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Constant Cutoff Approach to the Eta
Photoproduction in the Skyrme Model

By Nils Dalarsson

Royal Institute of Technology, Stockholm, Sweden!

PACS 12.40

(27.1.1997)

Abstract. We suggest a quantum stabilization method for the SU(2) o-model, based on the
constant-cutoff limit of the cutoff quantization method developed by Balakrishna et al., which avoids
the difficulties with the usual soliton boundary conditions pointed out by Iwasaki and Ohyama.
We investigate the baryon number B=1 sector of the model and show that after the collective
coordinate quantization it admits a stable soliton solution which depends on a single dimensional
arbitrary constant. We then study Eta photoproduction from the nucleon in the constant-cutoff
approach to Skyrme model at treshold regions, where N(1535) Born terms are separated from the
total amplitude by identifying the resonance with an 7 bound state to the soliton. Thereby we find
that the results obtained using the constant-cutoff approach are of the same order of magnitude as
those obtained using the complete Skyrme model and are somewhat closer to the results estimated
in a phenomenologocal model.

1 Introduction

It was shown by Skyrme [1] that baryons can be treated as solitons of a nonlinear chiral
theory. The original Lagrangian of the chiral SU(2) o-model is given by

F2
L=1x Tr QU"U* (1.1)

'Present correspondence adress: Bjorkvagen 55, S-14733 Tumba, Sweden
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where

2
U=+

is a unitary operator (UU* = 1) and F; is the pion-decay constant. In (1.2) 0 = o(7) is a
scalar meson field and © = 7(7) is the pion-isotriplet.

o 47 7) (1.2)

The classical stability of the soliton solution to the chiral o-model lagrangian requires
the additional ad-hoc term, proposed by Skyrme (1], to be added to (1.1)

Ly = Tr [ U8, U , U9, U |? (1.3)

3262
with a dimensionless parameter e and where [A,B] = AB - BA. It was shown by several
authors [2] that, after the collective coordinate quantization using the spherically symmetric
ansatz

U, = exp[iT + ToF (r}] ; Fa=T)r ' (1.4)

the chiral model, with both (1.1) and (1.3) included, gives a good agreement with the ex-
periment for several important physical quantities. However, the introduction of the Skyrme
stabilizing term makes the analytical structure of the results complicated and in many cases
difficult to handle.

Mignaco and Wulck (MW) [3] indicated therefore a possibility to build a stable single
baryon (n = 1) quantum state in the simple chiral theory, with Skyrme stabilizing term
(1.3), omitted. MW have shown that the chiral angle F(r) is indeed a function of a dimen-
sionless variable s = -;— x"(0)r , where x"(0) is an arbitrary dimensional parameter intimately
connected to the usual stability argument against the soliton solution for the non- linear
o-model lagrangian.

Using the adiabatically rotated ansatz U(7,t) = A(t)U,(F)A*(t) , where U,(7) is given
by (1.4), MW obtained the total energy of the non-linear o-model soliton in the form

1 1[x"(0)

E——-F2xl|(0)a+§ 72 J(J+1) (1.5)
where
a—f $(Z2)2 4 8sin®(JF) | ds (1.6)
b—f ds —s 2in?(~ ]-')] (1.7)
and F(s) is defined by
F(r) = F(s) = —nm + i F(s) (1.8)

The stable minimum of the function (1.5), with respect to the arbitrary dimensional scale

parameter x"(0) , is
3

E=§ E, | g (%)2 % J(J+1) i (1.9)
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Despite the non-existence of the stable classical soliton solution to the non-linear o-model,
it is possible, after the collective coordinate quantization, to build a stable chiral soliton
at the quantum level, provided that there is a solution F=F(r) which satisfies the soliton
boundary conditions, i.e. F(0) = —n7 , F'( infty) = 0, such that the integrals (1.6) and
(1.7) exist.

However, as pointed out by Iwasaki and Ohyama [4], the quantum stabilization method
in the form proposed by MW [3] is not correct since in the simple g-model the conditions
F(0) = —nm and F(oo) = 0 cannot be satisfied simultaneously. In other words, if the
condition F'(0) = — is satisfied, Iwasaki and Ohyama obtained numerically F(oco) = —7/2
, and the chiral phase F=F(r) with correct boundary conditions does not exist.

Iwasaki and Ohyama also proved analytically that both boundary conditions
F(0) = —nm and F(oco) = 0 can not be satisfied simultaneously. Introducing a new variable
y = 1/r into the differential equation for the chiral angle F=F(r) we obtain
d*F 1
— = — sin 2F (1.10)
dy? y?
There are two kinds of asymptotic solutions to the equation (1.10) around the point y = 0,
which is called a regular singular point if sin 2F ~ 2F. These solutions are

mm

Fly) = e + cy® , m=even integer (1.11)
7
F(y) = TZE + \/c_ycos[\/T—ln (cy) +a] , m =odd integer (1.12)

where c is an arbitrary constant and « is a constant to be chosen adequately. When F(0) =
—n7 then we want to know which of these two solutions is approached by F(y) when y — 0
(r — o0)? In order to answer to that question we multiply (1.10) by y*F’(y), integrate with

respect to y from y to co and use F'(0) = —nw. Thus we get
2 ! = 1 2 - | JF \ \
Y F'(y) +f dy 2y[F'(y)]” = 1 — cos[2F (y)] . (1.13)
y

Since the left-hand side of (1.13) is always positive, the value of F(y) is always limited to
the interval nm — 7 < F(y) < nm + m. Taking the limit y — 0, (1.13) is reduced to

| vl P =1-(-1m, (114)

where we used (1.11-1.12). Since the left-hand side of (1.14) is strictly positive, we must
choose an odd integer m. Thus the solution satisfying F'(0) = —nm approaches (1.12) and
we have F(00) # 0. The behaviour of the solution (1.11) in the asymptotic region y — oo
(r — 0) is investigated by multiplying (1.10) by F'(y), integrating from 0 to y and using
(1.11). The result is

o2 2sin? F
2 _ 2sin* F(y) +/ydy sin® F(y) . (1.15)
0

[F' ()] .2 "
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From (1.15) we see that F"(y) — constant as y — oo, which means that F(r) ~ 1/r for
r — 0. This solution has a singularity at the origin and can not satisfy the usual boundary
condition F(0) — —nm.

In [5] the present author suggested a method to resolve this difficulty by introducing a
radial modification phase ¢ = ¢(r) in the Ansatz (1.4), as follows

U(7) = exp[iT - 7o F(r) + ip(r))]. (1.16)

Such a method provides a stable chiral quantum soliton but the resulting model is an entirely
non-covariant chiral model, different from the original chiral g-model.

In the present paper we use the constant-cutoff limit of the cutoff quantization method
developed by Balakrishna, Sanyuk, Schechter and Subbaraman [6] to construct a stable chiral
quantum soliton within the original chiral o-model. We then study Eta photoproduction
from the nucleon in the constant-cutoft approach to Skyrme model at treshold regions, where
N(1535) Born terms are separated from the total amplitude by identifying the resonance with
an 7 bound state to the soliton. Thereby we find that the results obtained using the constant-
cutoft approach are of the same order of magnitude as those obtained using the complete
Skyrme model and are somewhat closer to the results estimated in a phenomenologocal
model.

The reason why the cutoff-approach to the problem of chiral quantum soliton works is
connected to the fact that the solution ' = F(r) which satisfies the boundary condition
F(o0) = 0 is singular at » = 0. From the physical point of view the chiral quantum model is
not applicable to the region about the origin, since in that region there is a quark-dominated
bag of the soliton.

However, as argued in [6], when a cutoff € is introduced then the boundary conditions
F(€) = —nm and F(o0) = 0, can be satisfied. In [6] an interesting analogy with the damped
pendulum has been discussed, showing clearly that as long as € > 0, there is a chiral phase
F = F(r) satisfying the above boundary conditions. The asymptotic forms of such a solution
are given by Eq. (2.2) in [6]. From these asymptotic solutions we immediately see that for
e — 0 the chiral phase diverges at the lower limit.

Different applications of the constant-cutoft approach have been discussed in [7].

2 Constant-Cutoff Stabilization

The chiral soliton with baryon number n = 1 is given by (1.4), where F' = F(r) is the radial
chiral phase function satisfying the boundary conditions F'(0) = —m and F(co) = 0.

Substituting (1.4) into (1.1) we obtain the static energy of the chiral baryon
o0 dF

2/ 2 2 " 2 - 2'1
M 5 fn E(t)dr[r( r) + 2sin” F] (2.1)
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In (2.1) we avoid the singularity of the profile function F' = F(r) at the origin by
introducing the cutoff ¢(t) at the lower boundary of the space interval r € [0,00], i.e. by
working with the interval r € [¢, 00]. The cutoft itself is introduced following [6] as a dynamic
time-dependent variable.

From (2.1) we obtain the following difterential equation for the profile function F = F(r)

d LdF ;
E;(Tz—(ﬁ—) = sin(2F), (2.2)

with the boundary conditions F(e) = —m and F(oo) = 0, such that the correct soliton
number is obtained. The profile function ' = F[r;€(t)] now depends implicitly cn time t
through €(¢). Thus in the nonlinear g-model Lagrangian

F? .
= f Pz Tr@,U"U+), (2.3)
we use the Ansatze
U t) = AQUF AT (E) . UH( t) = AQUS (7 A (1) (2.4)
where
Uo(T,t) = exp[iT - 7o F'(r; €(t))]. (2.5)

The static part of the Lagrangian (2.3), i.e.

2 L
- %](Pm Tr(VU -VU*) = - M, (2.6)

is equal to minus the energy M given by (2.1). The kinetic part of the Lagrangian is
obtained using (2.4) with (2.5) and it is equal to

2
= %f{igm Tr(GoUdU") = ba®Tr(0,AGyA™) + c[2:(t)]?, (2.7)
where
" 5 riF
b= —F / dyy*sin® F', c= —F f dy y*( (iJ) y?, (2.8)

with z(t) = [e(t)]*/? and y = r/e. On the other hand the static energy functional (2.1)
can be rewritten as

, dF .
M = az? arj/ dyly? () + 260 F, (2.9)
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Thus the total Lagrangian of the rotating soliton is given by
L = ci? — az®® + 2bz6,¢" | (2.10)

where Tr(0pAGyA*) = 2¢,¢" and a, (v =0, 1,2, 3) are the collective coordinates defined as
in [8] . In the limit of a time-independent cutoff (z — 0) we can write

8L 5
- /3 2. v __ __2/3
H = 55 & L = az®” + 2bz°a,&" = az*” + — a2 J(J+1), (2.11)
where J? = J (J 4+ 1) is the eigenvalue of the square of the soliton laboratory angular

momentum. A minimum of (2.11) with respect to the parameter z is reached at

2 ab 3/8 4 2 ab 1/4
—_— = = 11/ .
eyeEny ¢« =0 J(J+1)] (212)
The energy obtained by substituting (2.12) into (2.11) is given by
43
E = -[—“—J( 1)]4, (2.13)

This result is identical to the result obtained by Mignaco and Wulck which is easily seen
if we rescale the integrals a and b in such a way that a — $F?a, b — TF?2b and introduce
fr = 27%3F,. However in the present approach, as shown in [6], there is a profile function
F = F(y) with proper soliton boundary conditions F(1) = —7 and F(oco) = 0 and the
integrals a, b and c in (2.8-2.9) exist and are shown in [6] to be a = 0.78 GeV?, b = 0.91 GeV?,
¢ =1.46 GeV? for F, = 186 MeV.

Using (2.13) we obtain the same prediction for the mass ratio of the lowest states as
Mignaco and Wulck [3] which agrees rather well with the empirical mass radio for the A-
resonance and the nucleon. Furthermore using the calculated values for the integrals a and b
we obtain the nucleon mass M(N) = 1167 MeV which is about 25% higher than the empirical
value of 939 MeV. However if we choose the pion decay constant equal to F, = 150 MeV we
obtain a = 0.507 GeV? and b = 0.592 GeV? giving the exact agreement with the empirical
nucleon mass.

Finally it is of interest to know how large the constant cutoffs are for the above values of
the pion-decay constant in order the check if they are in the physically acceptable ball park.
Using (2.12) it is easily shown that for the nucleons (J = 3) the cutoffs are equal to

0.27 fm , for F, = 150 MeV

Clearly, the cutoffs have to be smaller than the nucleon size (0,72 fm), and from (2.14) we
see that it is the case. It should, however, be noted that the simple Skyrme model discussed
here is at variance with some physical constraints since the isoscalar charge radius (~ 0.8
fm) is identical to the baryon charge radius (~ 0.5 fm).
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3 Eta photoproduction in the Constant-Cutoff Ap-
proach

In the present paper we consider the n photoproduction reaction from the nucleon

Y+Non+N (3.1)

The reaction (3.1) is supposed to be strongly dominated by the Born terms through the
negative-parity nucleon resonance N(1535)*, in the following denoted simply as N*, and its
investigation can provide new insight into the structure of such a state. In the present paper
N* is regarded as a bound state of the n-meson and the Skyrme soliton, analogous to the
bound state of the kaon and the Skyrme soliton in the case of Hyperons [7].

The study of the reaction (3.1) in the framework of the complete Skyrme model has been
performed in [9], and in the present paper we will compare the results obtained here with
those obtained in [9].

From (1.1) adding a mass term [7],we may write the Lagrangian of our model as follows

F? F? V3

L= l—g Tr 8,U"U + 4—g(mi+2m?\-)T'r(U+U+ -2)+ 5

F2(m2 —mi)Trg(U +U™)
(3.2)

The mass of the 7 is then obtained using the Gell-Mann-Okubo relation, 3m,* = 4m? —

m.*, giving m, = 567MeV being somewhat higher than the experimental value of m, =
548.8MeV .

Following [9] we introduce the 7-field as the eighth component of the SU(3)-octet
U(z) = ur(x) exp(2irgn/ Fr) (3.3)

where u, is the SU(2) pion part and Ag is the eighth SU(3) matrix. Using the static hedgehog
ansatz 1.4 and expanding 7 to the second order, we obtain

on

_ Loy 00,
L_MH+2/d1[(6t) G

R |
)+ g(mfr(Q —cos F) — 4m3.)n? (3.4)
where My is the classical hedgehog mass. Writing now the S-mode, where the bound state

corresponding to N* occurs, as 7j(t, r) = e *!5(r) , the differential equation for n(r) becomes

0%y  20n s 1, 5 2
b [w? + =(m2(2 = cos F) — 4m2)\|n = ;
a2 4 . + [ + 3( (2—cosF) h)]n 0 (3.5)

The bound state 7y(r) in (3.5) is normalized according to [7]

SWwD/rzdrng(r) =] (3.6)



Dalarsson 873

where wy < m,, is the bound-state energy. After the collective coordinate quantization of the
SU(2) rotational modes, the n-Skyrmion bound state has spin and isospin J = I = 3. The
parity of this state is negative and we can therefore identify it with the lowest negative-parity

resonance N*. A more detailed discussion of the validity of this assumption can be found in
[9]-

In the study of the process (3.1) we calculate matrix elements of the electromagnetic
(EM) interaction between the initial and final states, i.e.

2m8(Ey — E)M = —i < v(k)N(p1)13,A%In(a)N(pz) > (3.7)

where the labeling of the momenta of the four particles in the reaction (3.1) closely follows
the labeling in [9]. The current J, is found by inserting the ansatz (3.3) into the expression
for the EM current, which for the case of the constant-cutoff approach can be found in [7],
and keeping only the terms linear in the 7-field. It is easily shown [7] that only the isovector
(Q = 73) term contributes as in the case of the complete Skyrme model (9], and we use the
expression

3 . N a s
ds = Loy oy (52€mnp T [T3(uf Onttntt Optir + Onuinuf Gpuput)]

— EmnpOn TT {713([u) Optin, wt Boirn] + [Bpunuit, Bounui|}) (3.8)

Using (3.8) and taking only the S-mode part of n(z) for treshold production, the photo-
production amplitude is obtained in the following form

M=i<q|E-In>=

_ Zeleun [ 2p(— (Lsin 2P 4 jo(kr) + (% sin® F - & sin 2F4E) ke +

+ wOLQ[jo(kr) + jg(k'l’)]% sin® F% (3.9)
where € is the polarization vector of the incoming photon and jo(kr) and jy(kr) are the
spherical Bessel functions of zeroth and second order, respectively. In (3.9) €2 is the moment
of inertia of the Skyrmion given by §2 = be3, with € being the constant cutoff defined by (2.12).
In order to discuss the choice to retain only the S-mode part of n(z), it should be noted that
there is a similarity between the neutral pion photoproduction and the eta photoproduction
in both the complete Skyrme model [9] and the present approach. Both amplitudes are
basically determined by the Wess-Zumino term and are of the same order of magnitude in
absolute value (but with the opposite sign). The dominance of the Wess-Zumino term is one
of the reasons why the results of the constant-cutoff approach are generally in agreement
with the results of the complete Skyrme model, and why the effects of the removal of the
Skyrme stabilizing terms in the present approach are not so essential [7]. However in the
constant-cutoff approach there is no dependency of the various quantities on the choice of the
Skyrme stabilizing term as in the complete Skyrme model [9], and the bound state structure
is such that the effect of S-wave bound state becoming a virtual state for some choices of
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stabilizing-term parameters is not present. It can thus be shown that, in the present bound
state structure, the effects of P-modes and their taking over as in the case of the neutral pion
photoproduction are smaller than in the complete Skyrme model [9], where it was already
shown that only the S-wave bound state need to be retained for the proper treatment of the
eta photoproduction.

Using the convention for kinematics as in [9], we obtain the cross section and the S-mode
multipole amplitude A as follows

do 9412
— =214 10
ds? k:| | il
A= o 2dr{—[l sin QFdF]O(kr) ( L sin? ' — ——5111 QF‘iF)jg(kr)]J}Jr
[]O(kr) + ja(kr \]— sin F } (3.11)

wﬂ

Introducing here the dimensionless coordinate y = * and the dimensionless momentum
parameter 5 = ke , we may rewrite (3.11) as follows

A=¢€[" yzdy{—[i sin QF%jg(ﬁy) + (y% sin® F — &+ > sin 2F’lr )72(Ky)|n+

+

. _ 2 . d
lo(ky) + ja(sy)) = sin® F=} (3.12)
Y dy

wobe3
We will use the expression (3.12) together with (2.12) to calculate the n-photoproduction
amplitude at the treshold in the Constant-cutoff approach to the Skyrme model.

Following [9] it can be shown how the Born term for the N* resonance can be extracted
from (3.11) or (3.12). The procedure is basically the same as in [9] and the end result in our
notation is following

- 1 1 1 : . .
M =i1<kl|e Jlng > - < ‘mal=Tdme. 4 3m> = m>(2~=cos F 5 (3.13
| |T’0 (w — W w%-wn) ?7(]'3[ K n 'rr( S )”q ( )

where exp(ika) = |k > and exp(igz) = |g > are plane waves of the corresponding free states.

4 Numerical results

The present results for the full multipole anplitude A given by (3.12) and the Born contri-
bution obtained from (3.13) in units of 1073/m, , are sumarized in Table 1. Thus we see
that the present results are in qualitative agreement with the results quoted in [9] and they
are somewhat closer to the results quoted in [11] even though they are also generally too low
compared to the results of [11].
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Table 1: Multiple amplitude A in units of 1073 /m,,

Multipole Present results Ref. [9] Ref. [11]
amplitude (3.12) , (3.13)- Set A Set B

Full amplitude 2.27 0.64 1.72 9.5
Born term 2.74 0.89 2.17 12.4

In order to explain why the present predictions for the eta-photoproduction amplitude,
similarly to those reported in the case of the complete Skyrme model [9], are too small com-
pared to those reported in [11], we also present the results for the EM transition amplitude
from the nucleon to the N*-resonance A;/,, given in units of 107 GeV~1/2 | and the nNN*
coupling constant g,nn-. In the constant-cutoft approach they are given by

M*+ M L o=
A= (Garag = M))”2 < Kl Jlmo > (4.1)
1
gnNne = — < ﬂolg[‘lmfg +3m2 — m2(2 — cos F)]|g > (4.2)

and the numerical values obtained using the constant-cutoff approach are A/, = 17.7 and
gonne = 3.6 which are in qualitative agreement with the results quoted in [9], i.e. A; /2 =92
and gp,nn- = 4.0 for parameter set A and A, = 10.4 and g,yn- = 4.9 for parameter set
B. However present result for the EM transition amplitude is still much too low, as in the
case of the complete Skyrme model [9], compared to the empirical results found in [12],
ie. Af, = T74+11 A}, = —72 £ 25 in units of 107> GeV~'/2 as above. On the other
hand the result for the coupling constant g,nn- is almost the double of the empirical value
of g,nn+ ~ 2, obtained using the branching ratio I'ye_,n/I'n+—au. The present numerical
values for A,/ and g,nn- using (3.9, 3.11,4.1 and 4.2) are consistent with our predictions
for the eta-photoproduction amplitude. However, as argued in [9], in the neutral pion case,
due to the Kroll-Ruderman theorem, the charged pion production is much larger than the
neutral one. If N* then spends part of the time as a pion-nucleon composite in the S-state,
it is possible that the transition amplitude and thereby the eta-photoproduction amplitude
would become closer to the results in [11]. Furthermore it should be noted that the fact that
the helicity amplitudes are rather small might give rise to the question of the S-wave bound
being an eta-nucleon bound state. Further study of these issues, both in the complete Skyrme
model [9] and constant-cutoff approach, used in the present paper, would be interesting.

Further it should be noted that although the general qualititative picture of the constant-
cutoff results is similar to that of the results obtained using the complete Skyrme model
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(9], the results obtained here are slightly closer to the available empirical data. However, as
pointed out in [9], the further refinements of both the complete Skyrme model [9] and the
constant-cutoft approach used in the present paper is neccessary to obtain the more realistic
predictions of the Eta photoproduction data.

5 Conclusions

We have shown the possibility of using the Skyrme model for the study of Eta photopro-
duction from the nucleon at treshold regions, where N(1535) Born terms are separated from
the total amplitude by identifying the resonance with an n bound state to the soliton, with-
out the use of the Skyrme stabilizing term proportional to e 2, which makes the practical
calculations very complicated and introduces the problem of the choice of the stabilizing
term.

For such a simple model with only one arbitrary dimensional constant F, which is chosen
equal to its empirical value F; = 186 MeV, we find that the results obtained are of the same
order of magnitude as those obtained using the complete Skyrme model [9] and are somewhat
closer to the results estimated in a phenomenologocal model or the available empirical data.
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