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Complex Formulation of Lensing Theory and Applications

By Norbert Straumann

Institute for Theoretical Physics
The Usaiversity of Zurich
CH-8057 Zurich, Switzerland

(3.1IV.1997)

Abstract.

The elegance and usefulness of a complex formulation of the basic lensing equations is demon-
strated with a number of applications. Using standard tools of complex function theory, we present,
for instance, a new proof of the fact that the number of images produced by a regular lens is always
odd, provided that the source is not located on a caustic. Several differential and integral relations
between the mean curvature and the (reduced) shear are also derived. These emerge almost au-
tomatically from complex differentiations of the differential of the lens map, together with Stokes’
theorem for complex valued 1-forms.

1 Introduction

Gravitational lensing has become one of the most important fields in present day astronomy. The
enormous activity in this area has largely been driven by considerable improvements of observational
capabilities. Gravitational lensing has the distinguished feature of being independent of the nature
and the physical state of the deflecting mass. It is therefore perfectly suited to study the dark
matter in the Universe [1], [2].

One of the issues which has recently attracted a lot of attention is concerned with parameter-
free reconstructions of projected mass distributions from weak lensing data. (For a recent review,
see [3].) Thanks to new wide-field cameras and imaging with 8m-class telescopes, the quality of the
data is expected to increase rapidly. Initiated by a paper of Kaiser and Squires [4], a considerable
amount of theoretical work on various reconstruction methods has recently also been carried out
[5], [6]. The main problem consists in the task to make optimal use of limited noisy data in a
parameter-free manner, that is, without modeling the lens.
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In the present paper we take up some of the theoretical discussions and demonstrate rather
systematically that the complex formulation of lensing theory often simplifies things considerably.
In particular, a number of equations which are used in mass reconstructions, emerge almost auto-
matically.

In outline, the paper is organized as follows: For reasons of self-consistency, we provide in Section
2 a brief derivation of the basic lensing equations that are used in the remainder of the paper. These
are then translated in Section 3 into a complex formulation, where some mathematical tools are
recapitulated as well. It will turn out that the reconstruction problem is basically equivalent to
the task of solving the so-called Beltrami equation, at least for noncritical lenses. This part of the
paper has considerable overlap with [7]. Turning to applications in Section 4, we give — as far as we
know — a new proof of the fact that for a regular lens the number of images is always odd, provided
that the source is not located on a caustic. The proof uses only standard tools of complex analysis,
which are, for instance, familiar from derivations of the theorem of residues. One of these formulas
is an explicit expression for the index of a closed curve relative to a given point. Next, we derive
several relations between the mean convergence and the (reduced) shear by (repeated) applications
of the complex differential operators d/dz and d/9z to the differential of the lens map. Several
other useful relations for lensing reconstructions, involving integrals over bounded domains, are
derived at the end of the paper.

The purpose of this article is mainly methodological. We hope that others will take advantage
of it, especially in teaching the pleasant field of gravitational lensing.

2 Basic Lensing Equations

For the benefit of those readers who have not studied the extensive monograph of Schneider, Ehlers
and Falco [1], we start by giving a brief derivation of the basic lensing equations.

The conceptual basis of gravitational lensing theory is extremely simple. This is at the same
time one of the main reasons why it is so important for the astronomical study of mass distributions
on all scales. For all practical purposes the ray approximation for light propagation is sufficiently
exact. In this limit the rays correspond to null geodesics in a given gravitational field g, and the
evolution of the polarization vector is governed by the law of parallel transport. (These laws can
be deduced from Maxwell’s equations [8].) The null rays are orthogonal to the surfaces of constant
phase, {S = const}, where S is subject to the eikonal equation

¢ 9,88,8=0. (2.1)

For sufficiently strong lenses the wave fronts develop edges and self-intersections. Clearly, an
observer behind such folded fronts sees more than a single image. This is the region of what is
called strong lensing and occurs astronomically only rarely.

Here we restrict ourselves to almost Newtonian, asymptotically flat situations. Generalizations
to the cosmological context are easy and basically amount to interpret all distances in the formulas
given below as angular distances. (For details we refer again to [1], hereafter quoted as SEF). The
metric is then given by

g = (1+20U)dt* - (1-2U) da?, (29)
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where U is the Newtonian potential. The spatial part of a light ray satisfies Fermat’s principle,

do B
v/ 900

for variations with fixed end points [8]. Here do? denotes the spatial part of the metric (2.2).

0, (2.3)

All this can be summarized by saying that gravitational lensing theory is just usual ray optics
with the refraction index

nz) =1-2U0(x). (2.4)
In particular, the ray equation holds,
d dx

where s is the euclidean path length parameter. (Since light deflection is a scattering process, we
can from now on forget about non-euclidean geometry.)

In terms of the unit tangent vector e = dx/ds, eq. (2.5) can be written in sufficient approxi-
mation as

d
—e=-2V.U, (2.6)

where V; denotes the transverse derivative, V, = V — (e, V)e. This gives for the deflection angle
& = eip — €y, With initial and final directions e;;, and ej;,, respectively,

& = 2/ V.Uds, (2.7)
u.p.

where the integral is taken over the unperturbed path (u.p.). Here, we insert the expression for
the Newtonian potential of a mass density p(xz). In the well-justified approximation where the
extension of the lens (for instance a cluster of galaxies) is much smaller than the distances of the
observer and the source to the lens, one finds readily (SEF, Chapter 4)

A E_ 6’ N J2¢f
a(f) = 4G = u(€)d°E, (2.8
R |E-¢? )
where £(£) denotes the projected mass density on the lens plane. (For a point mass this reduces
to Einstein’s prediction of light deflection.)

Combining this with elementary geometry, we arrive at the lens map for a given £(£). From
Fig.1, which summarizes the notation of SEF, we read off the lens equation

D &
n = 3E - Dis&l6), (29)
d
which defines a map from the lens plane to the source plane.

It is convenient to write this in dimensionless form. Let £ be a length parameter in the lens
plane (whose choice will depend on the specific problem), and let 79 be the corresponding scaled
length in the source plane, ng = (Ds/Dg)&. We set x = £/&, y = n/no and (following SEF)

_ Z(éoz)

Ma) = 5, al)

_ Dy Dy
éODs

a(boz) (2.10)
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with
By = _‘i D,
s — 4G DdDds |
Then eq. (2.9) reads as follows
y =z - a(x), (2.11)
whereby eq. (2.8) translates to
T—x oy
gz . 2.12
= 1 [ e @) e (212)

It is obvious that a is a gradient of a two-dimensional Newtonian potential:

—-—-I-‘__._ A A
Source plane
I ,
| P
|
' &
4 . D
g X |
Lens plane
D,
v v

Observer

Figure 1: Notation adopted for the describtion of the lens geometry.

= V¢, ¥ =2G+x, G(x)= % In|z| (* denotes convolution). (2.13)

Since G is a fundamental solution of the two-dimensional Laplace operator, i satisfies the two-
dimensional Poisson equation
Ay = 2k. (2.14)

For the differential Dy of the map ¢ : IR? = IR?, defined by eq. (2.11), we use the standard

parametrization
_ f =&~ —Y3
Dy = ( oy i — Rt 5 ) g (2.15)
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in terms of the mean (Ricci-) curvature x, determined by the trace of Dy, and the (Weyl-) shear
vector ¥ = (71,72). The eigenvalues of the symmetric matrix Dy are 1 — kF | v |. The critical
curves, satisfying det (D) = 0, are given by

1-kr)2-|~4]2=0. (2.16)

The caustics are the images of these critical curves. In the vicinity of a caustic the amplification

jt, given by
1

4= TdatDe) | .
becomes very large.
In passing, we note that the lens map (2.11) can also be written as
1 :
V ¢ =0, with ¢(z,y) = 5(z-y)* - ¥(z). (2.18)

2

This reflects the Fermat principle. Indeed, the delay of arrival times is directly given by the Fermat
potential ¢:

, D
2 s (
At = &5 Byl Pz, y). (2.19)

Examples of various lens maps are discussed extensively in Chapter 8 of SEF. Two standard
cases are (with suitable choices of &p):

Schwarzschild lens: y = z —x/| z |?; (2.20)

singular isothermal lens: y = =z —z/| x| . (2.21)

It is worth recalling the following general fact: In 1955, in a pioneering work of modern sin-
gularity theory, H. Whitney [9] studied generic properties of smooth mappings of the plane into
itself and proved that the subset of mappings which have only fold and cusp singularities contains
an open and dense set (with respect to the Whitney topology). Moreover, those maps of this set
which satisfy a few mild global conditions are also stable. Clearly, these results are highly relevant
to gravitational lensing. For realistic lenses we will only have folds and cusps, and no singularities
of higher order.

3 Complex Formulation

In this section we translate the basic lensing equations into a complex formulation. It will turn out
that this is not only elegant, but also quite useful, because one can then apply various tools and
techniques of complex analysis. This has also been noted before by other authors [7].

3.1 Mathematical Preliminaries

We use standard notation when identifying IR* with @, by writing z = z + iy for (z,y) € IR? and
dz = dz + idy, dZ = dz — idy for the corresponding basis of 1-forms. In terms of the Wirtinger

derivatives, 2 . 5 . 5
. g 1 , _ 9 _1/70 . 0
o 9z 2 (Bx 18y) i 9z 2 (B:c + zBy) ’ (1)



Straumann 899

the differential of any smooth complex function f on @ has the representation

af af

df = =—d —

F=23:%"%%

We shall also write f, and f; for 9,f and 9;f, respectively. A function f is holomorphic if and
only if 0z f = 0. In terms of the Wirtinger derivatives the Laplacian is given by

dz . (3.2)

A = 40,0;. (3.3)

We shall make repeated use of Stokes’ theorem for complex-valued differential forms on € (or
an open subset): If 2 is a compact subset of € with smooth boundary 952, then for every complex

differential 1-form w
f dw = / w. (3.4)
Q anN

An immediate corollary of eq. (3.4) is the Cauchy-Green formula: For a smooth function f we

consider
dz

z-C’
and apply Stokes’ theorem (3.4) for {2 minus an e-disk with center ¢. In the limit ¢ — 0 we obtain
O WS SN C)

f(<)=2—75 oz —C b dez/\dz. (3.6)

w=f

(3.5)

For holomorphic functions the second integral is absent. (Note that dz A dzZ = —2idx A dy.)

The dilatation or Beltrami coefficient v = vy of a smooth function f is defined by

fe =vpfs, (3.7)

and this equation is also called Beltram: equation. Since the Jacobian J; of f is given by

Jr=|F1? =1 f=1%, (3.8)

we conclude that |vf|< 1 if f preserves orientation and vy = 0 if and only if f is conformal. For
the interpretation of vy we consider the infinitesimal ellipse field by assigning to each z € €' the
ellipse that is mapped to a circle by f. As indicated in Fig. 2, the argument of the major axis of
this infinitesimal ellipse is [ + arg(vy)] /2, and the eccentricity € is

_UEl= 1l _ 1=y
|fzl +1F: 14wyl

Solving the Beltrami equation (3.7) is then equivalent to finding a function f whose associated
ellipse field coincides with a prescribed v. We shall see that this is just the inversion problem in
gravitational lensing. Weak gravitational lensing corresponds to quasiconformal maps. A smooth
map f is k-conformal if its Beltrami parameter v satisfies |vf| < k < 1. This means geometrically
that there is a fixed bound on the stretching of f in any given direction compared to any other
direction.

(3.9)

We now quote an existence and uniqueness theorem for the Beltrami equation. For a fixed k
with 0 < k < 1 let L*°(k, R) denote the measurable functions on @ bounded by k and supported
in {z €| |z| < R}.
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z f(2)

[m+arg(Vl/2

Figure 2: Geometrical interpretation of the Beltrami parameter.

Theorem: For v € L*>(z, R), there is a complex function f on &, normalized so that f(z) =
24+ O(1/2) at co, with distributional derivatives satisfying the Beltrami equation f; = v f,, and
such that f; and f, — 1 belong to LP for a p > 2 sufficiently close to 2. Any such f is unique. The
solution f 1s a homeomorphism of @, which is holomorphic on any open set on which v = 0. If
v€C! and v, € C', then f € C.

A proof of this theorem can, for instance, be found in [10].

The reconstruction problem (for noncritical lensing) will lead to the inhomogeneous Cauchy-
Riemann equation

In case the smooth function h has compact support, the Cauchy-Green formula (3.6) provides one
solution:

F(Q)= 2—%[@ f(_dez/\dE. (3.11)

Obviously, f is only determined up to an additive holomorphic function. If the solution is assumed
to be bounded, f is unique up to an additive constant.

From the solution (3.11) we see that (7z)~! is a fundamental solution of the differential operator

8‘21
1 1
1o (_) =5 (3.12)
bis z
because (3.11) can be written as
11
f===xh. (3.13)
Tz

A special case of the so-called Dolbaut Lemma in several complex variables implies that one
may drop the assumption that h has compact support:

Theorem: For any smooth function h on @ there exists a smooth function f such that (3.10)
holds.

For a complete proof, see Chapter 2 of [11].
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As an easy consequence we have the

Corollary: For any smooth function h there exists a smooth solution of the Poisson

Af=h.

In the following we often use the abreviations d = 9,, 8 = 0s.

3.2 The complex Lens Mapping and its Differential

The lens mapping ¢ : IR? — IR?,

y=¢(@)=z-Vy(z),

is now written as f : @ — €, w = f(2) with z = x| + iz9, w = y; + iy2. We have

f(z) =2~-20¢
or
f=0(2z-2v) .
Eq. (2.14) becomes
200 = K.

The differential of f will be very important. From (3.15) and (3.17) we obtain
df = (1 — k)dz — 20*%dz .

But
_ 1 > 7 1 .
e = 1 (312 = 33) v+ 531327,0 =3 (71 +i72),

901

equation

(3.14)

(3.15)

(3.16)

(3.17)

according to the original definition (2.15) of the shear vector. Introducing the complex shear

Y=+

we obtain
df = (1 — K)dz — ydz.
Hence, the Beltrami parameter vy of the lens map is given by

Y
11—k

Uf = —
This agrees with the reduced shear introduced by Schneider and Seitz [12].

The examples (2.20) and (2.21) become:

1 1
Schwarzschild lens: f(z) = z — =y M = 53

¥4

1
singular isothermal lens: f(2) = z — é, vf = o ——— .
12| 2z (121 - §)

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

For reference, we note that the amplification u is according to (2.17), (3.8) and (3.19) given by

ph =10 = 110F1P = 1011 = (L = &)% = [y

(3.23)
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4 Applications

The usefulness of the complex formulation will be illustrated in this section with several applica-
tions. No new results are obtained, but somne of the derivations become simpler and more natural.

4.1 Number of Images for a regular Lens

The important fact that the number of images for a regular lens is always odd, provided the source
does not lie on a caustic. is traditionally proven with the help of some elements of Morse theory [1].
We now give a proof which uses only standard tools of complex function theory that are used, for
example, in the derivation of the theorem of residues. In particular, we make use of the following
analytic formula for the index of a closed (rectiﬁahle) curve <y relative to a point a ¢ «:

: dz
indy (a) = o / — (4.1)
g

This index is equal to the winding number of v around a and hence an integer. Furthermore, it is
a homotopic invariant, changes sign under orientation reversion, and is additive under composition
of closed curves (see, e.g., Chapter IV of [13]).

Consider now a point w, in the source plane with images f~! (w.) = {z1,..., znx} in the lens
plane. The complex 1-form
w = L _df (4.2)
C 21 f — w, '

is regular on @\ J; D (z;), where D, (a) denotes the closed disk with center a and radius e. It is
also closed, and therefore Stokes’ theorem (3.4) gives

: =,
_ 43
2mi ]E;DR (0) f Wo Z 2m1 Jap,(z;) f w, (4.3)

Now, for a closed curve v we have by the transformation formula of integrals and (4.1)

dw
— Sl « .
Qm[, ind o (wo) (4.4)

oy W — We

271'1 f Wo

Asymptotically the lens map approaches the identity, and hence the left hand side of (4.3) is equal
to 1 for R sufficiently large. Therefore, we have

N
1= Z indfoaD((:J) (wo) =n;—n-; + 2 (1’?.2 = n_g) T EY (45)
=1
where ny denotes the number of z; in {z1,..., zy} for which the index in (4.5) is equal to A.

For the special case, when w, is not on a caustic, the Jacobians Jy(z;) do not vanish and all
indices are thus equal to £1 (+1 if f is orientation preserving and —1 if it is orientation reversing
at z;). Hence

N=n+n_1, l=n —n_, (4.6)

implying that
N=1+ 271_1 (47)

is odd.
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4.2 Relations between mean Convergence and reduced Shear

The Beltrami parameter (reduced shear) v; of a lens map is in principle observable. What we are
really interested in is, however, the mean curvature x which is related to the surface mass density

by (2.10).
In view of (3.18) it is natural to look first for relations between the complex shear v and .
Eq. (3.19) for the differential of the complex lens map and (3.15) give
p= B = 250, (48)
In order to get a useful relation we differentiate (4.8) and use (3.17)
Oy = 20 (00y) = Ok . (4.9)

This can be regarded as an inhomogeneous Cauchy-Riemann equation for k. With the results in

Section 3.1 we conclude

1 /1 1 1

k== |=]*07+Ko==0(— | *7+ Ko
m Z m z

or
K= ——— %7+ Ko. (4.10)
The additive constant x, reflects the fact that a homogeneous mass sheet does not produce any

shear (‘mass sheet degeneracy’). The real form of (4.10) appears the first time in [4]. In making
use of (3.20), we obtain an integral equation for x when v is known:

n=—%;—2*[u(1—n)]+no. (4.11)

This has been used, for instance, in [6] for nonlinear cluster inversions.

We add that (4.10) has an inverse, that also appeared in the influencial paper [4] of Kaiser and
Squires. From (4.8) and (2.13) we obtain

v =48%G * k. (4.12)
Since the fundamental solution G of the two-dimensional Laplace operator is
1 ] -
G =—In|z| = —In(22) (4.13)
2 47
we find
11
Y= =5 *K. (4.14)
T
Note that (4.9) has the real form (x is real)
om + a2
Vk = . 4.15
§ ( oy2 + &am 15)

Let us differentiate (4.9) once more

0k = 8y, (4.16)
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giving

Ak = 40* [v(1 - K)], (4.17)
from where we could again arrive at (4.11). The mass-sheet degeneracy is reflected in the following
invariance property: Eq. (4.17), for given v, remains invariant under the substitution

K — A&+ (1 = X)), (4.18)

where A is a real constant [14].
We can use (4.9) in a different manner. First, we write this equation as
Ik =0l — k)] = (1 - K)Iv — viK.
This becomes simpler in terms of K := In(1 — «):
0K — vOK = 0v. (4.19)

To this we add its complex conjugate. Noting that K is real, we obtain again an inhomogeneous
Cauchy-Riemann equation, this time for K:

0K = h(v), (4.20)

whereby the inhomogeneity
h(v) = (1 - |p|?)~! [awm] (4.21)

is in principal observable.

The real form of this equation was obtained by Kaiser [15] and has often been used in the
analysis of cluster data. The complex version appears also in [7].

It should have become clear at this point that the complex formulation is also useful. The
relations, derived in this subsection, emerge alsmost automatically by just applying @ and 0 to the
coefficients of the differential of the lens map.

4.3 Other useful Reconstruction Equations

Real lensing data are always confined to a finite field of the sky. Therefore, the solution of (4.20)
in the form (3.11), for example, involving an integration over all of @, is in practice not very useful.
One can, however, also obtain integral formulas in which only integrations over bounded domains
occur.

In order to arrive at these, we write the inhomogeneous Cauchy-Riemann equation in terms of
differential forms:
1

Here w is a 1—form and we use the standard decomposition d = d’ + d” of the exterior derivative,
satisfying
dod =0, d"od" =0, dod +d"od =0 (4.23)

(see, e.g., [11]). We make also use of the x-operator, which is related to complex conjugations as
follows: If a 1—form « is decomposed as @ = «; + «», where «; is of type (1, 0) and a;, of type
(0, 1), then

*Qx = ’i((_kl - (_Yg) . (4.24)
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The following identities are useful:

Kk = —@, *Q = *x{,
dx (o + ) = id' &y — id"&g s
xd'g=1d"g, *d"g=—-id'g,
dxdg = 2id'd"g = Agdz A dy,

where ¢ is a function.

905

(4.25)

Let now 2 C @ be a bounded domain with smooth boundary 99 and A = |€|. We show that g

minus its average g over (2,

_ 1
g—A/di:r/\dy

can be represented in the following form

g—qg= / *x A\ w.
Q
The 1—form « in the integral is given by
a=2d"H
in terms of the real Green’s function H, defined by

1
AH-Z_wé,

together with the Neumann boundary condition on 9S2.
This is a consequence of Stokes’ theorem. The integrand in (4.27) is
*xaAw=x*aAd"g=—-d"(g*a)+2¢d" (xd"H) .
By making use of (4.25) we obtain for the last term
29d" (xd"H) = —2igd"d'H = —gAHdz A dy,
while the first term is given by
—d" (gxd"H) = —d (g xd"H) .

Hence,
/*a/\wz—/ gxd"'H+g—3.
an

(4.26)

(4.27)

(4.28)

(4.29)

This is just (4.27) since the last integral vanishes, due to the Neumann boundary condition for H.

Formulas equivalent to (4.27) have been much used by S. Seitz and P. Schneider [6].

The starting point for the derivation of another useful relation is (3.17) in the form

d(f —2z) = —kdz — vdZz,



906 Straumann

If we wedge this with dz and subtract the complex conjugate of the resulting equaton we find

1
kdz Ndz = §d[n (zdz — 2dz) — yZdz + yzdz] . (4.30)

Taking the average according to (4.26) we arrive at

$ (vzdz — J2dz)

Ro=(x) - § (2dz — zdz) (431)
where () denotes the average along the boundary 9%:
$ Kk (2dz — zdz)
e i 4.32
) $ (2dz — zdz) (4.32)
For the special case of a disk D, we have along the boundary z = re*?, 2dz — zdz = —2ir*dy, hence
k= (k) — (), (4.33)
where 7y, denotes the tangential component of the shear
Y = ¥1 €082 + y28in2p. (4.34)
This relation is not new (see Ref. [5]). Noting that
1 T
R=—; " (r', @) r'dr'dyp, (4.35)
and thus 5
K
=2(Kk) — 2R 4.36
= 2(x) - 28, (4:36)
we can use (4.33) to obtain the interesting connection
dr
=2 ’ 4.37
T = 2 (4.37)

This has recently been used in an analysis of weak lensing data [5]. A usetul integral ‘orm of it is,
in obvious notation,

23\ !
sr-atn<r<ri= 21 1)

2

[ (4.38)

™

The left hand side of this equation is what Kaiser and Squires call the (-statistics, { (;, 72). One
can use general weight functions for the average process [5] and try to optimize the cloice for the
detection of mass overdensities [6]. Note also, that the integral on the right in (4.38) cai be written

as
/ " & = L[ R (iﬂ) s s dig. (4.39)
r T 21 Jiry,ra) 2

We conclude by pointing out another appearance of a Beltrami parameter in lensing theory. An
often used method for describing the shape of a galaxy image uses the second brightnes moments

@ = 5o [ 1) (@~ ) (a; - 3;) s, (4.40)
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where I (x) is the surface brightness distribution and Z is the center of light of the galaxy image.
Regard now ) = (Q;;) as a linear map of IR®. If this is interpreted as a map z — w (2) of € it
reads ) . )
w=5(Qu+Qn)z+5(Qn - Qn+2iQn)z=7trQ(z+ xZ] (4.41)
where _
(Q11 — Qa2 + 2iQ12)
trQ
x is called the complex ellipticity and is clearly just the Beltrami parameter of the map (4.41).
The intrinsic brightness moments QS) of the galaxy are defined corespondingly and it is easy to
see that Q) = Dy - Q- Dy, Dy being the differential (2.15) of the lens map. The interpretation of

x just given, allows us to find easily the corresponding relation between x and x{*). One just has
to compose the map (4.41) on the right and on the left with the linearized lens map

K= . (4.42)

w=(l-K)z-—7vZ. (4.43)

This gives readily
(s) _ —2V+X+l/22
1+ |v]2 —2R(vyx)’

X (4.44)

with the inverse i ol
2 s 2=(s
¢ il e (4.45)
1+ |v|2 + 2R (vx(®)
A real derivation of these formulas is quite akward. They are used in applications by averaging
over a set of galaxy images, together with statistical assumptions about the intrinsic ellipticity
distribution (for instance (x(s)> = (), to determine the reduced shear v of the lens map. Here,
we just wanted to point out that y has the interpretation of a Beltrami parameter and that the
relations (4.44) and (4.45) are very easily obtained in the complex formalism.

We hope that the reader will find other examples of such simplifications. After this paper
was made public, I learn from T. Schramm more about his own work. As a supplement to what
was discussed above, I refer especially to his study of the Beltrami equation with the help of the
corresponding characteristic equations|16].
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