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Exponential Bounds for Continuum Eigenfunctions of
N-Body Schrodinger Operators

By M. Griesemer*

Institut fiir Theoretische Physik, ETH Honggerberg, CH-8093 Ziirich

(24.XI1.1996)

Abstract. For any non-threshold bound state of an N-body quantum system, we give a non-isotropic
exponential bound in the form of a geodesic distance associated with a suitably modified Agmon
metric.

1 Introduction

Eigenfunctions of typical N-body Schrédinger operators decay exponentially in all directions
of the configuration space, provided the energy is not a threshold [4]. The rate of decay
depends on the direction and is not known in general. — Using the isotropic upper bound
due to Froese and Herbst in Agmon’s approach, we obtain an improved non-isotropic bound
in the form of a geodesic distance. Our result provides a generalization of Agmon’s well-
known result to continuum eigenfunctions with non-threshold energy.

Consider a system of N quantum particles in R? interacting by two-body potentials
which decay pointwise to zero as the interparticle distance increases. Let H denote the
Schrodinger operator of the system with center-of-mass motion removed, and suppose 1) is
an eigenfunction of H with energy E. If F is discrete then a well-known theorem of Agmon
tells us that

[ (z)]| < Cee™179(E) e s 0, (1.1)

where pg(z) denotes the geodesic distance from z to the origin w.r.t. the metric ds? =
2(X; — E)dz? [1]. Here £, € [info.,(H),0] is a threshold and dz? depends on the masses.
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For F in the continuum pg(z) is not defined anymore because ¥, — E is then negative in
some directions z/|z|.

In the present work we derive a bound similar to (1.1) for arbitrary eigenvalues in the
case where an isotropic exponential bound is a priory given. The precise assumption is that

ell=aelzly e 12 Ve >0 (1.2)

for some a > 0. Using this and the method of proof for (1.1) we arrive at a non-isotropic
bound pg o, which, after the substitution

Y = Ly = max(Z;, E + o?/2) (1.3)

in Agmon’s metric, is defined in the same way as pg. Our bound pg , thus improves on «a|z|
in directions where £; — E > 1a® and coincides with it elsewhere. If E is a discrete eigen-
value then a = 0 in (1.2) is admissible as well and pg o=0 = pg. To justify our assumption
we recall that (1.2) for non-threshold eigenvalues follows from a well-known theorem due to
Froese and Herbst, obtained under a further decay assumption on the potentials [4] (see also
[7, 5, 6]). This theorem says that E + 1o is a threshold (or infinite), like ¥, by the way, if

o is the largest constant for which 3 obeys (1.2).

Similar results were previously obtained by Perry and Derezinsky [8, 3]. Perry studied
polynomially bounded solutions of the Schrédinger equation Hy = E1, i.e. ¥ € L (R™) for
some s > 0 rather than ¥ € L?(R"), and he obtained that e(!~*)?) € L2 where p = pE a=o
in our notation. Derezinsky starts from an eigenstate which has an exponential bound g in
a region bounding a cone in the configuration space. He then obtains an exponential bound
for the eigenfunction in the cone which involves a geodesic distance as well as the function

g.

2 Notations and Result

We work in the frame of generalized N-body quantum theory as presented for instance in
[7, 5, 6].

An N-body quantum system is characterized by a triple (X, L, V), where X is a finite
dimensional Euclidean space, L a finite family of subspaces of X, and V a potential in X.
The family L contains {0} and X, is closed under intersection, and the potential V has for
each a € L a decomposition

V(z) = V¥nz) + L,(x) (2.4)
into a potential V?, depending only on the orthogonal projection 7°z of z onto a*, and
an intercluster potential /I, which is subject to decay assumptions. For our purpose the
following properties are convenient and sufficient:

(1) Ve L} .(X) and V_ is —A/2 form-bounded with bound smaller than 1.
(2) Ii(z)—0 |z]s = o0

Here A denotes the Laplace-Beltrami operator with respect to the metric g(z,y) = zy (inner
product) in X, V_(z) := max(—V/(z),0), and |z|, := minez, |z°]. (1) and (2) ensure that
the decomposition (2.4) is unique, and that V¢ o 7 has again property (1) in X.
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The Hamiltonian of the system is formally given by
1
Hz—§A+V in L*(X),

and in this paper defined as the unique self-adjoint operator associated with the closure of the
form [dz (3|Ve(z)®+ V(a:)[cp(:c)|2) on C5°(X). The cluster decomposition Hamiltonians
H, = —A/24V*or? are defined analogously. We set ¥ := inf 0.,,( H) and X, := inf o( H,).
The function X, introduced above then equals ,,(;) where m(z) := Myer.zes b-

Theorem 2.1 Suppose Hy = Evp and e~k € L2(X) for all ¢ > 0, where E < 0 and
a>0,or E<Y and a > 0. Then

ell=Weay, € [2(X) Ve>0,

where pg o, after the substitution ¥, — ¥, := max(Z,, £ + 1a?) in the metric, is defined in
the same way as Agmon’s bound pg.

Remarks. (1) Our proof employs an approximation argument which requires a non-trivial
isotropic exponential bound. This is the reason for the condition a > 0 in the case £ > ¥.
If £ < ¥ one has the bound originally due to O’Connor, which, incidentally, is also needed
in preofs of Agmon’s result [1, 7].

(2) A pointwise bound like the one in (1.1) immediately follows from the theorem if one
has a subsolution estimate (2, 1]. To prove such an estimate slightly stronger assumptions
on V_ are sufficient (see [1, Theorem 5.1]).

Here we only sketch the idea of the proof. The details may be found in [5]. We shall call
f an exponential bound (of ) if e'=9¥4) € L*(X) for all ¢ > 0. Our main tool to obtain
exponential bounds is the following lemma.

Lemma 2.2 Suppose HY = Ev¢, f,J € C=(X), J,VJ and V[ are bounded, and f > 0.
Then

1
J (H - SV - E) J> 680
for some § > 0 implies
[ /el < const |ix(z € supp(VJ))e' ¥ .
The constant depends on §,J,VJ and Vf.

Using this lemma with J being a smoothed characteristic function of the complement of
cones containing the subspaces a € L for which £, < E + 1a®, we show that f > 0 is an
exponential bound if

Vi) <2E - E) 2% < nlel, le 2 1 (2.5)

for all @ € L and some 1 > 0. The condition (2.5) allows us to establish the assumption of
the lemma for (1 —€) f, and furthermore it ensures that f(z) < a|z|+ const in {z|J(z) # 1}
by choice of J. Therefore (1 —J)e(!=¥)/3 € L? by assumption (1.2) and hence Je(!=6)/3) € L?
by the lemma. The theorem now follows by an approximation argument given in [7].

Acknowledgment I thank W. Hunziker for drawing my attention to the problem studied
here.
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