
t—» + 0O

'
t—>+oo

By the energy conservation law we have:

Inn H(x,VxS(t,x,i))= \im H(VtS(t,x,Ç), 0-
I-++00 t—>+oo

So we get: H(x, Vxtp(x, 0) <*>(£). To make rigorous the previous formal computations, an

important step is to study the inverse of the mapping: £ —r p(t,x,Ç).

Now we come to the construction of Fourier-Integral operators to approximate propagators

uniformly in time.
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The starting point for the construction of approximations for U(t) is the following Duhamel
formula:

±(U(-t)J((<p,A)U0(t))

itAlU(-t) [llj(tp, A) - J(tp, A)Hq] U0(t). (5.41)

So we have to realize the following intertwining property modulo arbitrary large powers of
the semiclassical parameter ft:

HJ(cp,A)-J(cp,A)Ho^O. (5.42)

Let us remark that by choosing tp to be a solution of equation (5.35) and A 1 we get
a solution of (5.42) witli error 0(1). According to the W.K.B method (section 2), we can

get better and better approximations by solving transport equations to determine an ft-
admissible symbol: A x Y,j>oh3AJ. The final result is

Theorem 5.18 (Isozaki-Kitada parametrix) (i) There exists an ft-admissible symbol of
weight 0, B x Y^^Ej, such that: Bj G S(—j), Supp(B]) Ç Tq" and:

j>0

\ (x, TiD) J(tp, A{N))J(tp, B{N)y + hNXN(h, x, TiD), VN G IN, (5.43)

where we have: A'w' Y, h3 Aj and xn is a bounded family of symbols in S(—N) for
Q<j<N

ft G]0,1].

(ii) For every N G N the following equality holds:

U(t)xw(x,hD) J(tp,A^)Uo(t)J(tp,B^Y +
hNU(t)xN(h,x,hD) + hN+1RN(t,h), (5.44)

where we have:

RN(t, ft) /' U(t - s)J(tp, RN+i)U0(s)J(tp, B^Yds (5.45)
Jo

and R\+i(h) is in a bouneicd set of symbols in S(—N - 1) as ft G]0,1].

Remark on the Proof: All things have been prepared to get this theorem. It is

now a straightforward extension of results proved in [130] for Schrödinger Hamiltonians. In
particular we know from the computation rules for ft-admissible-Fourier-Integral operators
that J(ip,A^)J(tp,B^N^)* has an ft-admissible symbol which can be explicitely computed
([122]). In this way we can determine B so that (5.43) is satisfied, because A is elliptic in

r^ (i.e its principal symbol does not vanish).
The second part of the theorem is a consequence of (5.41), and the transport equations |

Let us recall here an application to the existence and completeness of modified wave
operators. Applying the Enss method as in [52] we get:
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Proposition 5.19 Assume that I is an open, non critical interval for u>, without eigenvalues
for H (here ft is fixed). Then the modified wave operators

Q±(/) s - Jirn^ (u(-t)J(tp, l)U0(t)EAo(I)) (5.40)

exist and are complete i.e.:

Rangc(il±(I))=Efl(Hac(H).

5.5 A Sketch of the proof of the Asymptotic representation for¬
mula for the spectral shift function

Let us recall the statement:

Theorem 5.20 (Asymptotic Representation Formula) Assume that Hi and II2 satisfy

the above hypotheses (no assumptions on the classical flow are need here). Then the

spectral shift function s(h, X) satisfies:

(i)s(h,-)eC°°(I)
(ii) There exists po > 0 large enough such that for every C, G Co°(R") satisfying: £(•?') 1

for \x\ < po, we can find h-admissible symbols K± G Sad(—p) such that:

s,(M). ^(smyjmy
+tr (K-Rq(X - i0)) + tr (Ê+(R0(X + ?0))

+tr (x±Ri(X ± iQ)Yi±R0(X ± iG)Zf)

+tr [X^R2(X±iO)Y2±Rq(X ± tO)Zf) (5.47)

in the two last lines we mean that we have a (+) and a (-) term.

Xj, Y.-, Zj, are négligeable operators in the following sense: VM ,VN, we have for j 1, 2,

\\<x>M Y]±Rq(X±iQ)Z± <x>M \\lr 0(hN),
|| < x >M Xf < x >A/ || 0(hN), (5.48)

0(h is uniform in the energy parameter A G J, for every compact interval J ez I.
Furthermore formula (5.47) can be differentiated in X to any order and we also have estimates
like (5.48).

Beginning of the Proof: Let / be a bounded, open subinterval of / and / G C0X,(7); / 1

on /. In the distributional sense on / wc have:

s'(h,X) tr (f(H2)E'2(X) - f(Hi)E[(X)) (5.49)
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For b > 0, which will be chosen large enoug, and b < 2R, let us introduce
C 6 Cq°(|x| < 2R) and ((x) 1 for |x| < b. Then we define the following distributions in /

ac(ft,A) tv(c(f(IÌ2)E'2(X)-f(Hi)E'i(X))), (5.50)

fJi_c(ft, A) s'(ft,A)-CTC(ft,A). (5.51)

By the cyclicity of the trace we have

tr (ç/(//,)/^(A)) tr (U(Hj)E'j(X)c:) (5.52)

with C G Q°(Rn), CC=1-
So using propagation estimates (proposition 2.2), we can see easily that aç is a smooth
function in A.

Checking the term 0\-c is more difficult. We go through its ft-Fourier transform:

âi-ç(t,h) / exp(—ih~1tX)c7i-c(X,h)dX

tr((l-Ç)(f(H2)U2(t)-f(Hi)Ui(t))). (5.53)

To use the constructions of subsection (5.4), we introduce a partition of unity on the following
subset of the phase space: F := {(x,0 : \x\ > R;w(Ç) G /}. So, let us introduce x± £
C°°(R'2"), such that Supp(x±) Ç F±(I,a±,R); X+ + X~ 1 on F.

From the functional calculus (see section 2), we know that f(Hj) is an ft-admissible operator,
with an essential support in the set : {(x,0 : o>(0 + Qj(x,0 e -0- So, taking ò large enough

we can see easily that (1 — Ct)f(Hf) has its essential support in F.

We have the following decomposition:

CTi_c(i,ft) =ô-(t,h)+â+(t,h), (5.54)

where

cf±(t,h) tv({f(H2)U2(t) - f(Hi)Ui(t))xl(x,hD)) (5.55)

We use the simpler notation: Fj f(Hf).
In what follows, the lower index j refers to the Hamiltonian Hj and the upper index (±)
refers to the constructions in outgoing and incoming domains in region F±.
The strategy consist in using the Isozaki-Kitada parametrix

U(t)xw(x,hD) J(tp,A^(h))U0(t)J(cp,B^y +
hNU(t)XN(h,x,hD) + hN+iRN(t,h), (5.56)

with U Uj, j 1,2 and x — X± f°r At > 0. The main technical points are contained in
the two following lemmas

Lemma 5.21 With the above notations,the following identity holds:

ti{F2J(ip2,A±)U0(t)J(<p2,Bìy - FiJ(tpi,A±)Uo(t)J(tpi,B±y}

tr{Uo(t) (j(<P2,BìyF2J(iK,A±) - J(tpuBt)'FlJ(tpl,At))}
and each term between brackets {¦ ¦ ¦} is trace class.
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Lemma 5.22 The operators:

K± := jfa, B±yF2J(tp2, A±) - J(yi,B±yFiJ(tpi,AZr)

are h-admissible pseudodifferential operators, with h-symbols: K± G Sari(—p).
So we have the asymptotics:

^xYVKf-
Moreover, there exists some Cq > 0 and some compact set A4 o/Rn such that: Supp(Kf) Ç

{(x,0;^o < k(Oli £ € AI}. In particular if p > n, K* are trace class operators.

Remark about the proof: This lemma is an accurate form of the semi-classical analogue
of the Egorov theorem, in microlocal analysis ([84]), which states that the conjugate of a

pseudodifferential operator by a Fourier-Integral operator is a pseudodifferential operator.
Now we carry on the proof of the representation formula. With the previous constructions
we have:

a±(t,h) tr (Uo^Ji)!^) + ftNtr (D%(t,h)) + hN+hr(E±(t,h),
where:

Df,(t,h) F2U2(t,h)xN,2(h,x,hD) - FiUi(t,h)XN,i(h,x,hD)
E±(t,h) F2RN,2(t,h)-FiRN,i(t,h).

First of all, let us remark that using the above lemmas we have easily

triUoWK*) Oh(< t >-*).
So we get the estimate:

f>±(t,ft) On(< t >-°°);
hence it follows that s G C°°(I).
Now we can get the representation formula by inverse Fourier transform:

ffi_c(A,ft) (27rft)_1 / exp(7iAft"1)fr1_c(i,ft)d?;. (5.57)
Jr

Let us remark that we cannot use (5.54) directly because we have information on â+ only
for t > 0 and on â_ only for t < 0. But using that the trace is a C*-homomorphism to get:

à+(t) tv((l-C)(F2U2(t)-FiUi(t))x+(x,hD)y
tr((U2(-t)F2-Ui(-t)Fi)X+(x,hD)). (5.58)

Thus (5.58) shows that for â+(t) wc have the same information for t < 0. Of course the same

property holds for â-(t) for t > 0. Thus the representation formula follows using inverse
Fourier transform in the variable t, dividing the integration domain into {t > 0} U {t < 0},
using the progation estimates and the well known formula

r+oo
Rj(z) i / Uj(t) exp(itz)dt, for 3(z) > 0.

Jo
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5.6 Application to the behavior of the scattering phase close to a

resonance

In [59] the authors gave a mathematical proof for the Breit-Wigner formula concerning the
derivative of the scattering phase for short range perturbations of -ft'A. The interesting
physical consequence is that the scattering phase varies very quickly as ft \ 0 when the

energy variable crosses a resonant energy (for a precise statement see [59][corollary 2.3]).
Now we shall present this result and its extension to the scattering phase related to long
range perturbations of —ft2A.

Let us consider two C°° potentials \f, j 1, 2. Assume there exist 6 > 0, p > n such that:

\d2Vj(x)\ < cn<x>-6-^, (5.59)

\0'f(V2(x)-Vi(x))\ < cn < x >-"-N (5.60)

Let us denote Hj — ft2 A + Vj and A0 > 0 a fixed energy level.
As in [59], we introduce the following assumptions:
(AR0) There is an open interval /, A0 G /, and / is non trapping for Vi..

(ARi) ("The well in the island") There exists a connected open set 0 C R" and a compact,
connected set U CO such that: V2 < X0 in U, V2 > A0 in Ô \ U and V2 < A0 in R" \ Ô.

(AR2) V2 is holomorphic in a set:

{z G <D"; |Öz| < fo < »z >, Kz in a neighborhood of R" \ 0}
(AR3) A0 is non trapping for V2, outside R" \ O, i.e if x(t, y,if) is a classical trajectory for
V2 with y G R" \ Ô and if + V2(y) A0 then

lim \q(t,y,p)\ +0O.
|(|->+oo

According to the resonance theory of Helffer-Sjöstrand([78]), wc can define the set T(ft)
of resonances for H2 close to A0. We assume furthermore that we have only one resonance
denoted by r(ft):
(AR4) There exists a family of complex open sets ii(h) such that:

nh>0n(h) {A0}, /(ft) fì(ft) nR/l, ü(h) n r(ft) (r(ft)} and Vf > 0, 3cc > 0 such

that dist(r(ft),9«(ft)) > c.e.-'A,
Let us remark that (AR4) is satisfied if A0 MinV2 V^xo) where x0 is a unique non
degenerate minimum for V2.

Now wc recall the main result of [58] which will be plugged in the above representation
formula to proceed as in the proof of Corollary 2.3 of ([59]).

Let us denote by d the Agmon distance associated to the degenerate metric (V2(x) —

Ao)+dx2, Sq d(U,dO) and introduce a modification H2 of II2 by plugging up the well:
choose IV G C™{x; d(x, U) < 7/} with 7; > 0, small enough and such that V2 + IF > A0 in O.

Let us denote by c2(X,h;x,y), ë2(X,h;x,y) the integral kernel of Ef, E:-

Theorem 5.23 (Breit-Wigner formula) [58]. Under assumptions (A/?i) to (AR4) we
have the following estimate eis ft \, 0, locally, uniformly in x,

dffir s dèi.

dX-(A,ft;x,x) ^(A,ft;x,x) - -A[(X - r(ft))^1 0(x)2] + 0„ U~^oMv))/n\ (5C1)
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with lime(?;) 0 and Ve > 0, fò ip(xfdx 1 + 0( (e<-2S°+£)/R)

Now we can state the following result concerning the semi-classical behaviour of the total
scattering phase for energy close to the bottom of a well.

Theorem 5.24 [127]. Let us assume (ARi) to (ARf) and also (5.16) for II2 in a neighborhood

of Xq. For every h-family 6(h) of positive real numbers such that
(i) Si(r(ft)) ± 6(h) G 1(h) Vft > 0, small enough,

(ii) limft-"<S(ft) 0; lim|Q(r(ft))|-1<5(ft) +cxd,
n\0 h\0

we have the following result for the scattering phase 0 (9(X) ns(X)) of the pair (II2, Hi),

lim 9(Pcr(h) ± 6(h)) - 9(Ur(h)) ±ir/2. (5.02)
7t\0

This theorem can be proved by a direct computation, using theorem (5.23) as in the proof
of Corollary 2.3 of [59]. I

Theorem (5.24) shows that the scattering phase 9(X) is varying very fast (exponentially
fast in the scale ft) when A is close to a resonant energy. Let us remark that if A is a non
trapping energy level then 0(A) is slowly varying by theorem (5.3).

6 Propagation of Coherent States

In this section wc report briefly on a direct approach tn the semiclassical approximation of
the time-dependent Schrödinger ccjuation with initial data localized at an arbitrary point in
phase space.
The use of Gaussian coherent states in quantum mechanics and in partial differential equations

is rather old. It probably goes back to Schrödinger (sec [99] and its references). More

recently (1974/75) Hepp [82] and Heller [79, 80] used this approach to study the time dependent

Schrödinger equation. Later on more accurate mathematical results were proved, in
particular by Hagedorn (1981)[66, 67] and Paul-Uribc (1995) [110, 111]. Recently Combescure-
Robert [38] have proven that one can get semi-classical approximations by Gaussian wave
packets, for the time dependent Schrödinger equation, valid in time intervals with lengths
increasing to oo as the Planck constant ft tends to 0. In particular the well known log-time
limit (or Ehrenfest time) for the validity of semi-classical approximation is rigorously proved.
For example, with this control of the remainder term in large time intervals, it is possible to
prove the exponentially fast spreading of initial wave packets concentrated at an unstable
fixed point of the classical system.

Let us consider the Schrödinger equation

ih^p- H(t)rp(t), tP(Q)=tpa, (0.1)
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where H(t) is a time dependent family of self-adjoint operators in the Hilbert space L2(R").
The typical example is H(t) — ^A+V(x, t), where V(x, t) is a smooth potential depending
on the position variable x G R" and time t G R. The initial data tpa is the Gaussian coherent

state centred at the point a (q,p) introduced in the section 1 of this paper. Let us recall
that tpa W(a)1$o,where »Po is the ground state of the usual harmonic oscillator A'o- More

generally let us denote by *^, for p G N" the orthonormal basis in L2(R") of eigenfunctions
of K0 |(—ft2A + |x|2). According to the correspondence principle, equation (6.1) is

approximated by the following Hamiltonian system, since Planck's constant ft is negligible
relative to m,

m ^(q(t),p(t);t), p(t) -^L(q(t),p(t);t), q(Q) q 77(0) =p. (6.2)

It is well known that the stability of the system (6.2) is governed by the linear Hamiltonian

0-"rMQ-'-{°-il)< («>

,2,.H"(z,t) denotes the Hessian matrix in the variable z G R Let us introduce the quadratic
qe\X, Ç, t.) 2

Hamiltonian Hqe(x,(,;t) k < (x,f),H"(t)(x,t;) >, the quantum propagator, Uqe(t,s) de

fined by Hqe(x, hDx; t) and the numbers 6t JÒ(q(s) ¦ p(s) — II(q(s),p(s); s)ds -
q{t)-p(t)-q-p

Let us introduce also the linear flow F(t) defined by (6.3), starting at time 0 (F(0) 11).

We need also the notations *,,,„ IF(a)*I',1, <$,,(t) W(at)U0(t)^ß. The error term will be

estimated by

0(a, t) := sup [tr(F*(/)F(i))]1/2; a(a, t) := sup (1 + |aJ) (0.4)
0<s<( 0<s<(

Pl(a,t,h)=cr(a,t)eM> Y (^Y (vTi0(a,t))23+e. (6.5)

The constants Mi,Knj depend on the following assumptions on the classical Hamiltonian
H.
H is assumed to be a C°°-smooth function in z and t e] — T,T] (0 < T < +oo), satisfying
a global estimate

(A.0) there exists some non-negative constants m, M, Knj- such that

(l + |z|2)-Af/2|aj//(z,/)|</0/,r,

uniformly m z (ZZ Z and t G [—T, T\ for I7I > m.
For example // may be a very general Hamiltonian including time-dependent magnetic fields

or non Euclidean metrics.
Furthermore it is assumed that the classical and quantum evolutions exist from time zero to
time t for t in some interval ] — T, T[. More precisely :

(A.l) Given some a (f/0,770) é R2n, there exists a positive T such that the classical
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Hamilton's equations :

<lt -g-(qt,Pt,t),
Odll

Vt —77-((h,lh,t),

have a unique solution starting from initial data (qo,Po) for any t €] — T,T[. We call

at (Qt,Pt) flic phase space point reached at time /. by the so defined classical flow, starting
from a0 ct.

(A.2) There exists a unique quantum propagator {U(t, s), (t, s) G] — T, T[2} satisfying some
technical condiditions (see [38]). When H is time independent we only ask // to be essentially
self-adjoint.

Theorem 6.1 ([38]) Suppose that assumptions (A.0) to (A.2) on the quantum (6.1) and the
classical (6.2) system, hold. Then for all integers £ > 1, J > 1, for every real number k > 0,
there exists F > 0 such that for every finite family of complex numbers {cfl, /t G IN ", |//| <
J} there exist cv(t, ft) for u G PJ", \v\ < 3(£ - 1) + J, such that for 0 < ft + \fh6(a, t) < k,

the following L2-norm estimate holds, uniformly m \t\ < T,

(J \ J+i(i-\)
\\U(t,0) [Y Cj^j,« - e"'"* Y c,,(t.,ft)<lv(Z)||< (6.6)

Vl7l=0 / W=0

FKHxPt(a,t,h)( Y M2)'72- (6-7)
0<ß<J

Moreover the coefficients clt(t,h) arc polynomials in vft whose coefficients arc given by the

evolution of the classical system (6.2).

Remark 6.2 Without control of the consiants, this kind of results appeared many times in
the literature (see [119] and the references there, concerning Gaussian beams, [66, 67, 111,

12])-
This propagation theorem for coherent states can be used to prove semi-classical trace formulas

and can replace the W.K.B method explained in section 4 (see [39]). The reader can find
more details in the references concerning many works related to this subject. The starting
point for the use of coherent states to prove trace asymptotic formula is the following

tr (U(t)A) (2ixTi)-n f (U(t)Âtpa, tpa)da,

where U(t) is the propagator for a time independent Hamiltonian and A G <S(R2").
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Propagation from an equilibrium point
Let us assume that H is time independent and at a, Vt G R. If a is a stable equilibrium

point then it is easily shown that there exists C > 0 such that

Pe(a,t,h)<C\t\eh(/2. (6.8)

It then follows that semi-classical approximation is valid for

\t\ < ftE~1/2, Ve > 0.

Let us assume now that ev is an unstable equilibrium point. Then it exists A > 0

(Lyapounov exponent) such that
0(a,t)<em.

Hence it follows that semi-classical approximation is valid for

I*l<7l0g(i), V7<^-

More generally the last conclusion still holds for every time independent Hamiltonian and
for a in a compact energy shell (i.e H~l(H(a)) is compact).
In the case of an unstable equilibrium point a it is possible to measure semi-classically the
spreading starting with a wave packet localized at a. For simplicity we suppose here 71 1

(see [38] for details and more general results). Let us define the mean value localization of
the wave packet at time t,

S(t) l(W(-a)y!,(t), Ko\V(-a)tP(t)), (6-9)

with p(t) U(t,0)tpn and K0 |(-ft2A + |x|2). The Hessian matrix here is H"(a)
The instability assumption is b2 > ac; A > 1 and j- denote the Lyapounov exponents

of JH"(a) with
'

0
'' '~~ '

-11 0

Theorem 6.3 ([38]) With the above assumptions, for c' > e small enough, we have

s(t) - s(0) ^Zj^ sinh2(Ai) + 0(Tf ); (0.10)

the estimate: is uniform for

This theorem shows that the spreading of a wave packet localized at an unstable equilibrium
point is exponentially fast, the exponent depending on the Lyapounov instability coefficient.
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