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Two—loop effects of enhanced electroweak strength
in the Higgs sector

By Adrian Ghinculov

Albert-Ludwigs- Universitat Freiburg, Fakultat fiir Physik,
Hermann-Herder Str.3, D-79104 Freiburg, Germany

(14.XI.1996)

Abstract. The selfcoupling of the Higgs field grows with the mass of the Higgs particle and induces
potentially large radiative corrections in the electroweak model. The technical aspects of performing
multiloop calculations in the massive case are discussed briefly. I review the status of two-loop
calculations of radiative corrections of enhanced electroweak strength which are relevant for the
Higgs physics. I discuss the relevance of the existing results with respect to heavy Higgs searches
at future colliders and their implications regarding the validity range of perturbation theory.

1 Introduction

The Higgs resonance required by the simplest version of a spontaneous electroweak symmetry
breaking sector has eluded so far a direct detection. Indirect measurements of the Higgs mass
still give rather loose bounds because of screening of the Higgs effects in low energy radiative
corrections. In fact, a minimal Higgs with a mass of the order of 1 TeV is not excluded by
the available data [1]. Still, the possibility of a heavy Higgs boson raises both theoretical
and phenomenological problems because the selfinteraction of the Higgs field increases with
the Higgs mass.

How does the Higgs sector behave in the strong coupling regime? This is an interesting
question for which no definite answer exists yet. A number of approaches were proposed,
although each has its own problems. An idea suggested long time ago by Veltman implies
the formation of bound states of weak bosons which would behave like Higgs bosons with
enhanced couplings to the vector bosons and to themselves [2]. For gaining insight into
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the behaviour of the Higgs sector at large selfcouplings, the nonperturbative 1/N expansion
technique was developed. These models can be solved easily at leading order, and reveal for
instance an interesting relation between the Higgs mass and width which deviates from the
perturbative result for large couplings [3]. In particular, the Higgs mass saturates at a value
of the order of 900 GeV when the quartic coupling is increased. Unfortunately, calculations
beyond the leading order in the 1/N expansion are technically extremely difficult [4]. Also
these models suffer of pathologies associated with the possible triviality of the ¢? theory when
treated as renormalized fundamental theories. These problems show up in the presence of
tachyons in the spectrum of the theory at leading order, and lead to problems in the higher
orders of the 1/N expansion. To avoid this kind of inconsistencies, one can treat the theory as
an effective theory by including explicitly a cutoff [5]. On the phenomenological side, there is
a large number of approaches based on leading order 1/N expansions, low order perturbation
theory, and unitarization procedures, which aim at treating a strongly selfinteracting Higgs
field, e.g. [6]-—[8] and references therein.

Setting upper bounds on the Higgs mass by requiring that the Higgs boson mass be
lower than the triviality scale was attempted by lattice calculations [9]. These results must
be interpreted with caution because the bounds obtained are regularization dependent - for
instance they vary with the geometry of the lattice [10]. On the other hand, the top quark
may play quantitatively a role in the triviality issue because of its large Yukawa coupling,
as suggested by the position of the Landau pole. Unfortunately, evaluating these effects
quantitatively by means of lattice calculations is not straightforward because of well-known
complications related to treating fermions on the lattice [11]—[13]. The presence of a heavy
scalar sector may also influence the triviality bounds [14]. Moreover, even the triviality of
the ¢* theory is, strictly speaking, still an open question. For a discussion of the triviality
of the ¢* theory see for instance ref. [15]. All these considerations shed doubts that the
triviality bounds on the Higgs mass set by lattice Monte Carlo simulations of the ¢* theory
should be interpreted as actual bounds on the Higgs particle of the standard model.

Before nonperturbative effects enter the scene, there is a regime where perturbation
theory still can be used in the Higgs sector, but the problems related to the divergence of
the perturbation series start to show up in the form of large radiative corrections, unitarity
violations and large renormalization scheme dependency. These effects are transmitted to the
gauge sector because of the equivalence theorem. For even larger couplings, the perturbation
theory totally breaks down. and one cannot rely anymore on perturbative results. This raises
a number of questions in view of the heavy Higgs searches at future colliders. At present all
plienomenological studies of the Higgs production and decay mechanisms at future colliders
are based on perturbation theory. One would like to know which is the reliability range of
these predictions, how large are the theoretical uncertainties of the calculation, and how far
in the loop expansion it makes sense to go for improving the result.

To study such higher order effects, one needs techniques to deal with massive multiloop
Feyvnman diagrams. Considerable progress has been made recently in handling multiloop
diagrams at two-, three- and four-loop order in QCD - see, for instance, ref. [16]. Still,
the massive case is technically much more difficult, and calculations of physical processes at
two-loop level were not available until recently, in spite of the considerable effort devoted
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to solving massive two—loop diagrams. The reason for this is that such diagrams are in
general very complicated functions which cannot be expressed analytically in terms of usual
functions — see for instance ref. [17]. Therefore one has to rely at least partly on special
techniques for performing calculations of physical relevance.

With the advent of powerful methods for treating such diagrams, a number of physical
processes involving the scalar sector were calculated recently at two-loop level, and provide
more insight into the structure of electroweak radiative corrections at large Higgs selfcou-
pling. I review in this paper the status of these calculations and their significance for heavy
Higgs searches at the LHC.

2 The framework and the techniques

The leading my electroweak corrections to processes which involve the symmetry breaking
scalars at energies not negligible when compared to the Higgs mass can grow as m% in the
one-loop approximation and as mj, at two-loop. Of course, the leading contributions must

cancel in the low energy limit due to the screening theorem.

The evaluation of the leading my electroweak corrections can be greatly simplified by
using the equivalence theorem and by working in Landau gauge, as it was noticed in [18],
where this scheme was used for calculating the Higgs decay width into longitudinal vector
bosons at one-loop. By counting powers of my, it follows then that the only contributions
of the desired order come from the diagrams which contain only scalars. Therefore it suffices
to consider only the sigma model Lagrangian of the Higgs sector:

1 1
£ = 5(0:Ho)(0" Hy) + 5(9u20)(9"20) + (Dt ) (0"

r' s

2
ms, 1 1 1. ., 2my, 44t .
—? = (wiwy + -z2 + -HE + *Ho+ —1* , (2.1)
2 8 0 o0 9 0 2 0 m?
Miy, g2 o
m;VO
Fnna mk .y 2 el "2 T - . — 71/2 1/2
where m3;, = mj —dmj;, miy, = mj, — dmiy are bare masses, and Hy = Z;/"H, 20 = Zj "z,

wy = Zé;/?tt' are bare fields. The tadpole counterterm 4t is determined by the condition that
the Goldstone bosons remain massless and that the vacuum expectation value of the Higgs
field v does not receive quantum corrections. One can define the gauge coupling constant g at
low energy by using the muon decay as g> = 4y/2mj}, Gp, with Gp = 1.16637- 1075 GeV =2,
and my = 80.22 GeV'. The gauge coupling constant is not renormalized at leading order in
nmyr.

Most phenomenological studies related to heavy Higgs searches at future colliders use
the OMS renormalization scheme, and this is the scheme adopted in the following as well.

One 1mposes the following renormalization conditions to fix the counterterms at the desired
order:
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%ﬁun(’»" =my)+1i6Zy =0

Sutuw-(K2=0)—idt —i6t6Zc =0

5% S - (k2 =0) 4162 =0

Swew-(k2=0)+iém?, =0 . (2.2)

In this notation, the self-energies £ contain the loop and loop-counterterm self-energy
diagrams, but not the pure counterterm diagrams.

It is straightforward to evaluate eqns. 2 at one-loop order and to determine the one-loop
counterterms.

In order to determine the counterterms at two-loop order, one has to calculate two-loop
self-energy diagrams of the topologies shown in fig. 1. It is well-known that all two-
loop diagrams with zero external momenta are expressible analytically in terms of Spence
functions [19]. This is the case with the Goldstone and the vector boson self-energies. If one
needs to evaluate the diagrams at finite external momenta - as is the case with the Higgs
self-energy - this is in general not possible anymore. For these cases a method was developed
in ref. [20] which is a hybrid of analytical and numerical techniques. It can be used to treat
any two-loop diagram with arbitrary internal masses and for arbitrary external momenta.

In fact, the problem at hand is considerably simpler because it is essentially a one-scale
problem. The Goldstone mass is zero in Landau gauge, and the only mass scale is the Higgs
mass. The nonvanishing external momentum is also s = m3 because of the on-shell renor-
malization scheme. This is a considerable simplification when compared with the general
mass case, and indeed in ref. [21] it was possible to evaluate most diagrams involved in the
calculation of the on-shell scalar self-energies analytically. Recently, Borodulin and Jikia
succeeded to calculate these counterterms completely analytically [22]. This was possible
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because of adopting the on-shell renormalization scheme. The functions involved are more
complicated for off-shell momenta. Also working in lower dimensions can make the cal-
culation simpler. For instance, in ref. [23] the Higgs self-energy was derived completely
analytically at too-loop order as a function of the external momentum in three dimensions.

However, in more complicated cases, like for instance more external legs or arbitrary
internal masses, numerical approaches seem unavoidable in realistic calculations. Details of
such a general approach were described in ref. [20, 25]. Here I will only give a sketch of
these techniques. The main idea is that any two-loop diagram can be expressed in terms of
two basic scalar integrals F and G, which are defined as follows:

G(my, my, my; k%) =
1

d"p d" _ _
/ # q(p?-+-mz)2[(q+l\ )24+ m3][(p+ q)2 + m3]
"

12
4~ [ 1427+ 2log(mm?)]? — 1 + g(my, ma,m3; k) } + O(e) (2.3)

1
[ 1 4 2y 4 2log(mm? ]+ + —

‘hlv—-

2
Tf"{—o*'

f(rnl,mg,:vng,kz) =
k
_jdnpdnq i (p+4q). =
(P2 + m)[(q + k)% + m3](r2 + m3)
9

1 1 2
k24 5 t5— 5[7 + log(mm?)] + f(my, ma, ma; k%) } + O(e) . (2.4)

The finite parts f and g of the scalar integrals F and G cannot be expressed in the general
mass case in terms of usual functions, although it may be possible to relate them to the Lau-
ricella function. For evaluating these functions numerically with high accuracy in an efficient
way 1t is more convenient to use the following one-dimensional integral representations:

; ! 1
glm,ma,myik?) = [ de[Sp(=—) + Sp(—)
0 1-— 1 1-— Y2
Yi &
Y 21 , 2.
+y1log =+ log 1 (2.5)
; 1 1 —p?
f(my, mg, mg; k%) = /0 dz | 2';
1, ) 1, Y2
—=y; 1 — —y5 ; 2.6
5 Y1 108 ) Yy 105 e — 1 ] (2.6)
where the following notations were introduced:
K2 —p?+ VA
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A = (14 &% —p?)? + 4k2u® — dic?y |
2 = a:L'TI-b(l—‘-:c)
x(l —x)
2 2 2
mj mj 9 k
= —_— b = ee— v = — 2.7
“ m? m? " m? (2.7)

After continuing the integrands at complex values of the Feynman parameter 2 and care-
fully inspecting the analytical properties of these functions, one is able to define an optimized
integration path in terms of spline functions along which the numerical integration can be
performed very efficiently. The evaluation of these functions by numerical integration with
an accuracy of 8 digits takes typically about 50 ms on an HP Apollo 9000/720 workstation.

This technique was used in ref. [20, 26] to calculate the counterterms of eqns. 1 at two-
loop order. A complete list of the one- and two-loop counterterms can be found for instance
in ref. [25]. They agree with the results of ref. [21], which used different methods and a
slightly different definition of the counterterms. Recently a similar technique was proposed
for calculating a certain class of massive three-loop Feynman diagrams efficiently [24], but
unfortunately at present there is no general solution which would allow one to deal in a
systematic way with all possible topologies of massive three-loop diagrams.

3 Heavy Higgs decays at two—loop order

Heavy Higgs bosons mainly decay into pairs of longitudinal vector bosons and into tt pairs.
At leading order, these decay widths are given by the following expressions:

3/2
pltree)  _ 3g% my m? 1—4 m?
H-u 327 mi m¥
1/2
I“(tree) - g2 n?g‘f 1 _ 4m%|’ / 1 _ 4”1’%" + 12m‘ll4/
HoW+w= 647 mdy, m3, m# mi |
2 3 211/2 2 4
g* m3, m? m% m$
L = Hlj_4—2| |1-42Z41272] . 3.1
a2t 1287 miy, m? m mi; (3.1)

For large my, the decays are affected by potentially large electroweak corrections of order

A= (ﬁ—rnﬂuﬂ-)? at one-loop order, and of order A? at two-loop.

The leading my radiative corrections to the H — tt decay come entirely from the coun-

. - . . 2 .
terterm contributions, and are given by a correction factor Zy /(1 — 5—;“#). Triangle vertex
w
diagrams do not contribute at the order considered here hecause these diagrams contain
additional powers of the quark mass. Therefore the leading my corrections to the top de-

cay width of the Higgs boson require only the evaluation of self-energy diagrams. These
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Figure 2: The topologies of the vertex diagrams which contribute to the H — ww decay at
two-loop order.

corrections were calculated at two-loop order in ref. [26] with the methods described in the
previous section, and agree with ref. [27] which uses different methods:

ree 13 ™ 3 . _ _ B
Do = T X [1 + A (§ - 1[_) —A?(.510234£25-10 4)}
= Ty [1+.264650 A — (151023 £2.5-107 ) 7] . (3.2)

For calculating the leading m; radiative corrections to the Higgs decay into vector bosons
in a simple way, one can use the equivalence theorem and replace the external vector bosons
by the corresponding Goldstone hbosons. The one-loop result was derived for instance in ref.
(18]. For extending this result at two-loop order, one has to calculate the diagrams shown
in fig. 2. This was done in ref. [25] by using the methods described in the previous section,
and the result reads:
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“igure 3: The magnitude of the leading my radiative corrections to the H — tt (a) and the
7 — ww (b) decays. The plots show the ratios of the decay widths at one-loop (solid line)
umd two-loop (dashed line) to the tree level decay widths as a function of the on-shell Higgs
nass.

(tree)

FH—»H«'HV-.ZOZ“ = FH—»IV+H'-.ZDZO X

19 572 33« o f om -
l1+,\(§+ R )+/\(.91103:1:8.2-10 )

L e~ zoz0 [1 4350119\ + (L97103 £8.2-107) A% | (3.3)

This result was confirmed very recently by an independent calculation by A. Frink, B.A.
<niehl, D. Kreimer and I<. Riesselmann (28], who used different methods for the evaluation
of the two-loop integrals which are involved.

Of course, in eqns. 9 and 10 some incomplete subleading contributions are present in
he radiative corrections. They appear if one multiplies the full tree level width, which con-
-ains for instance subleading contributions from the phase space integration and from the
ongitudinal vector bosons, by the radiative correction factor calculated in the leading my
pproximation. These terms are of the same order in the coupling constant as the theo-
etical uncertainty related to the use of the equivalence theorem while calculating radiative
orrections. [t i1s thus not possible to decide unambiguously whether it is better to keep
hem or to drop them without calculating the complete subleading contributions explicitly.
Numerically, this ambiguity is small and can be safely neglected.

The structure of the heavy Higgs radiative corrections to the Higgs decay width into
ermions and into vector bosons is shown in fig. 3. Namely, the ratio of the decay widths
ncluding the O(A\) and O(A?) radiative corrections to the tree level widths is plotted as a
unction of the Higgs mass. It should be remembered that the my parameter is the on-shell
diggs mass as defined by the renormalization conditions of eqns. 2.
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In the case of the H — tt decay, the one-loop and the two-loop corrections have opposite
signs and therefore partly compensate each other. For a Higgs mass my ~ 1.1 TeV the
two-loop correction becomes as large as the one-loop contribution. This is an indication
of the validity range of perturbation theory in the on-shell renormalization scheme. The
perturbative series is at best asymptotic. Its use is motivated by the assumption that its first
few terms display a reasonable convergence towards the unknown exact solution. If already
the two—-loop correction is as large as the one-loop one, the series appears to show no sign
of convergence at all, and the validity of the perturbative approach becomes questionable.
This criterion for the breakdown of the perturbation theory was used previously by van der
Bij and Veltman [19] in the case of the heavy Higgs contributions to the p parameter, and by
van der Bij for the heavy Higgs corrections to the trilineal vector boson couplings [29]. They
derived bounds on the Higgs mass as heavy as 3—4 TeV because of the screening of heavy
Higgs effects. For the fermionic Higgs decay no screening is present, and in this case the
corresponding bound is considerabiy lower. One also notices that the sum of the one- and
two-loop radiative corrections is quite small over the whole range of validity of perturbation
theory up to about 1.1 TeV. Considering also the smalluess of the tf branching ratio of heavy
Higgses, this makes these effects quite marginal from a phenomenological point of view.

The situation is different with the Higgs decay into vector bosons. The two-loop correc-
tion becomes larger than the one-loop contribution for a Higgs boson mass larger than ~ 930
GeV. The one- and two-loop corrections have the same sign and result in an enhancement
of the decay width with respect to the tree level. At my ~ 930 GeV the one-loop correction
is still rather small, at 13% level. The one-loop correction becomes numerically large only
for considerably heavier Higgses, of the order of 1.3 TeV, as it was noticed in ref. [18]. Still,
the perturbation theory breaks down for a Higgs mass larger than about 930 GeV in the
OMS scheme. This is an interesting result which shows that a perturbative solution may be
unreliable even if the one-loop radiative corrections are numerically small.

Before concluding this section, I would like to comment briefly on some speculations
about the possible relevance of the perturbative result for a large Higgs mass, where the
perturbative series diverges very badly. In an attempt to extend the perturbative result in
this zone, one can try to construct a diagonal sequence of Padé approximants, as pointed out
in ref. [26]. The hope is that this would sum up the asymptotic series, but of course there is
no formal proof that this procedure converges. However, these speculations are encouraged
by a relation which exists at least at leading order between the Padé approximants and the
nonperturbative 1/N expansion of the O(N) sigma model [30]. In the case of the fermionic
Higgs decay, the [1/1] Padé approximant is a well behaved function which tends to a constant
as the Higgs mass is increased. Still, in the case of the Higgs decay into vector boson pairs the
[1/1] Padé approximant has a pole for a finite value of the Higgs mass, and so the relevance
of the Padé approximant approach is not clear.
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Figure 4: The structure of the radiative corrections of enhanced electroweak strength to the
tt - H — 2z scattering process. No box diagrams contribute in the order considered here
because they are of higher order in the quark mass.

4 Heavy Higgs searches at hadron colliders

For my ~ 930 GeV, above which perturbation theory breaks down totally at least in the
OMS renormalization scheme, the total one- and two-loop radiative corrections to the Higgs
decay into vector bosons are quite substantial, of the order of 26%. This leaded us to consider
the role of this type of effects in other processes of interest in view of heavy Higgs searches
at future colliders. In particular, it would be interesting to investigate the relevance of
radiative corrections of enhanced electroweak strength in Higgs production by gluon fusion
and subsequent decay into vector bosons.

The Higgs boson can be produced by gluon fusion via a heavy quark loop. This processes
is of special interest for Higgs searches at the LHC. It was studied extensively at leading
order. and the next-to-leading order QCD corrections were calculated by M. Spira et al.
[31]. Here we are interested in the next-to-next-to-leading order radiative corrections of
enhanced electroweak strength to this process.

Before calculating the NNLO corrections to the gg = H — zz process, it is useful to
consider first the related tt - H — 2z scattering. The structure of the leading my radiative
corrections to this process is shown in fig. 4. The only contributions which need to be
considered are the corrections to the Higgs propagator and the corrections to the Htt and

2z vertices. No other diagrams can contribute at the order considered here. For instance,
box diagrams are of higher order in the top quark mass.

In order to calculate the radiative corrections to this scattering process consistently as
an expansion in the coupling constant, one needs to pay special attention to the treatment
of the Higgs resonance. The Dyson summation introduces inverse powers of the coupling
constant. As a result, for deriving the complete NNLO corrections to the tt — H — zz
process in the resonance region, one needs to include the two-loop corrections to the Yukawa
coupling and to the Hzz coupling, and the Higgs self-energy up to three-loop. In fact, only
the imaginary part of the three-loop Higgs self-energy is needed at the order considered
here, and this can be calculated from the two-loop Higgs decay into a pair of vector bosons
and from the tree level Higgs decay into four vector bosons. The details of the calculation
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Figure 5: The effect of the NNLO corrections of enhanced electroweak strength on the shape
of the Higgs resonance in the tt - H — 22z scattering for my = 850 GeV. The solid line is
the tree level and the thin line is the NNLO result.

can be found in ref. [32]. By taking into account all relevant contributions, one obtains the
full NNLO corrections to the shape of the Higgs resonance which are shown in fig. 5.

At this point one can calculate the corrections to the gluon fusion process. Apart from
the triangular Higgs production diagram, there are also background box diagrams which
contribute to the gg — ZZ process, as shown in fig. 6. The two types of diagrams behave
differently as a function of the quark mass. The triangle diagram results in an effective
Hgg coupling in the heavy quark limit, while the box diagrams decouple. The leading my
correction to the triangle diagram are the same as those derived for the tt - H — 22
scattering, and are independent of the top mass. The box diagrams can receive corrections
from the rescattering of the outgoing vector bosons. These corrections are formally of order
A, but they depend on the precise ratio of the top and Higgs masses. Because the t threshold
of ~ 360 GeV is not negligible with respect to the Higgs mass, which will be taken of the
order of 700-—900 GeV, an expansion in the the top mass will probably be a not very
useful approximation, and the full dependence on the top mass would need to be taken
into account in these diagrams. This type of combined top-Higgs mass corrections may
be numerically relevant for heavy Higgs searches at hadron colliders. Technically, their
evaluation is difficult because one needs to calculate two—loop box diagrams and even three-
loop vertex diagrams. Here I will consider only the universal corrections to the triangle
diagram, which are independent of the top mass. This approximation is exact in the heavy
top limit, when the box diagrams decouple.

We have incorporated the NNLO radiative corrections of enhanced electroweak strength
in a Monte Carlo simulation of the Z pair production at the LHC. The details of the cal-
culation can be found in ref. [32]. The results of the simulation are shown in figs. 7 and
8. Comparing with the tt - H — :z process, one notices that the effect of the radiative



Shinculov 833

g Z0 g z0
g z° g Zh
g Z0 g
ZO
ZO
g z° g

Figure 6: The leading order diagrams which contribute to the gg = ZZ process.

orrections in gluon fusion is an enhancement of the cross section because of interference
»ffects with the box diagrams. This enhancement is at the level of 10-—20%, depending on
‘e mass of the Higgs boson.

5 Conclusions

Higher order radiative corrections of enhanced electroweak strength become increasingly im-
portant as the mass of the Higgs boson is increased. They are interesting phenomenologically
mn view of Higgs searches at future colliders. They also provide insight in the breakdown of
perturbation theory as the Higgs selfinteraction becomes strong.

The calculations in the Higgs sector beyond one-loop level are challenging because they
mvolve the evaluation of massive diagrams. A powerful technique is available which allows
one to deal with any two-loop diagram. Similar methods were developed for a class of
three-loop diagrams as well.

These techniques were used for calculating a number of processes involving the Higgs
sector of the standard model at two-loop level. This allows one to set perturbative bounds
on the mass of the Higgs particle, bevond which the perturbative approach is not reliable
anyniore.
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Figure 7: Invariant mass distribution of the Z° pairs at LHC. The processes considered are
g9 = ZZ — 2(utp”) and qf = ZZ — 2(ptp”). We consider a CM energy of 14.5 TeV.
and for the outgoing muons we request pr > 20 GeV and |y| < 2.5. The solid line is the
NNLO cross section, the dashed line is the tree level cross section. and the dotted line is the
background (no Higgs production diagram). a) shows the total cross section, and b) shows
the Higgs signal, with the background subtracted.



thinculov

-5
x 10
-4 " _
E 0 g 0.16 |
2 S
-5 [
10°F 012 |
T 0.08 -
10 = [
i 004 |-
|0--J —_ Ly 5 " s
E 1 = = L J XL | 1 L 1 11 0 >‘.J 1 l 1 1 s 1 ] 1 2 2 1 l L L L 1 l 1-- -
0 200 400 100 200 300 400 500
GeV GeV
a) b)
> 1()-4 >
:‘ -6
53 F S x10 [
2 -4 .
" 06
10- :E— lTlH= 800 GeV E
g 04 |
_6k :
IR RTEEN SRS BNE N KR
100 200 300 400 500
GeV
b)
>
Q
9
|

Figure 8: Transverse momentum distribution

=
111111111111[1111!1111

100 200 300 400 500

GeV

b)

of the Z° bosons. Same as fig.

(.

835



836 Ghinculov

An interesting point is that perturbation theory may cease to be reliable already for
values of the coupling for which the one-loop corrections are still rather small, as it was
shown explicitly in the case of the Higgs decay into vector bosons.

Finally, the analysis of the two-loop heavy Higgs effects in the Higgs boson production
by gluon fusion shows that this type of effects may be numerically important for heavy Higgs
searches at the LHC.

An interesting point which I did not discuss is the longitudinal vector boson scattering.
This process shows promise of providing insight in the spontaneous electroweak symmetry
breaking mechanism, and becomes important as a source of Higgs bosons at hadron colliders
for my ~ 1 TeV. This process was studied at one-loop order in ref. [33, 34]. At two-loop
level only a calculation in the high energy limit exists, where the Feynman diagrams which
are involved are simpler [21]. A complete two-loop analysis would be difficult because it
involves the calculation of two-loop massive box diagrams. This is an interesting problem
which deserves further investigation.
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