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On the spectrum of the harmonic oscillator with a s-
type perturbation. II

By Silvestro Fassari and Gabriele Inglese

CNR-Istituto di Analisi Globale e Applicazioni, 1-50139 Firenze

(7.1.1997)

Abstract. In this paper we study the spectrum of the Hamiltonian H of a one-dimensional har-
monic oscillator perturbed by an attractive point interaction. The point interaction is assumed of
the form —ad(z — xg) (@ > 0 and g # 0) so that it can act away from the equilibrium position
of the oscillator. If the parameters a and g are known, all the eigenvalues of H can be computed
with high accuracy. On the other hand, recovering these two parameters from the knowledge of
the first two eigenvalues of H turns out to be an extremely unstable problem.

1 Introduction

In this brief note we extend the results of [1] to the case in which the J-interaction is
located at a point xy which is not the equilibrium position of the harmonic oscillator.

Such a situation is of interest in quantum chemistry since it can be regarded as a
simplified model for the interaction of a diatomic molecule with a neutral atom when the
centre of the point interaction lies along the vibrational direction. A similar model (in 3D)
is studied in [2] in the limit |z¢| — oco. The point interaction is given there by the so-called
Fermi pseudopotential (see [3] pp.46-48) located at a point which might not be the origin.
Of course, the harmonic potential in quantum chemistry is an approximation of the more
realistic Morse potential (see [4] pp.451-454).

Following the strategy used in [1], we shall determine the ground state and the first
excited state by means of the equations determining the poles of the resolvent of the
self-adjoint operator



Fassari and Inglese 859

H = Hg — [jv[[1d(z — z0)

where 5
1, d )
H{) = E(—m +x )

As usual, here ||v||; is the L' norm of v i.e. [ |v(z)|dz.

We shall see that the main difference between the spectrum of this Hamiltonian and
the spectrum of Hy — ||v||1d (considered in [1]) is that, due to the removal of the symmetry,
the odd-labelled eigenvalues are also affected by the perturbation.

We shall also see that, if o coincides with a zero of an eigenfunction of the unperturbed
harmonic oscillator, then the eigenvalue corresponding to that particular eigenfunction will
not be affected.

2 The resolvent of H

In this section we simply restate theorem 2.2 of [1] for the more general case being consid-
ered, i.e. the centre of the attractive d-interaction is not the origin, but a point x¢ on the
real axis.

Following [1], in order to determine the resolvent of H, it is convenient to use the limit
procedure known as convergence in the norm resolvent sense. Therefore, after introducing
the self-adjoint Hamiltonians (¢ € IR,)

He = Hy — v,

(where ve(z — zo) = 1v(2=22), v > 0 and v € L'(IR)) we can get the resolvent of H as
the limit when € — 04 of the resolvent of H, in the norm topology by following the steps
in section 2 of [1]. The result can be summarised in the following theorem whose proof is
omitted since it is practically identical to that of theorem 2.2 in [1].

Theorem 2.1. Let {H.}.c0,1), H be the self-adjoint operators defined above. Then,
H. — H as ¢ — 04 in the norm resolvent sense and

|(Ho — B)~* (", 20)){(Ho — E)~* (20, )|
o — (Ho — E)~(z0, 7o)

(H—E)'=(Ho-E) '+ (2.1)

with (Ho— E)~Y(z,y) = 352 %f?:‘%ﬁ, {®:}72, being the eigenfunctions of the harmonic

oscillator.

Having determined explicitly the resolvent of H, we can now find the eigenvalues by
studying the poles of (H — E)~!. This will be the main subject of the next section.
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3 The bound state equation

The eigenvalues of the operator H are given by the poles of its resolvent. Similarly to
what has been seen in [1], it is not difficult ot check that, because of a cancellation,
(®ok, (H— E)~1®5;) no longer diverges at £ = 2k—+—%,Vk =0,1,2,.... Therefore, the even-
labelled eigenvalues of the unperturbed Hamiltonian Hy are no longer poles of the resolvent
of H and, consequently, eigenvalues of H itself. However, due to the lack of symmetry ol
(Ho — E)~ (=g, ), differently from the situation described in [1], the rank-one operator on
the r.h.s. of (2.1) no longer vanishes on the subspace of antisymmetric functions. Also in
the case of the antisymmetric eigenfunctions of Hy, i.e. ®or41, it is not difficult to check
that (®ox41, (H — E) '®3,41) does not diverge at E = 2k + %,Vk =0,1,2,.... Therefore,
in this case the §-perturbation modifies also the odd-labelled eigenvalues.

Thus, the spectrum of H is given by the solutions of the following equation:

z-\

= (Ho — BE) (0, 20) = ) (I)lTO (3.1)

Tollx 2y I-E

(3%

It is worth noting that, since @,2 is symmetric for all integers [, we have the same bound
state equation in both cases z¢ > 0 and zy < 0.

In (1] we computed (Hq — E)~1(0,0),VE < 3 by using the relationship between the
resolvent and the semigroup of Hy. After writing [1] we encountered the explicit formula
for the Green’s function of Hy in the literature on the harmonic oscillator (see [5]). In the
particular case x =y = zg and E < %, we have:

L e=(E+3)
(1-¢2)z

By setting F = % — ¢, the r.h.s. in (3.2) can be written as follows

1 —1+4e 1 —1+4€ 5
w_%e_z‘%/ S—,ez%‘slﬂd{—ﬂ %/ g———l—e_xé:ngﬁ.
o (1-g)} o (1- 691

Using a well-known calculus theorem, the latter integral becomes

(Ho — E)~"(z0,z0) = 7~ %7 f ot T de. (3.2)
0

- - 1 ) - -
W—%e—wéu—s)(us)“/ T e = =000 (g~ L 4 g-100,0)
o (1-¢&2)2 2
for some ¢ € (0,1).

Therefore, we have the chain of inequalities:

’ 1 : Eec) 1
™ (Ho = 5 +¢)71(0,0) < e 5 (OO (Hy — = 46)71(0,0)

1 _
= (Hy — 3 + €)' (zo, z0)

< (Hp — % +¢)71(0,0).
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It follows that the solution Eo(zo) = 3 —€o(zo) of (3.1) is inside the interval (3 —eg (0), 3 —
g (0)), where €5 (0) solves the equation (in €)

1

1
—— = (Hp— = +¢)71(0,0
T (Ho =5 +¢)7°(0,0)

and €7 (0) solves
1

]t

% = (Hy — %—{‘ €)~1(0,0).

Thus, the ground state of the Hamiltonian with the attractive interaction centred at the
origin, is the lowest ground state amongst the ground states of the Hamiltonians Hy —
llvllié(z — o).

In order to perform numerical computations, we rewrite the ground state equation in
the more suitable form (obtained by means of the two changes of variable: £ = cosht and

e—et sy .'L‘)
2

1 - 1
T _ e To f ( 2 )Ge4zgm}(1+m%)—2d$- (33)
l|lv]l1 € Jo ‘\l+z

"N

We now turn our attention to the first excited state (I = 1). As stated at the begin-
ning of this section, differently from the case in which the ¢ is centred at the origin, its
eigenenergy is modified by the §,,-perturbation.

Since the integral expression of the Green’s function of Hy given in [6] is only valid for
E < 3, it is clear that we shall have to use a trick similar to that used in 1] to determine an
integral formula for (Hg — E)~1(0,0) in the left neighbourhood of the second even-labelled
eigenvalue of Hy, namely E; = 2.
Therefore, we start by writing:

(Ho — E)™}(z0,20) = Z 7 (z0) _ ®5(zo)

l+e—-1 g

The trick is once again to find an integral formula for the series starting at [ = 1, which
holds also in the left neighbourhood of E; = % Hence,

. $2(zo) _ X Bizo) _ Pi(z0)
l+e—-1 1_0l+e—1 e—1"~
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For € > 1 (corresponding to E < 1), the r.h.s. is equal to:

1 —2+4€ _ =T
w_%/ E—edrgt—fgdﬁ—ﬂ"%(‘
o (

1—{2)% e—1
1 —2+4€ ; 1
- 6 ~—.1:')1—_§ —z2 —24e€
= 2 — e 0l+£d€_e 0 E df :
[/U 1) i ] (3.4)
212
el 2 /1 Flie ele_+g—(1—§2)%
=q 2e "0 - d§.
o (1-¢&%)2 S

It is immediate to notice that the integral on the r.h.s. of (3.4) is well defined now for any
€ > 0, since (—f%:)%— € L'[0, 1] and the other fraction in the integrand is bounded.

Hence, the equation determining the first excited state eigenenergy is:

2 1 —1+e€ 26—:6' 2y 1
L o R { il el LY 5k
T e /0 0] ¢ § - e] (3.5)

withe= 3 - F and E € (3, 3).

Higher eigenenergies can be determined by means of equations like (3.5) obtained

by using ‘renormalisation tricks’. The integral formulae, however, are bound to become
increasingly more complicated.

We proceed in the same way as in the ground state equation and transform the integral
on the r.h.s. of (3.5). The latter becomes:

1 _z2 pl 2
= = [ () e e )
v 1 € 0 —+—,’L‘:

2 (5.6)

1 4::'21'%(14- %)_2 :
Tl CChi —I—l)]cm:—1

= €

Before ending this section, we want to single out a special situation, i.e. the case in
which z( coincides with a zero of an eigenfunction of Hy but zy # 0 (if o = 0, all the
antisymmetric eigenfunctions vanish at 0 and we are exactly in the situation fully described
in [1]). Let us assume that zo = &j, where &; is such that ®;(z;) = 0.

Thus, the series expressing (Hy — E)~!(Z;," ) is equal to

z (I’l(iixq)ﬂ
T
o [+ 5 FE
Hence,

((Ho— E)~!(3;,),®;) =0
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which implies that the energy of the I-th level is not modified by the éjf-perturbation.
For example, if zq = ilz, then the eigenenergy E; = g will not be affected by the
d-perturbation centred at z.

4 Identifying the potential from measured values of the energy

We can change the point of view of section 3 and regard the derivation of (3.3) and (3.6)
as part of the solution of an inverse problem for the one-dimensional Schrodinger equation.

In the present case, the form of the potential is a priori known to be “’—22 —ad(z F/PB)
where a = ||v||; and B = z2, so that the inverse problem reduces to determining the
location of two real parameters only. In fact, suppose that Ey = % —¢p and E, = % — €

are given. By equating the r.h.s. of (3.3) and (3.6) we get the following non linear equation

in 3
1
¢€0,€1(/6) = e_ﬂ{l/ ( 2 )Ece4ﬂ$$(1+m710_)_2d$
0

€0

g A
€1 Jo

Once 3 has been computed, we get « by a simple substitution in (3.3). Computations
confirm the prediction that the solution of such an inverse problem is quite unpractical
unless the data are available with extremely large precision. This is due to the severe
instability of 8 and a with respect to the error possibly affecting ¢p and ;.

Let 3 be regarded as a real positive function defined for (eg,€1) € (0,00) x (0,1).
In figure 1 we show the graph of B(€g,€;) in the domain (0,2) x (0,1). Observe the bad
behaviour of 4 in the physically more interesting range in which g > 1. The level lines
plotted on the surface correspond to 8 = % and # = 1.

When (3 goes to zero, the potential should tend to the one analysed in [1]. Since from
the point of view of this article values of 3 close to zero are unphysical, we disregard here
an accurate analysis of such a limit procedure.

In figure 2 we plot « as a function of g when 3 = 3 = 5.

Finally, we observe that it is not possible to distinguish between the two cases z¢ =
++/f from energy measurements only.
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Figure 1

Figure 2
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