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Mathematical Theory of N-Body Quantum Systems !

By W. Hunziker

Institut fiir Theoretische Physik
ETH-Hénggerberg, CH-8093 Ziirich

Abstract. A short history of the subject is given at the end of the paper. The main part of the

notes describes a new proof of asymptotic completeness for short-range forces, based on joint work
with IL.M. Sigal [21].

1 N-Body Systems

A system of N particles in IR* with pair-interactions is described by the Hamiltonian

N 2

- g o 1
H = ka+2‘ 1) (1)

with Vig(z) — 0 as |z| — oco. From this standard case we extract the following basic notions:

Configuration Space

X is a Euclidean space with salar product z - 3. In the case (1):

X = {p=i..on8)| ot ]RB;ZT!’L;CIA- =0}y (2)

el = ka(rk-yk)ns.

!Lecture given at the Ascona Conference on Mathematical Results in Quantum Mechanics, June 1996.
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T3 = %j? is the classical kinetic energy, p = & the momentum conjugate to z. In quantum

mechanics,

1
H = Epz +V(z) on L*X), (3)
where p = —iV and p® = —A have the usual form in cartesian coordinates (not particle
coordinates) of X.
Channels
In X there is a distinguished, finite lattice L of subspaces a,b, ... (channels). L is closed

under intersections and contains at least a = {0} and @ = X. In the case (1) the channels
correspond to all partitions of (1.../N) into clusters. For example if N = 4:

partition channel
(4)
(12)(34) +— a= {2z, =22; T3 = 34} .
In general the partial ordering of L is defined by
a<be—aCb;a#hb. (5)
For each a € L there is an orthogonal decomposition:
X=a®a' : =1, +2°. (6)

This corresponds to the introduction of C M (center of mass) coordinates, e.g. in the example

(4):

1 3
1
(xd
h CMt1234) )
CMb2) / * =41 CM(34)

{XG)»] :(x 0)2

z :

(Fig. 1)
The relation ! 1 !
'2‘192 = 5(?«:)2 + E(PG)?'
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expresses the familiar decomposition of the kinetic energy into C M-parts and internal parts
with respect to the clusters.

Intercluster Distance

The basic feature of N-body systems is that they can split into widely separated, almost
independent clusters. As a measure of the separation we might use the minimal distance
da(z) in R? of the clusters, e.g.

do(z) = min |z; — 2]
i€ (12);k € (34) (7)

in the example (4). However, it is more consistent (and more convenient) to express the
separation in terms of the geometry of X. Some reflection shows that

do(z) =0¢—z€b; bNa<a.

(Fig. 2)

Fig. 2 shows the unit sphere in X, intersected by two channels ¢, b with bNa = ¢ < a. This
leads to the definition of the intercluster distance

[#le = min [a%; a>{0}. (8)

For the example (4) one finds

1/2

< ;7T

|zl = min —— |z; — x| .
1e(12);ke(34) \ M; + M)

Hamiltonians

For each a > {0} the potential V' (z) has a unique decomposition
V(z) = V2% + L(z); (9)
I(z) — 0 as |z]|, = o0, (10)
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in particular: I, =V for a = X. For a = {0} we define I, = 0. In the example (4):
VE=Vie+Vags Lo=Vig+ Vig + Vag + Vau.

Corresponding to L*(X) = L*(a) ® L?(a*) we write:

H = H,+I,;
1

Ho = ;(pa)’®@1+1@H"; (11)
1

H* = §(p“)2+V“(m“) on L*(at).

H, describes the dynamics of a system of non-interacting clusters.

Conditions on V(z)

Some global conditions on V' (z) are required to make H (and in fact all H®) selfadjoint on
convenient domains and bounded from below. An essential postulate is that p? is bounded
(or form-bounded) relative to H. Since this is amply covered in the literature on Schrodinger
operators [30] we will not, as a rule, state such conditions in our theorems. For readers not
familiar with the subject we mention that in the case (1) it suffices that Vit(-) € L} (R?);
Vik(z) — 0 as |z| — oo [23]. All further assumptions on V' (z) will only concern the behavior

of I,(z) as |z|, = co. These conditions will be stated explicitly.

Induction Principle

As a result we now have a definition of N-body systems involving only 3 elements:

— A configuration space X
— A lattice L of channels (12)
— Conditions on I,(z).

In this sense each Hamiltonian H® also describes a N-body system with reduced configuration
space a*, with channels bNa*, b > a, and with corresponding intercluster potentials I,(z*).
Any proposition P derived from (12) can therefore be established by induction on the lattice
L. To begin with, P is checked in the trivial case a = X : H® = 0 on L*({0}) = C. Then
P is proved for a = {0} : H®* = H, under the induction hypothesis that P holds for any H*
with a > {0}.
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2 Asymptotic Completeness

In the case of short-range potentials

I(z) = O (Jz],*); n>1 (|zla = o0) (13)
we define outgoing scattering states 7 by the asymptotic cendition

1Ht —1Hat

UJW e, (t—00); @ € L*(a) @ Hp(H"). (14)

Here Hp(H?") is the subspace spanned by the eigenvectors of H®. Each term in the sum (14)
describes a motion of non-interacting, bound clusters. We note that (14) holds trivially for
Y € Hp(H) with:

Plo) = =1Y; we=0 for a> {0} .

The existence of scattering states for given {¢,} is well known [30]. Our task is to prove
completeness:

Theorem 1 (Asymptotic Completeness). Suppose, in addition to (18), that
Vi(z) = O(|z;*); n>1. (15)

Then every ¢ € L*(X) is a scattering state in the sense of (14).

A proof of this result is given in the following sections. Since the case of ¢ € Hp(H) is
trivial, and since the subspace of scattering states is known to be closed, it suffices to prove
that

ity e~iflatyy, (16)

[HI a>{0)
for a set of ¢ which is dense in the continuous spectral subspace Hco(H) = Hp{H)"* of
H. We will first prove the weaker statement that (16) is valid for some ¢, € L*(X): this

is called asymptotic clustering. Then we invoke the induction hypothesis that asymptotic
completeness holds for the systems described by H®, a > {0}. This can be written as

e~ Hat iy W e Mty pw € L2(b) @ Hp(HY),
b>

which is trivially satisfied for a = X . Inserting this into (16) gives

—1Ht —1Hpt
€ 'lp i b § Pab »

b>0 0}<a<b

i.e. asymptotic completeness for H.
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3 Yafaev Functions and the Basic Propagation Estimate

Propagation Observables

The propagation of 1, = exp(—tHt)1 in phase space can be described in terms of expectation
values

(Pede = (Vr, detpe) (17)

of suitable (generally time dependent) observables ¢;(z,p). From

1
% by = (Do) Doy = i[H, d) + Oppy (18)

and from estimates of D;¢, we can deduce growth properties of (¢;); as t = co. Usually this
analysis is restricted to finite energy shells A C IR, i.e. to spectral subspaces

Ha(H) = Ran(Ea(H)), (19)

where Fa(H) is the spectral projection of H corresponding to A. As a first example we
discuss Mourre’s inequality, which is basic for our proof of Theorem 1. Let S C R be the
set of thresholds and eigenvalues of H, i.e.

5= U {eigenvalues of H}. (20)

acl

By Mourre’s Theorem [6] S is closed and countable. Since S contains the eigenvalues of
H® = H it follows that

Hs(H) =Hp(H).
Therefore

Hps(H) =He(H) (21)

is the continuous spectral subspace of H. Also part of Mourre’s Theorem is the following
inequality. Let £ € R\ S be in the continuous spectrum o¢(H). Then there exists an open
interval A 3 E and a strictly positive © such that

Ex(H)i[H, A|EA(H) > OEA(H), (22)

where
A = %Dtm‘?:%(p-ﬂm-p); (23)
i|H,A) = DA=p’—z-VV(z). (24)

Therefore Mourre’s inequality (22) implies

(), > Ot* +0(t) (t — o0)
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for a dense set of states in Ha(H). It is evident from (24) that this result rests on some
global conditions on the forces VV (z). However, there is a variant of Mourre’s Theorem |17,
36] which involves only the tails of the forces at large distances:

Lemma 2 (Mourre’s inequality for z?) Suppose that for all a > {0}

lim z-VI,(z)=0. (25)

|T|a—00

Let E € oc(H), E € S. Then there is an open interval A 3 E and a strictly positive © such
that

(%), > O1* + O(t) (t — o0) (26)
for all ¢ € HaA(H) N D(|z|).

Remark. The states 1 of this type (for all possible ) span a dense set in the continuous
spectral subspace He(H). Therefore it will be sufficient to derive (16) from the much weaker
statement (26). This requires the construction of more sophisticated propagation observables
which are specially adapted to the lattice L of channels.

Yafaev-Functions

Following Yafaev |38] we construct a function g on X whose properties are summarized in
Lemma 3 below. Let o be a positive, decreasing function on L:

O'{g}>0'a>0'b>0')(:1 (27)
for {0} < a < b < X, to be adjusted in the course of the construction. Let
2 b = { oy (a={0});
galza| (a > {0}).
Then the prototype of g(z) is given by

g(z,0) = max Falz) . (28)

A radial section of g(z,0) is shown in Fig. 3 for a direction z € a.
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%0

| X1

(Fig. 3)

g(z,0) is convex, constant on some compact set containing the ball |z| < 1, and homogeneous
of degree 1 in the complement of this set. We decompose g(z, ¢) into maximal pieces:

a\Z if o) = yO) 3
o(2,0) = 3 0a(5,); ga(z,a):{“) i Julz) = o(a,0)

ac€l

. (29)
0 otherwise .

The piece g(oj(z, o) has compact support on which it is constant. The pieces g,(z, o) for
a > {0} are homogeneous of degree 1 on conical supports whose intersection with a sphere
|z| = R > oyg) is shown in Fig. 4. This figure corresponds to Fig. 2 and serves to explain
the choice of o. Suppose first that o, = 0, = 0. = 1. Then Fig. 4 reduces to Fig. 2 since
0.|ze| = |z| exactly if z € a, etc. We now increase o,, 0, by arbitrary small amounts. Then
the supports of g,, g, broaden into narrow belts shown in Fig. 4. Then we increase o, to
0. > 0g,0, SO that supp (g. grows to a disc covering the intersection of the two belts. This
indicates the general construction scheme for the function ¢ on L which can be carried out
analytically [20, 38]. Fig. 4, together with the definition (8) of the intercluster distance,
suggests what can be achieved: There is a (largely arbitrary) choice of o such that

|zla > Alz| on  supp(ga) (30)
for some A > 0. Moreover, since g,(z,0) is, on its support, a function of z,,

Vg(z,0) €a on supp(g.) (31)
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SUER 19

e,

SUpp(gc) %
supp(g,)

(Fig. 4)

except at boundary points, where Vg(z,0) is discontinious. This discontinuity is removed by
a regularization g(z,o) — g(x) which preserves convexity:

g(z) = /g(:v, 1) H 8(jta — 04)ditq , (32)
acl

where 0 < § € C°(R) is a regularization of the Dirac distribution with sufficiently narrow
support. The same regularization is applied to g,(z,0), so that

9(z) =) ga(2). (33)

acL

The effect of this regularization on Fig. 4 is that the boundaries are slightly smeared, but
away from these strips the functional form of g(z) remains the same. For further reference
we list the resulting properties of g and g,:

Lemma 3 (Properties of g)

(i) g is smooth, convez, and homogeneous of degree 1 outside some ball: |z| > Rs.
(ii) g(z) = g(0) wnside some ball: |z| < R;.
(iii) For any z € supp(Vg) there exists a € L, a > {0}, such that

Vg(z) €a and |z|, > Alz|. (34)
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To explain (iii), consider the boundary point P shown in Fig. 4. There the intercluster
distances with respect to a and X are both strictly positive, and after regularization we
certainly have Vg(I’) € X. The functions g, have corresponding properties ezcept convexity:

Lemma 4 (Properties of g,)

(i) g, is smooth, and homogeneous of degree 1 for |z| > Rs.

(ii) g{oy has compact support in |z| < R,. For a > {0}, g, is supported in |v| > R, and
|z|a > Alz| on supp(ga).

(iii) Vg, is supported in |z| > Ry. For any x € supp(Vg,) there exists b € L, b > {0} such
that
Vg, €b and |z|p > Nz|. (35)

The Basic Propagation Estimate

All our propagation observables are derived from
qz) =tg(t’z), 0<d<1 (36)
for t > 0. By Lemma 3 g¢; 1s smooth and convex in z,

= { Fl e =
gi\xr) = g() (|$|>t‘5122)’

and, since g has bounded derivatives

* gq(z) = O @01k (37)
I qe(z) = O

as t — oo, uniformly in 2. For any z it follows from (9) that
Vg (z) - VV(z) = Vg(z) - VV(z*) + Vg (z) - VI, (2)

for some a > {0} depending on x. By (34) the first term vanishes since Vg,(z) € a. In
the second term Vg,(z) is bounded with support in |z| > 'R, where |z|, > t°AR; and
therefore, by (15), VI,(z) = 0(t7°*) as t — oo, uniformly in z. As a result,

Vg, - VV|| < const. ¢~ (38)

for sufficiently large £. Now we compute

Digi = =(Vgi-p+p-Vag)+ 0g;

b | —

Tt

" L i 2
Di(v —289) = pag/p— ZAZQL ~ Vg VV - 8}g,. (39)
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The first term in (39) denotes the Hessian

pgip = >0 (40)

I T e

since g;(x) is convex. The following 3 terms are of order =%, t7#° #9=2 as t — oo, uniformly
in z. Since p > 1 we can now fix ¢ such that these terms are integrable in t, i.e.

0o, p>1;385 1,

Lemma 5 (Basic Propagation Estimate)

00
/ dt{pg'p); < const. (H + c)g, (41)
]

where ¢ 1s some constant to make H + ¢ > 1.
Proof. For any state ¢ in the form domain of I + ¢, (39) gives

T
/ dt{p g/p)e < (1 — 2(’)¢gt)t|f + const. < const. (H + ¢)o
J1

because —20,9,)| < const. (I +¢), uniformly in ¢. Since the integrand (p g;'p), is positive,
the limit 7" — oo exists. O

The Asymptotic Observable vy
Corresponding to (33) we split

g = Zgat i 9au(z) = 10g.(t7°1) ; (42)

M= Z')’a‘t N I)l(.(]rl,t) .
a

Lemma 6 » _ |
y:=s— lim ey e and 7, :=s — Jlim ey, e !
exist on D(H). Moreover,
[’Y’ -H] = ['Yu’ .H] =0; (43)
Yo = 0 = o= Z Ya - (44)

a>{0}
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Proof.
Step 1: We first discuss .

{00

lim ey, e ™ Y H + ¢) " = lim (H 4 ¢) Y2 ey, e Y (H + ¢)7/%) = lim ¢,  (45)
t—o00 t—o0

if this limit exists. This follows by expressing (H +¢)~'/? in terms of the resolvent (z — H)™!
(e.g. using a contour integral), and then from the fact that [y, (z — H)™'] — 0 in norm as
i —¥00.

Step 2: In ¢y we can replace
Y 1~ 2000 =W
since dyg, ~ t°~' (t = o0). Then
o0
Y(H+c)™ ' = ¢ +f dt 9y ;
1
atcpt = (I.{ + C)_I/Z Ci”t])t(’?t) (3_”“(]] + ())_1/2'(/) 5
provided that 0y, is integrable. By (39)
Dy(v) =p .’]??7
up to integrable terms O(t~!'7¢) which can be dropped. Factorizing
pg/p=B:; B, =B}

we can use the Schwarz inequality:

L2
/ dt a,g(,ﬁg
J 1y

t2 s 5 ‘ .
sup (/ di || B, c_”“(ﬂ + c)wl/zvll ||Btc"m(H + (:)_1/2<p||)

llvll=1 \Jt,

2

= sup
[[v]l=1

2

oty
/ (’U$ at@t)

Ly

IA

INA

to ) to )
(sup / dt || B e (H + c)“1/2U||2) X / dt || B e M (H + ¢)7'?y)?.
t) th

llvll=1

By Lemma 5 the first factor is bounded uniformly in ¢; 5, and the second factor vanishes as
t12 — oo. This proves the existence of .

Step 3: The existence of v, is proved in the same way, with one essential difference: gq.
shares all essential properties of g, ezcept convezity, so p g, p is not positive. However, it is
possible to construct a modified Yafaev function g, (by choosing a slightly different o [20])
so that

igg,: .8 flf C
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Then we can split
pg::’L p=Af — A/

into positive and negative parts satisfying
0<AF <pigip.

Treating the contributions from AF separately, we factorize A* = (B*)? and use the prop-
agation estimate (41) for g,.

Step 4: [e75 ] = 0 follows from

c—i[ls ills

ye''' — y = s — lim M
t—o00

Yisgn = i) et =0

since (Y45 — 7) — 0 strongly on D(H) for fixed s and ¢t — oco. The same argument applies
to v¥,.

Step 5: ~yqoy = 0. Since 7oy exists as a strong limit,

1T i _ L
Yoy =S — tll)n; T/I dt """ Dygioy e = T(Q{o},'r — gioy,1) =0,
because gy, = O(T?). O
Asymptotic Clustering
Lemma 7 (Deift-Simon Wave Operators)
W, = s — lim e*felq, g " (406)

t—o0

exists on D(H) for all a € L.

Proof. (46) is proved as the existence of v,, with the following modifications. In step 1,
(46) is replaced by _ _
s~ lion (B + c)'/? etflaty, e H + ¢) 712,

using that
(HoYVar — Yo H)(H 4 ¢) ™
= ([H, Yat) = LVar)(H+ )t — 0
in norm as t — oo. The reason is that

|z]o > t°AR;  on supp (Vga,) (47)
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so that ||1,7a,:(H +¢)"'/2|] = 0 as t — co. In step 2, d,p, contains the additional term
(Ho + ¢) V2 eitet 5, e (H 4 ¢)~ V2,
Here (and only here!) we use the short-range condition (13), which together with (47) gives
1aFa (H + )72 = O (=)

as t — oo. O

Lemma 8 (Asymptotic Clustering) Let 1 € Ran (y) : ¥ = vp, ¢ € D(H). Then

e ity — ¢~ Hlat W,p. (48)

1l > (0)

Proof. We write u(t) ~ v(t) for |[u(t) — v(t)|| = 0 as t — co. By Lemma 6

= pr Yy ey

a>{0} a>{0}
Using Lemma 7 we obtain
e—iHL ) o Z gmiat giflaty | o=itlt ) o 2 : el W .
a>{0} a>{0}

To complete the proof of Theorem 1 it remains to show that Ran(y) is dense in H.(H).
Since vy commutes with H, it reduces to a bounded selfadjoint operator Ha(H) — Ha(H)
for any finite interval A. By the remark following Lemma 2 it therefore suffices to prove:

Lemma 9 (Mourre’s inequality for ) Let A be a finite, open interval for which (26) holds.
Then

v >0 on Ha(H), (49)
so that v maps Ha(H) onto itself.

Proof. We consider the Heisenberg observables

y(t) = eiffty, e7 L. (1) = eifltg, ¢l g2(4) = ¢ifiy? gmiHt

v(t) and g(t) are defined as operators on the domain D(|x|)ND(H), which is invariant under
exp(—iHt); z2(t) is defined as a form on this domain. Since y(t) = Dyg(t),

TORSTOREY ERIORE (50)
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as t = oo (Lemma 6). Next, we note that g(z) > |x| implies g;(z) > |z| and therefore
(1) > 22(1) (51)

Now let f € C§°(A). Since f is smooth, f(H) maps D(|z|) into itself, and Mourre’s inequality
(26) gives
fH)2* () f(H) > (08 + O(1)) f*(H) (52)

as t — 00, in form sense on D(]z|). Combining (50-52) we obtain:
(1)
12

< lim inf g°(1) = 4
< Jimin f(H) 7 SUH) = f(H)y" f(H)

OffH) < lim inf f (H) f(H)

for all f € C§°(A), which implies (49). O

A Short History

1926 Schrodinger: The time-dependent Schrodinger equation [32].

1932 v. Neumann: Hilbert space formulation of quantum mechanics [29)].

1951 Kato: H = H* > —oo: Existence of dynamics and stability of N-body systems [23].
1959 Hack: Existence of scattering states (Wave operators) [18].

1960 Zhislin: Determination of the essential spectrum of H [39].

1963 Faddeev: Complete discussion of 3-body systems by stationary methods (Faddeev-

equations) [14]. Later generalized to all N [19]. Limited by spectral conditions for
subsystems.

1969 Ruelle: Ergodic space-time characterisation of bound states vs. continuum states
31, 2.

1970 Efimov: 3-body systems with short-range potentials can have infinitely many bound
states [10]. First mathematical treatment in [37].

1971 Lavine: Asymptotic completeness of N-body systems with repulsive forces |24, 25].
A time-dependent proof using positive commutators.

1971 Balslev, Combes: Spectral analysis of N-body Hamiltonians with dilation-analytic
potentials, revealing the nature of the essential spectrum and of resonances. Absence
of singular continuous spectrum |3].

1972 Iorio, O’Carrol: Asymptotic completeness of N-body systems in the limit of weak
potentials [22].
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1973

1977

1978

1981

1982

1982

1987

1993

O’Connor: Isotropic exponential bounds for N-body eigenfunctions [5]. Later ex-
tended in [4] to embedded eigenvalues in the dilation-analytic case, where positive
eigenvalues are excluded.

The advent of geometric (configuration space) methods of spectral analysis and scat-
tering theory, e.g. (7, 8, 11, 35].

V. Enss: The greatly inspiring proof of asymptotic completeness for N = 2, using
only Ruelle’s theorem and free wave packets [12]. The turning point to phase-space
analysis. Later extended to NV = 3 [13].

Mourre: Mourre’s inequality for N = 3 [26], soon extended to all N [27]. An in-

finitesimal version of dilation-analyticity with similar powers. Local decay estimates
[27].

Agmon: Anisotropic WKB-type bounds on eigenfunctions: Agmon metric [1]. The
concise form of earlier results [8].

Froese, Herbst: Exponential bounds for eigenfunctions belonging to embedded eigen-
values. Absence of positive eigenvalues [15]. Later supplemented in [28]. Fruits of
Mourre’s inequality.

Sigal, Soffer: First general proof of asymptotic completeness for short-range po-
tentials, using local decay and phase-space propagation estimates [33]. Important
simplifications later in [16, 38|.

Derezinski: Asymptotic completeness for long-range potentials falling off like r™#,
p > /3 —1[9]. Influenced by preliminary results of Sigal and Soffer who give an
independent proof [34].
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