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Mathematical Theory of iV-Body Quantum Systems

By W. Hunziker

Institut für Theoretische Physik
ETH-Hönggerberg, CH-8093 Zürich

Abstract. A short history of the subject is given at the end of the paper. The main part of the
notes describes a new proof of asymptotic completeness for short-range forces, based on ;oint work
with LM. Sigal [21].

1 A^-Body Systems

A system of N particles in 1113 with pair-interactions is described by the Hamiltonian

"=ték+ì£y*ixi-x^ (i)
fc=l K Kk

with Vik(x) —¥ 0 as \x\ —> oo. From tins standard case we extract the following basic notions:

Configuration Space

X is a Euclidean space with salar product x ¦ y. In the case (1):

A' {x (x]...xN)\xk GR3;^\u,.T, 0} ; (2)

x-y ^2mk(xk-yk)ni

'Lecture given at the Ascona Conference on Mathematical Results in Quantum Mechanics, Jure 1996.
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\x-x= \x2 is the classical kinetic energy, p x the momentum conjugate to x. In quantum
mechanics,

H=l-p2 + V{x) on L2(X),

where p -zV and p2 -A have the usual form in cartesian coordinates (not particle
coordinates) of X.

(3)

Channels

In X there is a distinguished, finite lattice L of subspaces a, b,... (channels). L is closed
under intersections and contains at least a {0} and a X. In the case (1) the channels
correspond to all partitions of (1... N) into clusters. For example if N 4:

partition channel

(12)(34) <—> a {x\xx =x2; x3 x4}

In general the partial ordering of L is defined by

a < b <—> a C b ; a / 6.

For each a 6 L there is an orthogonal decomposition:

A' a © aL : x xa + xa

(4)

(5)

(C)

This corresponds to the introduction of CM (center of mass) coordinates, e.g. in the example
(4):

CMfl2)

l*%
CM (1234)

ix°h=(xal

3
o

M CM (34)

o
L

(Fig- 1)

The relation

\v> \iv>? a\w?
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expresses the familiar decomposition of the kinetic energy into CM-parts and internal parts
with respect to the clusters.

Intercluster Distance

The basic feature of A/-body systems is that they can split into widely separated, almost
independent clusters. As a measure of the separation we might use the minimal distance
da(x) in R3 of the clusters, e.g.

da(x) min \x,-xk\
i € (12);* 6 (34) [>

in the example (4). However, it is more consistent (and more convenient) to express the

separation in terms of the geometry of X. Some reflection shows that

da(x) 0 <—> x e b ; bC\a < a.

~ 1*1«, - 0

(Fig. 2)

Fig. 2 shows the unit sphere in X, intersected by two channels a,6 with bHa c < a. This
leads to the definition of the intercluster distance

\x\a min \xb\; a > {0} (8)
òfìa<a

For the example (4) one finds

/ ™ \ 1/2

\x\a- min \xi-xk\.
ie(i2);fce(34) V nii + mkJ

Hamiltonians

For each a > {0} the potential V{x) has a unique decomposition

V(x) V(xa) + Ia(x) ; (9)

h{x) -> 0 as |x|a->co, (10)



Hunziker 29

in particular: Ia V for a X. For a {0} we define Ia 0. In the example (4):

Va Vu + V3i ; Ia Vu + Vu + V23 + V24

Corresponding to L2(X) L2(a) ® L2(a±) we write:

H Ha + Ia;

Ha \{paf®l + l®Ha; (11)

Ha Upa)2 + Va{xa) on L2{aL).

Ha describes the dynamics of a system of non-interacting clusters.

Conditions on V(x)

Some global conditions on V(x) are required to make H (and in fact all H") selfadjoint on
convenient domains and bounded from below. An essential postulate is that p2 is bounded
(or form-bounded) relative to H. Since this is amply covered in the literature on Schrödinger
operators [30] we will not, as a rule, state such conditions in our theorems. For readers not
familiar with the subject wc mention that in the case (1) it suffices that Vik{-) € L20C(R3);

V,k(x) —> 0 as |x| —> oo [23]. All further assumptions on V(x) will only concern the behavior
of Ia{x) as |a;|a —» oo. These conditions will be stated explicitly.

Induction Principle

As a result we now have a definition of A/-body systems involving only 3 elements:

— A configuration space X
— A lattice L of channels (12)

— Conditions on Ia{x).

In this sense each Hamiltonian Ha also describes a N-body system with reduced configuration
space a with channels bC\aL, b > a, and with corresponding intercluster potentials h{xa).
Any proposition P derived from (12) can therefore be established by induction on the lattice
L. To begin with, P is checked in the trivial case a X : Ha 0 on L2({0}) (D. Then
P is proved for a {0} : Ha H, under the induction hypothesis that P holds for any Ha

with a > {0}.
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2 Asymptotic Completeness

In the case of short-range potentials

la(x) 0(\x\^); p>l (|x|0->oo) (13)

we define outgoing scattering states tp by the asymptotic condition

eii"^£e_i"aVa (t->oo); Va(zL2(a)®Hn(Ha). (14)

Here "Hß(//a) is the subspace spanned by the eigenvectors of//". Each term in the sum (14)
describes a motion of non-interacting, bound clusters. We note that (14) holds trivially for
tp e Hb{H) with:

</>{o} =ip] </><¦ 0 for a > {0}

The existence of scattering states for given {tpa} is well known [30]. Our task is to prove
comp/e^eriess:

Theorem 1 (Asymptotic Completeness). Suppose, in addition to (13), that

VIa(x) 0(\x\:»); ,t>l. (15)

Then every tp G L2(X) is a scattering state in the sense of (14)-

A proof of this result is given in the following sections. Since the case ol tp £ TLn{H) is

trivial, and since the subspace of scattering states is known to be closed, it suffices to prove
that

e"'^^Ee"!/,°Va (16)

a>{0)

for a set of tp which is dense in the continuous spectra! subspace TicyH) TLu{H)L of
H. We will first prove the weaker statement that (16) is valid for some tpa G L2(X): this
is called asymptotic clustering. Then we invoke the induction hypothesis that asymptotic
completeness holds for the systems described by Ha, a > {0}. This can be written as

e""°Va—>5>-H»W; vabeL2(b)®HB(Hb),
b>a

which is trivially satisfied for a X. Inserting this into (16) gives

b>0 {0}<a<6

i.e. asymptotic completeness for H.
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3 Yafaev Functions and the Basic Propagation Estimate

Propagation Observables

The propagation of ipt exp(—iHt)ip in phase space can be described in terms of expectation
values

(<t>t)t (A,Mt) (17)

of suitable (generally time dependent) observables cpt(x,p). From

^t(<Pt)t (Dt<pt)l; Dl4>t i[lI,<p,} + dtePt (18)

and from estimates of Dtcpt we can deduce growth properties of (ept)t as t —> oo. Usually this
analysis is restricted to finite energy shells A C R, i.e. to spectral subspaces

¦HA(/f)=Ran(£A(/f)), (19)

where E&(H) is the spectral projection of H corresponding to A. As a first example we

discuss Mourre's inequality, which is basic for our proof of Theorem 1. Let S C ÏÏ1 be the
set of thresholds and eigenvalues of II, i.e.

S [j {eigenvalues of Ha} (20)

aeL

By Mourre's Theorem [6] S is closed and countable. Since S contains the eigenvalues of
7/<°l // it follows that

HS(H) Hb(H)

Therefore

rlR\s{H)=Uc{H) (21)

is the continuous spectral subspace of H. Also part of Mourre's Theorem is the following
inequality. Let E e R\ S be in the continuous spectrum ac{H). Then there exists an open
interval A 3 E and a strictly positive 0 such that

EA(H)i[H,A]EA{H) > QEA(H), (22)

where

A 1-Dtx2=l-(p-x + x-p); (23)

i[H,A] DtA=p2-x-VV{x). (24)

Therefore Mourre's inequality (22) implies

(x2)t > et2 + o(t) {t^oo)
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for a dense set of states in ri^(II). It is evident from (24) that this result rests on some
global conditions on the forces W(x). However, there is a variant of Mourre's Theorem [17,
36] which involves only the tails of the forces at large distances:

Lemma 2 (Mourre's inequality for x2) Suppose that for all a > {0}

lim x-VIa{x) 0. (25)
\x\a—>00

Let E G oc{H), E ef_ S. Then there is an open interval A 3 E and a strictly positive 0 such
that

(x2)t > 0i2 + 0{t) (t -+ oo) (26)

for all 4>e HA{H) n D{\x\).

Remark. The states if of this type (for all possible E) span a dense set in the continuous
spectral subspace Tic{H). Therefore it will be sufficient to derive (16) from the much weaker

statement (26). This requires the construction of more sophisticated propagation observables
which are specially adapted to the lattice L of channels.

Yafaev-Functions

Following Yafaev |38] we construct a function g on X whose properties are summarized in
Lemma 3 below. Let a be a positive, decreasing function on L:

C{o) > oa> ob> ox 1 (27)

for {0} < a < b < X, to be adjusted in the course of the construction. Let

o-jo} (a {0});
aa\xa\ (a > {0})

Then the prototype of g(x) is given by

g{x,a) max/a(x). (28)

A radial section of g(x, a) is shown in Fig. 3 for a direction x € a.
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g

°alxal

y<
X XŒ

a,(0)

(Fig. 3)

g(x, a) is convex, constant on some compact set containing the ball \x\ < 1, and homogeneous
of degree 1 in the complement of this set. We decompose g{x,a) into maximal pieces:

g(x,a) Y^9a{x,a); ga{x,a)
o6i

fa(x) if fa{x) =g(x,a);
0 otherwise.

(29)

The piece g^(x,a) has compact support on which it is constant. The pieces ga(x,a) for
a > {0} are homogeneous of degree 1 on conical supports whose intersection with a sphere
\x\ R > Ufo} is shown in Fig. 4. This figure corresponds to Fig. 2 and serves to explain
the choice of a. Suppose first that aa ab ac 1. Then Fig. 4 reduces to Fig. 2 since

Oa\xa\ — \x\ exactly if x 6 a, etc. We now increase aa,ai, by arbitrary small amounts. Then
the supports of ga,gb broaden into narrow belts shown in Fig. 4. Then we increase oc to
<7C > aa,ab, so that supp (gc grows to a disc covering the intersection of the two belts. This
indicates the general construction scheme for the function a on L which can be carried out
analytically [20, 38]. Fig. 4, together with the definition (8) of the intercluster distance,
suggests what can be achieved: There is a (largely arbitrary) choice of a such that

|i|0 > A|x| on supp(s„) (30)

for some A > 0. Moreover, since ga{x,a) is, on its support, a function of xa,

Vg{x,a)ea on supp(ffa) (31)
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SUpp(g

upp/

SUPP(gb)

supp(g

(Fig. 4)

except at boundary points, where Vg(x,a) is discontinious. This discontinuity is removed by
a regularization g{x,a) —? g(x) which preserves convexity:

9{x) / g{x, p.) Y[ (K/'a - Oa)dßa (32)

where 0 < ô £ C%°(R) is a regularization of the Dirac distribution with sufficiently narrow
support. The same regularization is applied to ga(x,a), so that

9(x) Y^9A!x) (33)

ail.

The effect of this regularization on Fig. 4 is that the boundaries are slightly smeared, but
away from these strips the functional form of g(x) remains the same. For further reference

wc list the resulting properties of g and ga:

Lemma 3 (Properties of g)

(i) g is smooth, convex, and homogeneous of degree 1 outside some, bedl: \x\ > R2.

(ii) g(x) g(0) inside some ball: \x\ < R\.

(iii) For any x 6 supp(V(7) there exists a G L, a > {0}, such that

Vg(x) e a and |:r|a > A|i|. (34)
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To explain (iii), consider the boundary point P shown in Fig. 4. There the intercluster
distances with respect to a and X are both strictly positive, and after regularization we
certainly have Vg(P) (Z X. The functions ga have corresponding properties except convexity:

Lemma 4 (Properties of ga)

(i) .(/„ is smooth, and homogeneous of degree 1 for \x\ > R2.

(ii) <7{o} has compact support in \.r\ < R2. For a > {0}, ga is supported in \x\ > R\, and

|.r|„ > A|.t| on supp(5„).

(iii) Vça is supported in \x\ > R^. For any x € supp(Vçn) there exists b € L, b > {0} such

that
Vga e b and \x\b > X\x\. (35)

The Basic Propagation Estimate

All our propagation observables are derived from

9t(x) tsg(rsx), 0<6<1 (36)

for / > 0. By Lemma 3 gt is smooth and convex in x,

tsg(0) (\x\<tiRl);
¦'""1 ' g(x) (\x\>tsR2),

and, since g has bounded derivatives

dkl9t(x) 0(t5^W) (37)

dktgt{x) 0(ts~k)

as t —> oo, uniformly in x. For any x it follows from (9) that

Vgt(x) ¦ VV(x) Vgt(x) ¦ VVa(x«) + VeM(r) ¦ VIn(x)

for some a > {0} depending on x. By (34) the first term vanishes since Vgt{x) € a. In
the second term Vgt(x) is bounded with support in |.r| > IsR\, where \x\u > tsXR]_ and

therefore, by (15), V/Q(x) 0(t~6'') as t —> oo, uniformly in x. As a result,

||Vp( ¦ W|| < const, r0'1 (38)

for sufficiently large /. Now we compute

Tt Dtgt =-{Vg,-p + pVgt)+dtgt;

Dt{lt-2digi) pg!p--A2gt-Vgt-VV-dt<M. (39)
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The first term in (39) denotes the Hessian

since gt{x) is convex. The following 3 terms are of order t~35, t~'i6, t5~2 as t —> oo, uniformly
in x. Since \t > 1 we can now fix <5 such that these terms are integrable in t, i.e.

0 < <5 < 1 Sp > 1 3 S > 1.

Lemma 5 (Basic Propagation Estimate)

M(pg't'p)t < const. <// + c->„, (41)

where c is some constant to make II + c > 1.

Proof. For any state tp in the form domain of // + c, (39) gives

/ àt(pg"p)t < (7( - 2<%,)d( + const. < const. (H + c)0

because |(7( — 2dtgt)\ < const. (H + c)t uniformly in /. Since the integrand (pg't']>)t is positive,
the limit T —> oo exists.

The Asymptotic Observable 7

Corresponding to (33) wc split

gt £>.* ; <w(z) tâga{r6x) ; (42)
a

It 5Z7a'( ' 7a,l A($o.t) ¦

Lemma 6

7 := s - lini eiH£7, e-'"' and 7n := s - lim cl,nya.t e~im
£->oo t—>oo

exis£ on D(H). Moreover,

[7,//] [7a,H] 0; (43)

7(0} =0 => 7 Y, 7a ¦ (44)

a>(0)
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Proof.

Step 1: We first discuss 7.

\im émllerl"l{II + cYU> lim(/Y + c)-1/2e,Hi7(e-,m(^ + ^)"1/2V'S lim Vl (45)
t—*oo t—too t—>00

if this limit exists. This follows by expressing (/Z + r;)-1/2 in terms of the resolvent (2 —H)-1
(e.g. using a contour integral), and then from the fact that [jt, (z — II)"1} —» 0 in norm as

t —> 00.

Step 2: In cpt wc can replace

since d,gt ~ f5-1 (i -> 00). Tir
7( —> 7( - 2ö(.", ee 7,

/OO

^ (HAc)-^eimDt(jt)e-im(H + c)-1^,

provided that dtipt is integrable. By (39)

A(7t) =P5t'P

up to integrable terms 0(i"'~£) which can be dropped. Factorizing

peffp^B2; Bt Dl

we can use the Schwarz inequality:

f dtdt<i
Jt, m sup

IMI=i
[v, dm)

< sup [ 2

eU\\Dte-"n{II + cyi/2v\\\\Dle-"n{H + c)-^2cp\\

< (sup /''d/, ||ß(e-I,"(// + c)^1/2i;||2) x f *
dt \\Bt e~im{H + c)-l/2<p\\2

\IMI=wt, / Jt,

By Lemma 5 the first factor is bounded uniformly in £12, and the second factor vanishes as

'1,2 —> oo- This proves the existence of 7.

Step 3: The existence of ja is proved in the same way, with one essential difference: gal
shares all essential properties of gt except convexity, so pg'âtP is not positive. However, it is

possible to construct a modified Yafaev function gt (by choosing a slightly different a [20])

so that
±5a,( < gt ¦
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Then wc can split
P9a,tP Aî - At

into positive and negative parts satisfying

0<A±<pp;'p.

Treating the contributions from Af separately, we factorizc Af [Bf)2 and use the
propagation estimate (41) for gt.

Step 4: [e-!//s,7] 0 follows from

e-iHsJeiH, _ 7 3 _ ,im e™tf _ lt\ e-iHt Q

(-»oo

since (7(+.s — Jt) ~> 0 strongly on D(H) for fixed s and £ —» oo. The same argument applies
to 7„.

Step 5: 7(o) 0. Since 7{o} exists as a strong limit,

1 /'' 1

7{o} s - ^fl dte,HtDtgme-im -(<?{0},r - ff{o},i) 0,

because </{0),r «(r5). G

Asymptotic Clustering

Lemma 7 (Dcift-Simon Wave Operators)

Wa s- lini eiH°f7o,te-im (46)
(—foo

aisis on Z?(/f for all a € L.

Proof. (46) is proved as the existence of <ya, with the following modifications. In step 1,

(46) is replaced by
s - lim (Ha + c)'/'2 cl"-lla t e~'ln(H + c)"1'2

(-+00

using that

(Ha7a,t - la.tn)(II + 'V
([H,7a/]-/a7a,t)(fl' + c)-1-^0

in norm as t —> oo. The reason is that

14, > r*AÄi on supp (Vffn,() (47)
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so that \\Ia-fa,i(H + c)"1/2|| -7 0 as t -> 00. In step 2, dtcpt contains the additional term

{Ha + c)-ll2eiH°%%,te-im{H + c)-ll2.

Here (and only here!) we use the short-range condition (13), which together with (47) gives

\\IaJaAH + c)-1/2\\=0(t-0»)

as t —> 00. G

Lemma 8 (Asymptotic Clustering) Let tp e Ran (7) : tp yip, </> e D(II). Then

e"!/"^E c~"UtWa<P- (48)

a>(0}

Proof. We write u(t) « v(t) for \\u(t) - v(t)\\ —> 0 as t —» 00. By Lemma 6

0= Ew^E e^Vte-*
a>{0) a>{0)

"v
Using Lemma 7 we obtain

_-«//*„/, ^ V^ a-'H*t JHat-, „-lltt,„ ^ V^ „->"a«Tt/,/, ne (/) sa 2_^ e e 7a,* e ¥> ~ 2_^ e "aV- u
a>{0} a>{0)

To complete the proof of Theorem 1 it remains to show that Ran(7) is dense in TLC{H).
Since 7 commutes with H, it reduces to a bounded selfadjoint operator %&{!!) —t H,&(H)
for any finite interval A. By the remark following Lemma 2 it therefore suffices to prove:

Lemma 9 (Mourre's inequality for 7) Let A be a finite, open interval for which (26) holds.

Then
72 > 0 on Ha{H) (49)

so that 7 maps T[a(H) onto itself.

Proof. We consider the Heisenberg observables

j(t) e"nJt e~iHt ; g(t) c"ngt e~im ; x2(t) émx2 er"n

y(t) and g(t) are defined as operators on the domain D(\x\)C\D(H), which is invariant under

exp(—iHt); x2(t) is defined as a form on this domain. Since y(t) Dtg(t),

-tg(t) jg(l) + \j ds7(5) (50)
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as t -4 oo (Lemma 6). Next, we note that g(x) > \x\ implies gi{x) > \x\ and therefore

g2(t) > x2(t). (5i)

Now let / e Cg°(A). Since / is smooth, f{H) maps jD(|:e|) into itself, and Mourre's inequality
(26) gives

f(H)x2(t)f(II) > (et2 + 0(t))f2(H) (52)

as I —> oo, in form sense on Z)(|:r|). Combining (50-52) we obtain:

ef(H) < limmr/(ff)^/(//)
t-AOO t

.At)
¦' K j 0limmtf(H)2-LLf(H) f{H)l2f{H)

for all / £ C0°°(A), which implies (49). G

A Short History

1926 Schrödinger: The time-dependent Schrödinger equation [32].

1932 v. Neumann: Hilbert space formulation of quantum mechanics [29].

1951 Kato: H H* > -oo: Existence of dynamics and stability of N-body systems [23].

1959 Hack: Existence of scattering states (Wave operators) [18].

1960 Zhislin: Determination of the essential spectrum of H [39].

1963 Faddeev: Complete discussion of 3-body systems by stationary methods (Faddcev-
equations) [14|. Later generalized to all Ar [19]. Limited by spectral conditions for
subsystems.

1969 Ruelle: Ergodic space-time characterisation of bound states vs. continuum states
[31, 2[.

1970 Efimov: 3-body systems with short-range potentials can have infinitely many bound
states [10]. First mathematical treatment in [37].

1971 Lavine: Asymptotic completeness of N-body systems with repulsive forces [24, 25).

A time-dependent proof using positive commutators.

1971 Balslev, Combes: Spectral analysis of N-body Hamiltonians with dilation-analytic
potentials, revealing the nature of the essential spectrum and of resonances. Absence
of singular continuous spectrum [3[.

1972 Iorio, O'Carrol: Asymptotic completeness of N-body systems in the limit of weak

potentials [22].
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1973 O'Connor: Isotropie exponential bounds for N-body eigenfunctions [5], Later ex¬

tended in [4] to embedded eigenvalues in the dilation-analytic case, where positive
eigenvalues are excluded.

1977 The advent of geometric (configuration space) methods of spectral analysis and scat¬

tering theory, e.g. (7, 8, 11, 35].

1978 V. Enss: The greatly inspiring proof of asymptotic completeness for N 2, using
only Ruelle's theorem and free wave packets [12]. The turning point to phase-space
analysis. Later extended to N 3 [13].

1981 Mourre: Mourre's inequality for N 3 [26], soon extended to all N [27]. An in¬

finitesimal version of dilation-analyticity with similar powers. Local decay estimates
[27].

1982 Agmon: Anisotropic WKB-typc bounds on eigenfunctions: Agmon metric [1]. The
concise form of earlier results [8].

1982 Froese, Herbst: Exponential bounds for eigenfunctions belonging to embedded eigen¬
values. Absence of positive eigenvalues [15]. Later supplemented in [28]. Fruits of
Mourre's inequality.

1987 Sigal, Soffer: First general proof of asymptotic completeness for short-range po¬

tentials, using local decay and phase-space propagation estimates [33]. Important
simplifications later in [16, 38].

1993 Derezinski: Asymptotic completeness for long-range potentials falling off like r-*1,

/i > \/Z — 1 [9[. Influenced by preliminary results of Sigal and Soffer who give an

independent proof [34].
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