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Abstract. We present here a simple accurate method for the numerical integration of the radial
Schrödinger equation. The formula considered contains free parameter are defined in order to

integrate exponential functions. Numerical results also indicate that the new methods are much

more accurate than other well known explicil methods.

1 Introduction

In many scientific areas there is a real need for the numerical solution of the Schrödinger
equation. Some of these areas ate the nuclear physics, the physical chemistry, the theoretical
physics and chemistry (see [13,27]).

There is much activity in the area of the solution of the one-dimensional Schrödinger
equation. The result of this activity is the development of a great number of methods (see

[1-4], [5-30]).



782 Simos

The one dimensional Schrödinger equation has the form:

y"(x) [l(l + l)/x2 + V(x)-k2]y(x). (1.1)

where k2 is a real number denoting the energy, I is a given integer and V is a given function
which denotes the potential. The function W(x) 1(1 + l)/x2 + V(x) denotes the effective
potential, which satisfies W(x) —» 0 as x —> oo. The boundary conditions are:

2/(0) 0 (1.2)

and a second boundary condition, for large values of x, determined by physical considerations.

Boundary value methods based on either collocation or finite differences are not very
popular for the solution of (1.1) due to the fact that the problem is posed on an infinite
interval. Initial value methods, such as shooting, also need to take into account the fact that
| y'(x) | may be very large near x 0. The aim of this paper is to derive more efficient

integrators to solve equation (1) in a shooting approach.

One of the most popular methods for the solution of (1.1) is Numerov's method.
This method is only of order four, but in practice it has been found to have a superior
performance to certain higher order four-step methods. The reason for this, as proved in
[21], is that the Numerov method has the same phase-lag order as the four-step methods
but it has a larger interval of periodicity. Another disadvantage of the four-step methods
is that with these methods we need more starting values. These reasons suggest that the

investigation of linear multistep methods is not a fruitful way of deriving efficient high order
methods.

An alternative approach to deriving higher order methods for (1.1) was given by Cash

and Raptis [2]. In [2], a sixth order Runge-Kutta type method with a large interval of
periodicity was derived. This method has a phase-lag of order six (while Numerov's method
has phase-lag of order four) and a much larger interval of periodicity titan the method ofj

Numerov. More recently Simos [28] lias derived a sixth order method with phase-lag of order

eight and with a large interval of periodicity.

The purpose of this paper is to develop a simple and accurate exponentially fitted numerical

method for the solution of the radial Schrödinger equation. The new method is explicit
and has a phase-lag of order infinity (phase-fitted). We have applied the new methods to the

resonance problem (which arises from the one-dimensional Schrödinger equation) with two
different types of potential. Note that the resonance problem is one of the most difficult to
solve of all the problems based on the one-dimensional Schrödinger equation because it has

highly oscillatory solutions, especially for large resonances (see section 4). We note, also,

that we present an explicit method which is very simple in programming.

2 Exponential multistep methods

In this section we explain the derivation of the exponentially fitted methods.
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For the numerical solution of the initial value problem

ll(r) f(x,y), yU)(A) 0, j 0,l,...,r-l (2.1)

the multistep methods of the form

k

Ii=0
J2 aiVn+i hT J2 l>if(xn+i, Vn+i) (2-2)

over the equally spaced intervals {xi}k=0 in [A, D] can be used.

The method (2.2) is associated with the operator

L(x) 5>,z(a' + ih) - hTb,z(T)(x + ih)] (2.3)

where z is a continuously differentiable function.

Definition 1 The multistep method (2.2) called algebraic (or exponential) of order p if
the associated linear operator L vanishes for any linear combination of the linearly
independent functions \,x, x2,..., x',"rr_1 (or cxp(r0x), exp(v\x),..., cxp(vp±r-\x) where v„ i
0,1,... ,p A r — 1 are real or complex numbers).

Remark 1 (see [34]) If v, v for i 0,1,... n, n <p + r- 1 then the operator L
vanishes for any linear combination of exp(vx), xcxp(vx), x2cxp(vx),..., xnexp(vx), cxp(vn+ix),
...,exp(vp+r^ix).

Remark 2 (see [34]) Every exponential multistep method corresponds in a unique way, to

an algebraic multistep method (by setting v, 0 for all i).

Lemma 1 (For proof see [34] and [35]) Consider an operator L of the form (2.3). With

v 6 C. It 6 TZ, n > r if v 0. and n > 1 otherwise, then wc have

L[xmexp(vx)] =0, 771 0,1,..., 7i - 1, L[xncxp(vx)) ^ 0 (2.4)

if and only if the function tp has a zero of exact multiplicity s at cxp(vli), where s n

if v jt 0, and s n - r if v 0, tp(w) p(w)/logrw — o(w), p(w) Y),k=0ei,w' and

^H El0b,w\

Proposition 1 (For proof see [18] and [21]) Consider an operator L with

L[exp(±Vix)} 0, j 0,1,..., k < P + r- -
1

(2.5)

i/tC7i for given ai and p with a, (—l)rcik-, there is a unique set of bi such that b, l>k-%-

In the present paper we investigate the case 7' 2.
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3 The new method

Consider the method:

Vn+i= Tyn -yn-!+ Iryl (3.1)

yn yn-ah?(iï+1-2y'; + y';_l) (3.2)

2/n+l + CtlVn + //n-l h'Mil'n+l + Cl) + hAl'n\ (3-3)

where, for example, y"+l f(.r„+i)yn+\ "ith ,r,1+1 xn + h, f(xn+i) 1(1 + l)/x£+1 +
V(xn+i)-k2.

We have chosen to consider this family of methods because it has four free parameters.
This is sufficient to allow the construction of methods which integrate more exponential
functions than the analogue Runge-Kutta-type method, with algebraic order six, proposed
by Raptis and Cash [20].

We require that the family of methods (3.1)-(3.3) should integrate exactly any linear
combination of the functions:

{exp(±77.r), :rexp(±7j3:), x2 e\p(±vx), x3exp(±7jx)}. (3.4)

To construct a method of the form (3.1)-(3.3) which integrates exactly the functions (3.4),
we require that the method (3.1)-(3.3) integrates exactly (sec section 2):

{cxp(±t.'03;),exp(±t;1x),cx])(±7j2x),exp(±(;32')} (3.5)

and then put:
v0 v\=v2 v-i v. (3.6)

Demanding that (3.1)-(3.3) integrates (3.5) exactly, wc obtain the following system of
equations for b0,bi.a and ax

-a{ + b0 w2 (w2 + 2) + bx w] -abi wj 2 cosh(wj) (3.7)

where Wj v3-h,j 0,1, 2, 3.

Solving for b{, i 0,1, for a and ai we obtain:

_
-3(3w/2 + IG) cosh(w) + w(w2 + 33) sinh(w)

a\ —

b0

24

5wcosh(u;) — (wr 4- 5)sinh(w)
8tjj3

-w(7w2 + 10) cosh(tt)) + (w4 + I7w2 + 10) sinh(w)
~8vÄ

3w cos1i(tì.') - (ni2 + 3) sinh(w')

3w;2[-w(7w2 + 10) cosh(to) + (w4 + 17w2 + 10) sinh(w)]'

''1 JTT ' \^-°)
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The above formulae arc subject to heavy cancellations for small values of w vh. In
this case it is much more convenient to use the following scries expansion for the coefficients
bi, i 0(1)3 of the method:

ai -2 +
20160 453600 23950080

1 w4 w6
0 ~ 12

~
3360

~
90720

~

5322240 518918400 74724249600
w6

in - + + + - (3.9)1

6 1680 4536
v '

23w8 ww 61w12
+

2661120 6486480 37362124800'
1 w2 wA 277u;6

~3ÖÖ _ 42ÖÖ ~
236250

+
291060000

+
18847W8 31463k;10 13888499u;12

+ — +
189189000000 8939180250000 60786425700000000

The local truncation error of the above scheme is given by

(„(e) +v{4))i,r,
L.T.E.(h) =-(lln ±¥* >'1 +0(h8). (3.10)

If v ia, then the family of methods (4) is exact for any linear combination of the
functions:

{sin(cj)x), cos(cj)x), xsin(eßx), xcos(cpx), x2sin(epx), x2ce)s(ej)x), x3sin(eßx), x3cos(cf)x)} (3.11)

4 Stability and phase-lag analysis

If we apply the method (3.1)-(3.3) to the scalar test equation y" —fry, we obtain the
difference equation

yn+x-2Q(II2)yn+yn.l=Q (4.1)

where

nmA - 2 2 2

and H tph.

Q(II2) -51 - *&* + <*) +>ZfzEl + ^!Il (4.2)
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The stability polynomial of the difference equation (4.1) is given by

C(t;H2)=t2-2Q(H2)t + l. (4.3)

If we substite the coefliecients bn, V a{ and a given by (3.8) (with ?/• ?;/i and v icj>)

into (4.3) we obtain the following stability polynomial:

C(t; II2) t2 - 2cos(H)t + 1. (4.4)

We have the following definitions:

Definition 2 [13] A symmetric, two-step method with stability polynomial given by (4-3) is
said to have a non-zero interval of periodicity (0, 7/(2) if, for all H2 € (0, Tf2), the roots of
the stability polynomial satisfy

ti=,^"\ t2 e-i$W (4.5)

where 0 is a real function of II cph.

Definition 3 [29-30] A method is said to be phase fitted (or complete in phase) if it has a

phase-lag of order co.

Remark 3 A method is said to be phase fitted if Q(H2) eos(II).

Remark 4 A symmetric two-step method with stability polynomial given by (4-3) has an
interval of periodicity (0. Ill) 'X for all IT2 e (0, IT2), 1 ± Q(H2) > 0.

For the method derived in section 2 wc find that, for the values of coefficients given by

(3.8), 1 ± Q(H2) 1 ± cos(H) > 0 for all IT2 e (0, oo) - {II2 : // qx, q 1, 2,. ..} and

Q(H2) cos(H) i.e. the method is phase fitted.

5 Numerical illustrations

In this section we present some numerical results to illustrate the performance of our new
methods. We consider the numerical integration of the Schrödinger equation:

y"(x) (W(x) - E)y(x) (5.1)

in the well-known case where the potential V(x) is the Woods-Saxon potential

with z exp[(.r — Xn)/a],u0 —50, a 0.6 and A'0 7.0. In order fo solve this problem
numerically we need to approximate the true (infinite) interval of integration [0,oo) by a
finite interval. For the purpose of our numerical illustration wc take the domain of integration
as 0 < x < 15. Wc consider (5.1) in a rather large domain of energies, i.e., E G [1,1000].
The problem we consider is the so-called resonance, problem.
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5.1 The Resonance Problem
Woods-Saxon Potential

In the case of positive energies E k2 the potential dies away faster than the term l(l + l)/x2
and equation (1.1) effectively reduces to

y"(x) + (k2 - fc^M*) 0, (5.3)

for x greater than some value X.

The above equation has linearly independent solutions kxji(kx) and kxni(kx), where

ji(kx),ni(kx) are the spherical Bessel and Neumann functions respectively. Thus the
solution of equation (1) has (when x —> 0) the asymptotic form

y(x) ~ Akxji(kx) — Bkxiti(kx)
~ AC[sin(kx - irl/2) + tan S, cos(kx - itl/2)] (5.4)

where <5/ is the phase shift that may be calculated from the formula

_ y(x-:)S(x]) - y(.r])S(x-,)
{ànS'-

y(x])C(x2)-y(x2)C(xl)
(J-J)

for .ci and Xi distinct points on the asymptotic region (for which wc have that X\ is the

right hand end point, of the interval of integration and x2 i'i — h. h is the stepsize) with
S(x) kxji(kx) and C(x) kxni(kx).

Since the problem is treated as an initial-value problem, one needs y0 and y\ before

starting a two-step method. From the initial condition, y0 0. It can be shown that, for
values of x close to the origin, the solution behaves like y(x) ~ exi+1 as x —» 0, where c is an

independent constant. In view of this we take j/, /t'+1 [2,21]. With these starting values

we evaluate at xi of the asymptotic region the phase shift öi and the normalization factor C
from the above relations.

For positive energies one has the so-called resonance problem. This problem consists
either of finding the phase shift 6{E) 6i or finding those E, for E G [1.1000]. at which 6

equals tt/2. We actually solve the latter problem, known as "the resonance problem" when

tiic positive eigcncncrgics lie under the potential barrier.

The boundary conditions for this problem are:

y(Q) 0,

y(x) ~ cos[\/Ex] for large x.

The domain of numerical integration is [0, 15],
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In our numerical illustration we find the positive eigenenergies or resonances. For
comparison purposes we use the following fourth order explicit methods:

Method MI: Numerov's method made explicit of Chawla [31].

Method Mil: Explicit Numerov-tvpe method with minimal phase-lag of Chawla and Rao
[32].

Method Mill: Explicit Numerov-type method with minimal phase-lag of Simos [33].

Method MIV: New exponentially-fitted method.

We note here tha the Numerov's method made explicit of Chawla [31] gives must better
results when compares with the Numerov's method.

The numerical results obtained for the four methods, with stepsizes equal to li ^,
were compared with the analytic solution of the Woods-Saxon potential resonance problem,
rounded to six decimal places. Figures 1-4 show the errors Err —log\Ecaicu[alc,t — Eanaiyticai\

of the eigenenergies E0 53.588872 - £3 989.701916 for several values of n.

The performance of the present method is dependent on the choice of the fitting parameter
v. For the purpose of obtaining our numerical results it is appropriate to choose v in the

way suggested by Ixaru and Rizea [7]. That is, we choose:

(-50 -Efl'1 for x e [0,6.5] -.

(-E)1'2 for x e (6.5,15]
l j

For a discussion of the reasons for choosing the values 50 and 6.5 and the extent to which
the results obtained depend on these values see [7, pp. 25].

5.2 Modified Woods-Saxon Potential

In Figures 5-8 some results for Err -log\Ecaicu[atCd — EmaiyUcai\ of the eigenenergies E0

61.482588 - E3 1002.768393, for several values of n, obtained with another potential in

(5.1) are shown. This potential is

V(x) Vw(x) + I (5.7)

where Vy/ is the Woods-Saxon potential (5.2). For the purpose of our numerical experiments
we use the same parameters as in [7], i.e. D 20, 1 2.

Since V(x) is singular at the origin, we use the special strategy of [7]. We start the

integration from a point e > 0 and the initial values y(e) and y(t + h) for the integration
scheme are obtained using a perturbative method (see [6]). As in [7] we use the value e

for our numerical experiments.
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For the purpose of obtaining our numerical results it is appropriate to choose v in the

way suggested by Ixaru and Rizea [7]. That is, we choose:

f gta^aifor3;6[c>ai]
—Y^ for x e (ai, u,2)

V(af) for x e (a2,o.j]
V(15) forse (a.3,15].

where a,, i 1,..., 3 are fully defined in [7].

All computations were carried out on an IBM PC-AT compatible 80486 using double

precision arithmetic (16 significant digits precision).

6 Conclusion

We investigate here the explicit exponentially fitted methods. We note that the explicit
numerical methods are the most simple methods for programming purposes and for this
reason very simple for application in any problem.

The method proposed in this paper is the first explicit exponentially-fitted method. This
method is much more accurate than the Numerov-type methods of Chawla [31], Chawla and
Rao [32] and Simos [33].

The crucial concern when solving the Schrödinger equation is that the numerical method
should integrate exactly the functions (3.4) with m and p as large as possible, as shown by
[7] and [21].

As predicted by the analysis, method MIV is the most accurate of all the methods for
the problems tested.
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Figure 1: Values of Err for several values of n

for the resonance E=53.588872
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Figure 2: Values of Err for several values of n

for the resonance E=163 215341
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Figure 3: Values of Err lor several values of n
for the resonance E=34 1.495874
The nonexistance of a value for a
method indicates that Err is negative.
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Figure 4: Values of Err for several values of n
for the resonance E=989.701916
The non-existance of o value for a
method indicates that Err is negative.
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Figure 5: Values of Err for several values of n

for the resonance E=61.482588
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Figure 6: Values of Err for several values of n

for the resonance E= 173.075711
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Figure 7: Values of Err for several values of n
lor the resonance E=352.682070
The nonexistance of a value for a
method indicates that Ert is negative.
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Figute 8: Values of Err for several values of n

lor the resonance E= 1002.768393
The non-existance of a value for a
method indicates that Err is negative.
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