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Arithmetic Aspects of Atomic Structures

Charles L. Fefferman

Department of Mathematics, Princeton University

Luis A. Seco

Department of Mathematics, University of Toronto

Introduction

After the initial success to explain the hydrogen atom, one of the early challenges of
quantum mechanics was to study larger atoms. The problems encountered in this pro-
cess were numerous, and the quest for an understanding quickly became a search for
simplified quantum atomic models that would explain different properties of the atom.
This study generated a vast theory with ramifications in many areas of physics and spe-
cially mathematics, including some which will be reviewed in this presentation: semi-
classical asymptotics, field theories, potential theory, computational issues and analytic

number theory.

An atom of nuclear charge Z fixed at the origin, and N quantized electrons at positions

z; € R? is described by the hamiltonian

i(“% —:;) 2Z|x,—x,|

i=1
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acting on antisymmetric functions in L?(R3*") (in order to simplify our discussion we

omit spin considerations). The atomic energies are defined as

B(Z,N)= inf (), Hzny),  B(Z) = jnf B(Z,N).

The energy E(Z, N) is non-increasing as a function of N, and it attains a minimum

at some critical N, which represents the largest number of electrons an atom can bind

(see [Rul, [Si], [L3], [L4], [LSST] and [FS9]).

The ground state ¥ is the eigenfunction with eigenvalue F(Z). Its density is defined as

p(z) =N |V (z,z2,...,2n)|*d2y ... dTy.
R3(N-1)

One of the earliest and most successful attempts at a simplified model was Thomas-
Fermi theory, which is well-known in the Mathematical Physics community, but which
we will nevertheless review later. According to it the atomic energy F(Z) and density

pZ(z) of an atom of charge Z behave as

T

1
E(Z) ~ CTFZ /3, pZ(l) ~ pfF("II) = Zzp’i‘r" (Z /3:1:) g (1)

for a suitable explicit constant crp and universal (Z-independent) function pl.. In
other words, it provides an extremely simple picture of the different atoms, as they are
all rescaled versions of each other. While this simple picture is often useful, it has tragic
consequences when one takes it too far, such as the no-binding theorem (see [L1] for a

complete account of Thomas-Fermi theory).

Associated with the density there is also the Thomas-Fermi potential VTZF, satisfying
also a perfect scaling condition

4 1
Vie(r) = 2" Vi (2% 1) (2)

The problem to understand Thomas—Fermi theory mathematically was tackled in 1973
with the work of Lieb and Simon (see [LS] and [L1]), which is now a central piece in
modern mathematical physics. In their setting, large atoms were viewed as a limit

Z — oo. Since then, large-Z asymptotics have become the mathematical paradigm of
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large atoms. In particular, the work of Lieb and Simon proves that (1) is the leading
expression as Z — 00.

In this circle of ideas, the result that generated much of the ideas presented in this
review is

E(Z) = —ctpZ% + 12 — ¢, 2% + O(Zg‘“) ,a>0, (3)

which is to be understood from the point of view of large-Z asymptotics stated above.
The first term in (3) was introduced by Thomas and Fermi in [T], [Fer], and proved
rigorously in [LS] as part of their proof of (1) above. The Z?2 term was discovered by
Scott in [Sco] and proved to be true in a series of papers by Hughes-Siedentop-Weikard,
in [Hug], [SW1], [SW2] and [SW3]. Its generalization to molecules was obtained by Ivrii-
Sigal ([IS]). The Z " term was obtained by Schwinger in [Sch], and proved to be correct
in [FS1], [FS2], [FFS3], [FS4], [FS5], [FS6], [FS7] and [FS8].

The purpose of this presentation is to give an updated account of some on-going work
related to the theory of large atoms in the context of large-Z asymptotics, which began
over the last decade or so, and relate to the proof of (3) above. The goal of that work
is to produce a refined version of the Thomas-Fermi theory that accounts for observed
physical features such as electronic orbitals or an atomic shell structure. This will

present similarities with issues in quantum chaos.

This article contains a combination of rigorous mathematical results with others of
a more speculative nature and more physical content. The bibliography, necessarily

incomplete, contains numerous missing pieces that this brief overview lacks.

Mean—Field Theory

The analysis of (3) begins with the development of a simplified picture of Hz x through
estimates of the type

N

Hz n = E H; + constants + errors,
j=1

where H; is a hamiltonian acting only on the i'th electron; errors will account for

different degrees of approximation. This would be an immense simplification, since
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the original N-body hamiltonian is now replaced by a superposition of one particle

hamiltonians, and the spectral properties of Hz n are therefore reduced to those of H;.

Such inequalities will obviously follow from a rigorous replacement of the repulsion terms

by more manageable expressions of the type

N
s Z Z V(z;) — constants, (4)
|z — mJI 1

i#j

modulo small error terms.

Physically, one would argue for such formulas as follows: assume that the electronic
distribution of a wave function 1 is given by a density function p: one then expects the

repulsion term to be approximately

a1 p(@) p(y)
lb, le:—’bgl Z/;wlibz—fﬂdyd} 2/R dx dy,

swprs | — Y|

where the last term accounts for the non-quantum effect appearing in the right hand
side of electrons interacting with themselves: for this reason it is referred to as the

self-energy term. This would then be the origin of (4), with

[ prly)dy
Vie)= /p jz —y!’

v v

Note that the choice of V' depends on p, which was assumed to be related to the density
of the true atomic ground-state. This self-consistency requirement will be a recurring
theme in this review; the Thomas-Fermi theory then appears as the leading resolution
of atomic self-consistency issues.

The first such rigoréus results in this direction go back to Licb and his collaborators
and are by now well-known in the mathematical physics folklore as Lieb’s formulas.
In order to understand the significance of the various issues, observe that the rescaling
properties (1) and (2) have the following conceptual implications: most electrons are
at a distance to the uu(:lcus of about Z “1’3, and the distance to the closest electron
neighbor is about Z=7. This is the basic size rescaling of the atom. Based on this, we
now introduce one of the different disguises of Lieb’s inequality:



Fefferman and Seco

Theorem (Lieb’s inequality): Assume ¢(zy,...,zn), (Z < N < 2Z7) is such that
IVy|2 < C 2.

Then, we have

(Hz,n,) > (F md?f’ﬂ) [/ pre( pTr )da;dy—C'Z/3

where
N

HPy =D {4z — Var(2)}

1=1

The proof of this result can be found in Lemma 2 in [SW2]. A recurring theme in the
rigorous theory of atomic energies is that upper bounds are comparatively easier than
lower bounds, as one can use variational arguments to derive them. Thus, the lower

bound in Lieb’s inequality is the center issue.

In order to understand what’s involved in Lieb’s inequalities, and in order to get a
feeling for the relevance of improvements of it (which will be crucial for most of the

results in this article), we present the following argument.

Begin with the following elementary identity

dz dR
Im _ J‘ _/[ZERS Xz,y€B(z,R) R

R>0

Except for the constant %, which requires a calculation, the rest of the formula is obvious

by rotational, translational and dilation invariance. An immediate consequence is

dzd]? i
EZITI_%, 3 [ [ MOV = 1) S, )

R>0

where

N
N= Z XB(z,R)(l‘i), (6)

i=1
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is the number of electrons in the ball B(z, R), and hence a function of all z,,...,zy, 2
and R. If we approximate A by an average of some sort, for instance

N= [ po@)ds
R3

N is now independent of the electron locations xy,...,zn, and we obtain the rigorous
identity

1 1 e = ” dzdR
e gfﬁens (V=N + 2M(N - 1) - N?) 2,
i#j J Y R>0
which, dropping the square term, yields

lz :Hr’
§ — ~ JgEy o 7
2 ilt_:EJI 2 //;ER; 1) N } l ( )

>0

Using (6), this is easily recognized as a version of Lieb’s inequality.
? o

The error term in Lieb’s inequalities, must therefore be of the order of

dzdR
Error = /fzen" - N)? T

If we assumed electrons to be independent, (N — N)? would be a variance, therefore
comparable to N, the expected number of electrons in the ball of radius 2 about z.
Since most electrons are at a distancc of about Z=" to the nucleus, and the nearest
neighbor is at a distance of about g , we can arguc that

N 5
Error ~ — - DALY
distance to nearest neighbor

This is the size of the error term in Lieb’s inequality.

Improvements of Lieb’s inequality, thus, amount to the analysis of the variances
(N — N)2, which in turn reduce to the analysis of inter-electron correlations. If one is

interested in first order corrections to Lieb’s inequalities, then leading order correlations
should suffice.

The work on electronic correlations began with Dirac in 1930 ([D]), when he approxi-
mated electronic wave functions with plane waves, which after a calculation yields the

term
4
~eo [ ph(@)ds,
RL’.

for an explicit constant c¢p. The following is a rigorous version of Dirac’s estimate:
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Theorem thma: If v is the ground-state of the atom,

N

E(Z) > Z(H"‘dl/) P) — f/ pr(ib“) p” )d,vdy— cp /Ra pfr/f;(:):) dx

i=1

+0(Z%—ﬂ) . a>0,

for
Hmd —A— VTF

This theorem was first proved in [F'S7], and follows the basic ideas in Dirac’s original
argument. That proof was soon improved and greatly simplified first by V. Bach [Ba]
and then by G. M. Graf and J. P. Solovej in [GS], who exploit the expression of the
repulsion terms (5) as a sum of the projection operators

= Z P,
i#i
where
{ 1 when z;,z; € B(z, R),
Pi,j =
0 otherwise,

to which they apply an algebraic inequality.

In what follows, the value of the numerical constant a in the statement of the theorem
is nnportant The proof of [FS7] yields a value of 555, whereas [Ba] and [GS] improve
it to 5-1- + e. One would need a value greater than i 5 to rigorously justify some of
the conclusions in the sections below. This seems to be currently beyond reach, but
nevertheless remains a very interesting problem.

We end with the remark that mean field theory can be viewed as a map from densities
into potentials: given a density p(z), we produce a total effective potential felt by
electrons, given by
Z
p —Vpeff(:l:) =—— +/ —q-(*—)—dy (8)
lz| * Jgra |z -yl

This will be useful in determining the equations satisfied by the Thomas-Fermi density
and improvements on it.
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Semiclassical asymptotics

The results of the previous Section, specially Theorem thma, reduce the original problem
of estimating Hz y to the analysis of the much simpler operator H ‘“d . This hamiltonian

can be studied by separation of variables, and one easily sees that

E(Z) > sneg ( A-VZ(r))-1 f/ pﬂ|1 _p;l,? () dzdy — cp /Rﬂ pif‘l’,(:r) dx

+O(Z§_“) , a >0,

where sneg denotes the sum of the negative eigenvalues of H. As above, correspond-
ing upper bounds, although still hard, are easier by comparison, as they can rely on

variational principles.

We also need estimates for the one-electron density of HZ ‘“d

2) = 3 ()P
k

Note that both problems are doubly singular: first, there are singularities of the Coulomb
and Thomas-Fermi potentials; second, and more important, there is the singularity in
the energy, due to the non-smooth restriction of the trace to the negative spectrum.
More precisely,

‘ 0 if A>0
sneg ™% = Trace g(H), g(A) =

—A otherwise.

Thus, to the singularity of Vi, one has to add the singularity of the energy function
g at 0. Moreover, both singularities play a fundamental role in the conclusions that
follow.

First, the Coulomb singularity of Vi is responsible for the Z? term (the Scott term)
in (3): smooth potentials don’t have it. This follows from the fact, well known to
semiclassical analysts, that such terms (for smooth potentials) come as the contribution

from the subprincipal symbol of the Schrodinger operator, which in the case of H il
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is 0. Therefore, the Scott term is one of the ways the Coulomb singularity makes itself
heard in the spectral series.

The second singularity, due to the counting function g at 0, has deeper effects. It is
responsible for the relevance of number theoretic terms in the atomic energy series, but
goes beyond what one can see in (3), where they are merely one of the error terms.
However, there are recasons to believe that they would dominate the other error terms,

and therefore are the prime suspects for a continuation of the atomic energy asymptotics.

The situation for densities is even more exciting. Since the Thomas-Fermi density has
remained untouched by the series of refinements to the energy asymptotics, number

theoretic terms might very well be the first correction to an improved theory beyond
Thomas-Fermi.

This section is devoted to the presentation of these arithmetic facts.

The usual semiclassical approximations to sneg and to the density p are given by

sneg (—A + V) & -1_1,fv NIGEEE T 4T1§fv 0W|1/2AV. )
< <
p(x) ~ #IVTF(C‘U)PH- (10)

We omit a discussion of these formulas, which, at least in the case for smooth potentials,

are well known to experts in semiclassical asymptotics. Related work can be found in

[RS], [HKSW], [HR], [Ro], [He], [IS] and references thereof.

We point out that despite that the formula for sneg was guessed by Schwinger and
Scott by comparison with the hydrogen atom and the harmonic oscillator, it is easily
seen that in fact they fail for these two potentials; thus, that it continues to be true for
the Thomas-Fermi potential is a deep fact. This is rooted in the well-known relation
hetween semiclassical asymptotics and periodic trajectories of classical flows, namely in
the fact that aperiodicity of zero—energy Hamiltonian paths plays a role in the study of
eigenvalues and eigenfunctions.

In our setting, this relationship shows up as part of the error term in (9) and (10), in
the form of trigonometric sums of the type

g=g% Y. 6(ZII3F(Z“1’3£)) (11)

1 T
1<t<z'3Q,
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for elementary functions such as

- [t]- 1 for Y
ﬁ(t):{t [t] - 5 or (10)

dist (¢,2)2 — L for (9),

for [t] the greatest integer in ¢, and

F(t) = [ (V(z) et ”)1/2 i

r +

Since 3 is bounded, we obtain trivially the estimate S = (,’)(Z%), which falls short of
proving a result like (3). If F(Q2) = muf) + v with p rational, then the trivial estimate
for S is easily seen to be the best possible, and (3) would then be false. On the other

hand, if d®F/dQ2? < ¢ < 0, then one can prove that the numbers
1= 2" F(Z7 ")

are equidistributed modulo 7. (The argument is close to Hardy’s estimates on the
number of lattice points in a disc.) Since 3(t) is periodic and has average zero, it

follows that

S=0(2") with v < 3. (12)

In the case of the hydrogen atom and harmonic oscillator, the function F' will degenerate
to the case F'(2) = mufd+ v with p rational. If this formula for F were also the case for
the Thomas-Fermi potential, the oscillating sum would give a contribution comparable

with the Z”—term, and the asymptotic expansion (3) would break down.

Therefore, all estimates hinge on the fundamental inequality
|F"(t)| > ¢ > 0. (13)

This amounts to an aperiodicity result that implies, among other things (see [CFS2]),
that the set of periodic trajectories of the classical flow created by the Thomas—Fermi
potential has measure zero. This inequality was proved in [FS8], and it is a computer-
assisted proof. We refer the interested reader to [FS10] for a review paper on the proof,
and of course, we refer to [FS8] for the proof itself.
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In the section below we present a brief account of the set of results in number theory
which are relevant to the main issues in establishing (12). In the sections beyond the
next, we present an overview of the connections of these oscillatory terms with energy
asymptotics and density functional theories, which come from interesting mathematical

phenomena beyond expansions (9) and (10).

Number Theory

Consider sums of the form

(]
s =31(5)u (2 4() (14)
=1

where A is a large number, p is a periodic function with average 0, f is an amplitude
function which can be viewed as constant and ¢ is a smooth function which satisfies the

crucial non-degeneracy condition
18" ()| > co > 0.

Particular cases of sums of this kind give rise to two well-known problems in analytic

number theory, namely

1. f =1, u(x) = e*™=, $(x) = z2. In this case, S(A), for A integer, corresponds
to the Gauss sums. The value of S is then known explicitly, and satisfies the

estimate

S(\) = o(,\‘/z)

2. f=1, plz) =z - [z] - %, #(z) = V1 —x2. In this case, S is related to the
error E()) in the lattice point problem for the circle in R2, which is defined as
follows: take a large circle on R? of radius A, and denote by N(\) the number

of lattice points in Z? which fall inside this circle. Then

E(\) = N(X) — nA2
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and it is an old problem in number theory to prove that
E(X) = O(\%)

for the best possible value of a. It was observed very early, by Gauss and
Dirichlet, that one can take @ = 1 which is an obvious geometric fact, and
is also obviously satisfied by S(X). Different probabilistic approaches (as the

one by Cramer, for instance) indicate that a above will not be smaller than %

What follows is a brief chronology of the estimates for « (see [GK] for details).
a = 1, Gauss-Dirichlet, 1849.
. 2 =0.666.., Voronoi 1904, Hardy, 1917.
. 28 = 0.6600, Van der Corput 1922.
. 393 = 0.659919.., Walfisz 1927.
. 47 = 0.6585.., Nieland-Van der Corput 1928.
. 33 = 0.6521.., Tichmarsh 1935.
. 33 = 0.6500, Loo Keng Hua 1942.
. 21 = 0.6486.., Kolesnik-Yin Wen Lin 1962.
. 25 =0.6481.., Kolesnik 1971.
. ﬁ% = 0.648018.., Kolesnik 1985.
. 35 = 0.636636.., Iwanicc-Mozzochi 1988.

. £ =0.63014 Huxley, 1993.
Going back to our main issue of atomic structures, the following question then arises.

Given that the the non-degeneracy condition for ¢ was proved in (13), what is the level
of difficulty in analyzing the oscillatory terms (11)7 Are they as simple as the analysis

of the gauss sums above? Or so hard as the analysis of the lattice point problem?.

The method devised by Van der Corput (or at least, a variant of it), in his attempts to

understand the lattice point problem provides the answer: we compute our sum using



Fefferman and Seco 13

Poisson summation, and then we expand each Fourier integral using stationary phase.
In doing this, we end up with a sum in which p is replaced by its Fourier coefficients
ji(n). The rate of decay of the Fourier coefficients ji(n) then decides the difficulty of the
problem. A decay faster than |n|_3/2 gives sharp bounds, as in the case of the Gauss
sums, and a decay slower than |n|‘3/2 gives rise to questions equivalent in difficulty to
the lattice point problem. The details of this can be found in [CFS1] and [CFS2].

Translating this ideology to our atomic setup, terms coming from density analysis will
be hard to study, whereas we will be able to obtain sharp bounds for oscillatory terms

coming from energy-related quantities.

Energy Asymptotics

The aperiodicity result proved by (13) proves the asymptotic expansion in (9), which,

jointly with Theorem thma proves (3).

The expansion in powers of Z in (3) almost surely stop there; in fact, in view of [FS 1 -
8], it is naturally conjectured (see [Fef]) that the next term in the energy asymptotics

for E(Z) above is given by the following sum

2
£=1 1 z £(£+1) ) n r +
;/ (VTF(T) - —7—_2— .\ dr

(15)
where pu(z) = dist (z,Z2)? — & and £1p is the greatest integer such that Vif(r) — €(£+

1)/r? is positive somewhere.

A calculation shows that the perfect scaling condition (2) of the Thomas-Fermi potential
implies that our sum W is -more or less— of the form S(A) as defined in (14), where
p(z) = dist (z,Z)? — ﬁ, A= 2" and ¢ is F above.

This sum was studied in [CFS1] and [CFS2], where it was proved that

|\IIQ|SCN2%+%, and AVZ\I’QECNZ%-}_é.
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" . 4 1 . .
In other words, W is of size Z3%s and this bound is sharp.

More importantly, it was also proved there that Wy is a sum of classical data taken
over all closed trajectories under the Thomas—Fermi potential. This suggests that the
expansion for E(Z) is a trace formula which one would expect from a path integral
picture.

The validity of these results rests on the (unproved) hypothesis that the error term in
Theorem thma is bounded by AR

The book of Englert ([E]; see also references thereof) contains a discussion of oscillatory
terms in the asymptotics of E(Z).

A Density Model

We now investigate the number theoretic implications of the ideas above to the study
of atomic densities. The results presented in this section are of an entirely speculative
nature, but nevertheless rooted in the rigorous framework developed in the proof of
(3) above, and they will result in a new density model of Thomas-Fermi type, which
incorporates the arithmetic considerations we reviewed in the section on semiclassical
asymptotics.

The main feature that this model introduces is a correction to the Thomas-Fermi density
which is, one the one hand, not universal (i.e., varies among the different atoms), and is
oscillatory (i.e., reallocates electrons to specially chosen regions in the atom), in what

may very well be a ghost of a shell structure showing up in a semiclassical picture of
the atom.

From the technical point of view, this refined TF density model will arise from the
following two sources:

e A conjectured improvements to (10), as roughly discussed above, which we will
present in detail below.

e An improved mean field theory, which, as in the previous section, rests on the

(unproved) hypothesis that the error term in Theorem thma is bounded by
4
AL
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We begin by reviewing the derivation of Thomas—Fermi theory according to the guide-
lines presented above, which will later be perturbed taking into account refined semi-

classical formulas to become our proposed new atomic density model.

Self-consistent Mean Fields We now come to the basic issue: our previous dis-
cussion was based in a fundamental way on the Thomas-Fermi density and potentials,

although their nature has been left intentionally in the dark.

Recall that given a charge density p we formed the effective potential it generates V;H

according to the basic recipe of field theory:

off py) dy
e (16)

Reciprocally, given a potential V' we can consider the density arising from the

Schrodinger operator it gives rise to,

pv(@) = 3 (@) (17)
k

where 1) are the normalized eigenfunctions of the hamiltonian —A — V.

A natural requirement for a “reasonable” guess for a charge distribution would be that
it satisfies the equation

_ yreff
pv =V, (18)

We call this the self-consistent mean field model, which is closely related to Solovej’s
sclf-consistent model, which admits a variational description, and has a number of

physically interesting properties ([So]).

The Thomas-Fermi density and potentials arise as the solutions to the semiclassical
self-consistent mean field density: we approximate py in (17) by its semiclassical ap-

proximation (10),
pv = —V,*(z), (19)

and we note that (16) means
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to arrive at the usual equation for the Thomas-Fermi potential
AV = 2V} (20)
It is easily seen that
4 1
VE(@)=2%Vie (2%3),  Vie(s) = ylale))/Ia,

where y satisfies the ordinary differential equation

y " (r) 2)
" _ . _ _
) = mra with a = (3;) , q=1.

The reason to keep the number ¢ = 1 above is purely psicological: for real clectrons

with ¢ = 2 spins, the number continues to be a as above.

1

09

[+3:3

[ 2

086

05

04 |

03 r

02

01+

graph of y..

Refined Thomas—Fermi theory. The basic step to obtain the Thomas-Ferm: model

as an approximation to the self-consistent mean field model was (19).

Based on formulas arising in [F'S1 - 7], we are lead to consider the refined version of
(19) given by
PV(:E) = 6q—2 Vafz (JL') + pNT(V1 $)1
T
with
1 ~Y = =
prer(Viz) = s D (Ve@) ™™ - 2L+ Dx(@) | (Vi)™ dry - (21)
)
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where

[t] denotes the integral part of t, ¢ = 2 is the number of spins.

We omit a derivation of this conjecture (we refer the reader to [FS6]), and simply point
out the similarities between (21) and (15) and (11).

The resulting self-consistency relation (18) then yields the refined model
q 3,
p(z) = 672 V2 (x) + pur(V, ),
T
AV =4 mp.
This model can be studied as a perturbation of the Thomas—Fermi model,
V=VZ+VZ.
Elementary analysis shows that V; should have as leading expression
Vi) =2V (2% 1),
for a non—universal potential V7,
Vi(z) = yeoc(alz])/ 2],

for a non—-universal function y.,, satisfying

ycor(r) = e———— "-’—1_/2'_- yccr(r) + 4Tr7‘a-_3Z—5/3pNT (aﬂlz-—l/ar) y
T
yco"(o) = ycor (OO) = 0.

After grubby manipulations, this takes the form

l/z
o) =3 (22) )+ 120, (22)
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for

3

falr) = Z_2/3 ZV_ Ya oy (204 1) x(de)
1/2
Io (‘07 )_L dr

and

= QZ
Va(r) = yT”)_?f’ Qf:Z“l’a al(f+1).

The equation defining ¥.,, is a linearized inhomogenous differential equation of the
Thomas—-Fermi type. Most of the properties of its solution y.,. follow from the source

term, fz. We present below the graphs of several of these for different atom:c numbers
Z.

25}

-35

I L 1 L
0 5 10 15 20

fz for Z = 20.

0.04

002 ¢
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01 i L i n
o 5 10 15 20 25

fz for Z = 30.
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08
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b .J
L R —— =t

e g
0 5 10 15 20 25 30 3s 40

fz for Z = 90.

In the first of these graphs, the function is always negative, in the third it is always
positive, and in the second, which is the typical case, it changes sign. If one analyzes
the formula defining fz, one would realize that the singularities of fz appear, precisely,
at the places where the Thomas-Fermi potential equals the energy levels predicted by
semiclassical arguments. In the typical case, the values of fz at its singular points will
jump from +oo and —oo for a fixed Z. Plugging this into (22), one sees that it will
imply that y..,, will have arbitrarily large positive and large negative values, which will

imply that

y(alz)

e
|z|

b

for a function y that changes convexity and concavity at the places where the Thomas-

Fermi potential equals the semiclassical energy levels. We can view these as electronic

shells.

The graph below shows several graphs of y..,:
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The correction that y.,, introduces is, however, very small. As an applciation of the

number theoretic methods presented above, it was proved in [CFS3] that

[ pur®) e W) g < 0 2% 10922,
R3 xR3 |z —yl

This is much smaller than the main term,

[ pre(T) pre(y) dr dy = (Const-)Z%'
Rixr® |7 =

The graph below shows the graph for the resulting function yrp + yeor against yrg, for
Z =20,

Tho:ms-r»'onnl —_—
Number Theotetic ----
0s | g
08 |
07}
06 |
o5}t
04}
03t
02|
0.1
o "
o 2 4 6 8 10

Yrr + Yeor fOor Z = 20.
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As a concluding remark, we point out that there are a number of related recent devel-

opments which have the common target of understanding atomic densities in rigorous
terms. Among these are [HL], [BLLS], [Sie] and [ILS].
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