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Limiting Dynamics, KMS-States, and Macroscopic
Phase Angle for Weakly Inhomogeneous BCS—Models

By T. Gerisch and A. Rieckers

Institut fiir Theoretische Physik, Universitdt Tiibingen
Auf der Morgenstelle 14, D-72076 Tiibingen, Fed. Rep. of Germany

(21.VIII.1996)

Abstract. We study a class of inhomogeneous BCS-models (with complex momentum dependent
interaction coefficients) in terms of a generalized perturbation theory with possibly singular per-
turbations in the thermodynamic limit. We start from the averaged homogeneous model, which
we formulate by recent algebraic mean—field techniques. We arrive at a C*~dynamical system over
a classically extended observable algebra, the KMS-states of which are in a bi—unique correspon-
dence to the unperturbed ones. For the momentum dependent gap parameters a rigorous form of
the self consistency equation is derived. The macroscopic phase is evaluated as the average of the
momentum dependent gap parameter phases.

1 Introduction

In discussing many body systems there is a big difference between a strictly microscopic
derivation of a collective phenomenon and its anticipation by making an intuitively motivated
ansatz. In a strictly microscopic discussion the collective variables should be formulated in
terms of (limits of) microscopic expressions, which often have the form of an averaging
procedure. Only these are able to provide a unified, consistent theoretical description and
give then also relevant information on the fluctuations, the microscopic quantities undergo
around the average value. This may be important for a detailed analysis of (quantum) noise.

In superconductivity the ad hoc use of a macroscopic wave function (with a macro-
scopic phase) does not comply with the requirements of microscopic consistency (at least
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not in every aspect, as show the discrepancies of its dynamics). In order to obtain a more
comprehensive microscopic understanding of the collective phenomenon in (traditional) su-
perconductors we elaborate here a class of inhomogeneous BCS-models, where the kinetic
energy and pairing interaction are momentum dependent. Since the coupling parameters of
the latter are of dynamical origin it is not unreasonable to attribute to them a momentum
dependent complex phase. More details of the models are described in Section 2.

The basic idea of our approach is to consider the inhomogeneities as perturbations from
the homogeneous BCS-model, which has averaged kinetic energy and interaction constants.
In fact, the deviation from a homogeneous model in our model class may be so strong that it
transcends the class treated in [1], the latter apparently comprising all previous BCS-models
of mathematical physics beside the macroscopically inhomogeneous ones. (The macroscop-
ically inhomogeneous ones employ a parameter dependent scaling in the thermodynamic
limit which is more similar to hydrodynamics than the usual quantum field theory [2], [3],
[4].) There are nowadays several developments to a perturbation and stability theory with
strategies somehow related to ours. Let us mention only the path integral approach with
quantum fluctuations about the most probable classical path |5], |6], and the idea of [7], [8],
[9], to consider a quantum lattice system as a perturbation from a purely classical one.

Here we use rather recent tools of algebraic mean-field theory to introduce the homoge-
neous temperature GNS-representation [10], [11], with its J-dependent limiting dynamics
[1]. This concerns especially the classical part of the dynamics, which is connected with a
flow on a classical parameter space. In [12] it has been emphasized that such a classical
part arises by extending the physical limiting dynamics from local observables to global
ones if one uses the grand canonical GNS-representation space. This extension procedure is
here replaced by the application of a general rigorously derived scheme [1], how to extract
from the limiting Heisenberg generator a differential equation. The solution of this gives a
multiplicative cocycle in the state space of the one lattice algebra. We carry this through
for the homogeneous physical, reduced, and gauge dynamics. The classical dynamics takes
place here on tle small phase space 5 isomorphic to the one-dimensional torus. The used
method is, however, generalizable to rather arbitrary parameter spaces. The form of the ho-
mogeneous limiting dynamics in Prop. 3.4 follows then from the mentioned general scheme.
[t transcends the original quasi-local electron algebra 20 and constitutes a C*-dynamical
system in the C*-algebra Cg = C(Ej3, %) of continuous functions from the “phase space” Ej
into the electron field algebra. Both the physical (non-reduced) dynamics and the gauge
transformations (of the first kind) have a non-trivial classical part, that is a rotation on the
torus.

We show that the gauge invariant KMS-states for the reduced dynamics, as well as
their extremal pure phase components, minimize the free energy density. Instability or
metastability does not arise in spite of the mean-field character of the model.

The main part of our investigation is the construction of the limiting dynamics of the
inhomogeneous model. Again one starts with the limiting Heisenberg generator applied to
local observables, where now only the commutators with the perturbations (relative to the
homogeneous local Hamiltonians) have to be calculated. The thermodynamic limit of these
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applied to an observable in the finite (momentum) region A is the commutator with a local
element P(’ € Cy, that is a bounded local, effective perturbation. In our model class the
limit of the Pf with A tending to the infinite lattice, would in general be totally divergent.
Nevertheless, the limit of the iterated commutators in the perturbation expansions of the
finite time translations applied to local elements may be shown to converge (Appendix).
This limiting dynamics is then extended to all of C4 and constitutes again a C*~dynamical
system with the same classical part as the homogeneous model.

In spite of the rather singular perturbations in our model class the inhomogeneous KMS-
states are shown to correspond to the homogeneous counterparts in the analogous way as
for bounded perturbations [13|. This connection is made manifest by the identical classical
parametrization of the pure phase states in both cases. Thermodynamic stability expresses
itself again by the minimalization of a free energy density. The latter has the same values
as in the homogeneous case but is much harder to calculate.

The momentum dependent gap parameters with their (momentum dependent) complex
phases are shown to satisfy as a necessary condition the gap equation in a precise version
for the thermodynamic limit. There is a systematic degeneration for its solutions, which is
parametrized by a momentum independent phase (from the mentioned torus). This macro-
scopic phase is here disclosed as the average value of the momentum dependent microscopic
phases.

According to Gorkov [14] the position dependent gap parameters are proportional to the
macroscopic wave function of the Cooper pair condensate. Since only the homogeneous part
of our gap function is directly connected with the condensate, the Fourier transform of our
momentum dependent gap parameter should not be identified with the macroscopic wave
function. Our considerations suggest rather that the rigorous elaboration of Gorkov’s idea
requires a macroscopically inhomogeneous BCS-model, which at the present has not been
studied from this point of view.

Altogether one may state that rigorous perturbation theory has a much wider range
of applicability than using bounded perturbations only. This nourishes the hope that cer-
tain aspects of our treatment may be transferred to the perturbation of Green’s functions,
provided that the latter starts — not with a free but — with an interacting symmetrized
model.

2 Introduction of the Model-Class

We consider the conduction electrons of a metallic superconductor in a sequence of increasing,
finite volumina V;,. The effective interactions between the electrons are split into two parts:
One part is subsumed into a lattice periodic external potential and gives rise to the Bloch
wave functions with energies ¢, where the momenta k are taken from a V,,—dependent set.
This set is finite, if the £ are restricted to a shell around the Fermi energy ep. In this
momentum region one has as second part a pair-pair interaction which is in the average
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attractive.

The Bloch eigenstates are used to realize the electronic CAR-algebra as a tensor product.
With increasing volumina V;, the set of considered Bloch momenta X becomes countably
infinite. Considering a numbering ¢ : X — N, we have for each k = i(k) two spin values
o € {1,1l} and the CAR-algebra 2 for the considered set of states is

A= 5\, (2.1)
kEN
with B = My = M, ® M,. Here we have considered two spin values in the algebra B
leading by a generalized Jordan-Wigner representation to (2.1). (Comp. Eq. (2.2) below,
[13, Chap. 5.2.2], and [15]).

We introduce a quasi-local structure in momentum space by associating the local algebra
Ay = @ieaB with each finite subset A € £ := {A C N | |A] < oo}, even if there is no
corresponding volume in position space for A. Dropping the embedding operators we have
Ao := [Ujepe Aa as a norm dense sub-algebra of 2.

According to our numbering ¢ we take into account pairs of electrons in the Jordan
Wigner representation for annihilation operators ¢z . k € K, o € {t, 1}

Ciy = (i(§l (0. ® oz)) ®(0, ®0.)® ( é 114) ,

j=i(k)+1
i(—k)—1 o
e, = ( ® (0. az)) (0.1 ® ( ® 114) , (2.2)
2=l j=i(=k)+1

where o,, 0,, 0. are the Pauli matrices and oy = (0, £ io,). If i(kF) = k € N we write
Ckt = Cgy and c_y; := C_iy-

The local Hamiltonian for a finite set A of Bloch modes is obtained by adding to the
Bloch energy the pair-pair interaction. Since the latter is due to a complicated mechanisin
involving infinitely many phonon exchanges, the exact values of the effective pair coupling
energies are not known. They are usually calculated up to second order perturbation theory
[16], [17], and in the original BCS-paper |18] they are assumed momentum independent.
We allow rather arbitrary complex values with non-trivial dynamical phases for them and
obtain (see e.g. [19], [20], [21])

= * * gkkl * * ¢
Hy = Z:k (ChrCrt + € g icky) — Z W"M"—ucik’i('k’h (2.3)
kEA kk'en U
with gpr = ge for all £, &' € N, Introducing the pair annihilation and number operators
b, == C_k|Ckt, ng = (‘.;»'T(.H -+ C*—ki(f*kw (24)

we write

(J1-1-1
Hi=Y eime— 'i"_‘Tk'b;bk,, (2.5)

keA kk'eA
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Note that by and ny are embeddings of the same operators b = o_®o_ and n = %(rx ® 1, +
I, ® 0.) + I, ® 1l, at the lattice site k € N.

As mentioned in the Introduction the basic idea behind our approach is to consider a
ziven inhomogeneous BCS-model as a perturbation of a homogeneous one. The latter is
obtained uniquely by averaging the given model data

£ = lim — Zak, 0< g := lim—— Z Tkk' (2.6)

AEL |A| AEL|/\|2kk'€f\
and has the local Hamiltonians
(]
0.— ZETM; — Z r(— by, AE L (2.7)

keA kk'€A
As a general assumption of our investigation we assume the validity of Fq. (2.6).

In order to arrive at a well behaved perturbation theory one has to require that the
perturbations

P\ = H;\ — HO = Z(SEA.HA- — s Z (S(jk;\ b D)t (28)
keA A A KEA
with
dey 1= € — €, Ogkk' := Gk — ¢ (2.9)

be “small” in some sense. In mathematical physics the most common assumptions imply
that {||Px]] | A € £} be a bounded net. This allows still for the interesting case, that the
{Pr | A € £} do not converge in norm in 2 but in a weaker sense in certain representations
or as a so—called “quasi-symmetric” net [1], [22]. We found, however, that a much weaker
postulate allows for a reasonable dynamical perturbation expansion.

2.1 Model Assumption
We say that the BCS-model is in the allowed model class, if the constants (2.9) satisfy the
following relations:

lim dex = 0, lim dgier =: dgr  exists with  lim dgp = 0 (2.10)
k'—00 k—o0

k—o0

and

1 N
lim — g ‘6gkk, —dgr — g | = 0. (2.11)
Aeg |A| R

3

Here lim denotes the net limit over the index set £
AEL

Observe that no summability assumption for the ds;x and dgx or their squares has been
formulated, so that ||P,|| may tend to infinity in a rather strong sense.

Concerning the symmetries of our model class we introduce first the internal symmetries
(in reference to the pair structure of the Hamiltonians). Let be V(‘B) the group of all unitary



732 Gerisch and Rieckers

and anti-unitary operators in C'. For each v € V(B) we define an (anti-) automorphism by

& vagv® v unitary,

(@) ay) = %Eg*z:a;zr‘ (2.12)

fy=el v anti-unitary,
keN

and by linear and norm continuous extension (where ax € B for all k € N). If o, (Hy) = H,
for all A € £, v, is called a strict internal symmetry of the model [23].

The gauge group (of the first kind) U(1) acts as a strict internal symmetry group, where
) /2 : ( ‘ 7 : -
vy = V2@ et V2 e My ® My, ¥ € [0,27[. We write for convenience

Kig 1= By s v € (0, 2n]. (2.13)
For later use we introduce the gauge group for pairs

U(1) = U(1)/{1, —1}.

An example for an anti—automorphic internal symmetry is the time reversal transforma-
tion, which, however, is not spontaneously broken in the considered models.

The spatial symmetry in our model class is an approximate invariance against per-
mutations of the k-indices. The group P of all finite k-permutations acts in A via *-
automorphisms [24]. Most of our considered states are in the folium* F7(2() which is gener-
ated by the Bauer simplex &F(2) of all permutation invariant states. It is remarkable that
our introduced model class has equilibrium states, which transcend this quasi-permutation
invariance.

3 Equiiibrium Properties of the Homogeneous BCS—Mode¢

The homogeneous model, defined in terms of the net (Hj)xee of local Hamiltonians (2.7).
is a {permutation symmetric) mean-field model, for which there exists a well elaborated,
operator algebraic strategy of treating its dynamics [1], [26], [27] and its equilibrium states
[10], [11], [23], 28], [29], [30]. Let us reproduce the basic steps, supplementing some new
features needed in the subsequent discussion.

We discuss the limiting Gibbs states of the homogeneous model which constitute the
starting point for the further investigations. The unique equilibrium state of a system with

*The notion of a folium is introduced in [25]: A folium F(2) of a C*-algebra 2 is a norm-closed,
convex subset of the state space G(2A) with g4 € F(U) for all ¢ € F(A) and A € A. p, is the state
(pai) =(p: A" - A) [ (p; A" A), for A € A with (p:A*A) # 0 and p4 = ¢ otherwise (i.e. F(A) is closed
under perturbations from 2l). There is a one-to-one order preserving correspondence between folia in &(2),
(quasi—equivalence classes of) representations of 2, and central projections in the universal von Neumann
algebra M, of A. If F = F(A), lIx, and cr € M, N M, are in correspondence, then F consists just of the
[1r-normal states on 2, that is linh(F)* = My, = [(A)" = cxM,.
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1
kgT
and Boltzmann constant kg), is given by the Gibbs state w”'A as an element in the state
space G(2,) of the local algebra A,

local Hamiltonian H, at inverse temperature 3 = > 0 (with absolute temperature T

try(exp{—FH\}A)
tra(exp{—0GHx})

W Ay — C, A (WP 4) =

Without changing the notation we extend w”* to a state on 2 by continuation with the
trace state. Each w*-accumulation point w of the net (w?#4),c¢ is called a limiting Gibbs
state. The state space G(2) of A is w*~compact and thus at least one accumulation point
exists.

In order to fix a given particle density, we introduce the chemical potential 1 € R and
the reduced local Hamiltonians HY by

HT; = H'.\ — [ ;'\"'_\. Ae E, (31)

with the local number number operator

Npi=Y m, A€, (3.2)

which counts electrons in the lattice region A. Correspondingly, the homogenized reduced
local Hamiltonian HY{" is obtained from HY by replacing ¢ with ¢ — i in Eq. (2.7). whHY
has two external parameters, the chemical potential 4 € R and the inverse temperature
B > 0, which are fixed in the following'. The P,, Eqns. (2.8) and (2.9), do not depend on
the chemical potential.

We determine the limiting Gibbs states of the homogenized model by using the symme-
tries of the model and the minimum principle of the free energy density for limiting Gibbs
states:

3.1 Proposition ,
Let be 3 > 0 and HY as introduced above. Every limiting Gibbs state wj of the net of local

Gibbs states w® X" minimizes the functional fo(3,-) of the free energy density on &P (2):
fo(B,7) : 6°(A) — R, w — fo(B,w) := lim 1 ((w'HOT> + ltrA (ox ln(Qw))) .
9 ) s A€g |A| yHHA ,H A A !

where p§ € U, is the density matrix of w|a,. fo(3,-) is a w*—continuous affine functional on
the Bauer simplex GF ().

The set G%(A) C &P(A) of states with minimal free energy density

fo(B) == inf{fo(B,w) | w € BF(A)} = inf{fo(B,w) | w € 3,67 (A)}

'If the thermodynamic limit of the local Gibbs states is determined at fixed particle density, the chemical
potential g will vary with the local region A. Nevertheless these local chemical potentials converge in the
thermodynamic limit [31]. Here we use this limiting value.
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is a Bauer simplex with extremal boundary 0,&% () = &%(A) N 0,&P(A) # 0.
All states ¢ € 0,65() are product states @ o determined by solutions p € S(B) of
the self-consistency equation® -
exp{—=8h"(0)}
n= trog (exp {—/ h' (o)}

)
with the effective Hamiltonian h'" := (e — ) n—g ({0;b) b* + {(0;b*) b). We note that there

are also solutions p of Eq. (3.3) such that @) o & &%().
kEN

, (3.3)

PROOF: The convergence, the w*-continuity, and the affinity of fo(3,-) is proved in |11,
Proposition 3.9] and the minimum principle for limiting Gibbs states in [10, Theorem 2.3,
or [11, Section 4]. &P (A) and G%(QK) are Bauer simplices with the stated extremal boundary
according to |24, Theorem 2.8|, [11, Theorem 4.4|. The self-consistency condition (3.3) is
shown in [28, Theorem I1.4], |32, Satz 1.7.5], [10, Proposition 115, and [11, Theorem 5.4].
O
If we use the parametrization of product states & o € 9.6 (A) in terms of p € S(B),
kEN
we find for the free energy density:

Fol5, @ 0) = (= = 1) (03m) = 903 {o;8) +  tras(o1n(o)).

kEN /
For w € &7 (), fo(B,w) is obtained by integration of fo(3, & o) with the corresponding

keN
decomposition measure of w (see Prop. 3.3 below).

The solutions of Eq. (3.3), the minimum principle of the free energy density, and the
symmetries of the local Hamiltonians determine the unique limiting Gibbs state:

3.2 Proposition

For # > 0 and HY as above, there exists a unique limiting Gibbs state LUJ = w*:-l(i‘m whHY
AEL

With the critical (inverse) temperature [3.(j),

: le — 1l =0,

Be(p) = Ef—ﬂ artanh (—2(5;"‘)) 0<le—p <, (3.4)

00 &~ i} 2 2.

this state is given
(i) for B < 3. (resp. 3 < 3. if 3. = o0) by the product state wé’ = &) 0o, with
kEN
exp(—=f@ (e —pu)n

0= trys (exp(—0 (s — p) n));

*In the following we identify the states on B with the corresponding density matrices.
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(ii) for 3 > f3. by its extremal decomposition into elements of 9, &%()

2 dd
8 ¥

with w = & o)) and
keN

exp(=B {(g = ) n = Do(e™b" + €b)})

9
= , : . 7
€0 treg (exp(—F{(e — p) n — Ag(e~b* + €?b)})) (37)
Ay is the positive solution of
2 — )2+ A2 5} — )2+ A2
VACRIIRREY, = tanh ( YAG 2'(‘) 83 O) ; (3.8)

g

PrROOF: For 8 < [, 0o in (3.5) is the unique solution of Eq. (3.3) and thus the limiting
Gibbs state wg is unique. Due to the gauge symmetry of HY', each limiting Gibbs state wg
has to be gauge invariant, i.e. wg = wg o kg with @ € [0,27[ and kg from Eq. (2.13). For
B3 > f. there are solutions o), ¥ € [0,27[ of Eq. (3.3) (with Ay > 0 in (3.8)) such that
wy o kg = wyt? for § € [0,7[. All states in 0,&%(2) are elements of exactly one orbit of

0(1) in 9.6"(2A). The decomposition measure of the unique invariant state wg in Gj(2A)

into extremal states w? is given by the Haar-measure of U(1) [32], ¢f. also [23], [30]. O

We discuss explicitly only the case . < # < +o00, but the case 0 < J < . may be
obtained therefrom by continuously deforming the quantities (like Ag(3)) into the region
3 < (3. (which here gives Ag(3) = 0). It has some advantages to parametrize the pure phase

states w{ in (3.6) directly in terms of the density matrices ¢ from

Es = {d) | ¥ € [0,2n[} C &(B), (3.9)

where g is from Eq. (3.7). The Lebesgue measure d /27 (Haar-measure of D(l)) induces
then the measure d7i(o) in M} (Ejp).

3.3 Proposition
(i) The decomposition (3.6) is the (unique) central decomposition of w‘g . Especially we
find by the spatial decomposition theory for the GNS-representations (II3, ’Hg, Q%) of
wy and (T19, H5, €2)) of @ o

keN

@

(ng,%g,gzg):[ (19, 75, Q°) d 7i( o)

JEg
with the corresponding decomposition of the associated von Neumann algebra
(b

M :=13(A)" = [ M d7(o), 0 =TS,

Eg
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(ii) The smallest C*-algebra Cg C My which contains all “mean—field operators”

1
ag = s-limIIY(— ) ay), a € B, (3.10)
AeL A IA| kEZA

has the x-isomorphic realizations
Cs = A ® C(Ey) = C(Ep, 2) (3.11)

where ® denotes an arbitrary C* -tensor-product, C(Ejg) the continuous complex func-
tions and C(Eg,®) the continuous A-valued functions on Ej. ax € Uy is the embed-
ded a € B and s-limycg denotes the limit in the strong operator topology on B(H}).

Each ¢ € F7, the smallest folium containing wl, has a unique J(fé},c‘(;) continuous
extension to Cg, which is also denoted by . For this ¢ we have the following relations:
Setting pu,(f) == (¢; I® f), f € C(E3), there is a p,-a.e. unique measurable family
Eg> o — ¢, € 6(A) with: For A € C(Eg,A) = Cy define g, € S(Cp) by (ip,; A) :=
(¢o3A(0)). Then

(04 = [ (ori) dle) = [ (o Al0) digle). A€CE=Cs (312)

Eg

is the central decomposition of ¢ € G(Cs) in Cg, and
(p; A) =/ (po; A) dpy(o), A€ (3.13)
Eg
is the central decompositions of ¢ in 2.

PROOF: (i) Obviously (3.6) is the decomposition into permutation invariant product states,
which coincides with the central decomposition according to [33]. The rest follows from the
spatial decomposition theory on the standard Borel space &(2A) (cf. e.g. [34]).

(i) (3.11) may be derived as in |27]. For A € Cy there is a net (Ax)aee, Ax € Ay, such that
o (MG, MG,) -limyee Ay = A Then for ¢ € Fj C MG,, limpee (9 Ax) exists and defines
(¢;A). (3.12) and (3.13) are restrictions of the central decomposition on M. cf. also [33].

O

In the sense of [33], Eq. (3.13) constitutes a parametrization of the central decomposition
in a uniform way for all ¢ € f}}

We study the limiting dynamics (limiting gauge transformations) which are induced by
the local Hamiltonians (local particle number operators) HY, where

HY stands for HY, HY, Ny € 2,. (3.14)

We use here and in the following the sign ~ to indicate a variable symbol. The ﬁf{ are
connected with p-dependent one-particle Hamiltonians h° € C(FEj, B)

h°(o) for h°(0), h*"(0), n € B, (3.15)

=
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and unitaries _
U (0) := exp(i t h°(o)).

The mentioned connection between HY and h%(p) is most easily obtained by means of the
limiting Heisenberg generator, the first quantity to be determined in a systematic discussion
of a mean-field dynamics in a prescribed representation.

We stipulate for the following that 2 be identified with the isomorphic sub-algebra
[3(A) € C5 C B(H). Then one obtains

7760
s\}étp[H\, Al = [Hy , A], A€ AUy,
with ﬁzo € C(Ez,AU) and Hdo = ¥ kei hk( ) for p € Ejy. Bg(g) is the embedding of
hY(p) at site k in 2. For h"(p) we fmd the same one-particle Hamiltonian as introduced in
Prop. 3.1 and h°(p) becomes h°(p) := h% (o) + pn.

Each h® = k%, h% n gives rise to a flow 30 = 47, 49", 4% on Ej, which is the solution of

—'i — <"yt 0;a) = < Y, 0 [h“ ,a]>.
0r

E4 parametrizes grand canonical equilibrium states, so that 7" o commutes with h% (777 o).
Thus f?r = id. Further r}/?() — (\\'p(”"u’ n) 0 (-“X])(_itlln,) since hOT(Q) e ILO(Q) — un, gyl
yr 0 = exp(—itn) o exp(it n).

3.4 Proposition _
For each net of local Hamiltonians (gauge transformations) H}, A € £, there is a unique
C”"-dynamical system (Cz, R, 77°), 790 for 70, 790" x# such that for A € C(Ez,A) = Cj:

70(A) = silim e* HY Aye U3 forallt € R, (3.16)
Ael

. . . . . ~80 . .
where A — A, € 2, Is a quasi-svmimetric net with S—llgl Ay = A [1]. Ttﬁ is given by
A€

7°(A) (o) = g0 A7, 0), o € Ej, (3.17)
where o, u € U(B), is from (2.12). It holds

_B0 [B0r g _ B [or
B = OK“t—hmOT, . (3.18)

PROOF: (3.16) and (3.17) follow from a combination of [1] with [22, Prop. 4.2]. See also
[26], [27]. (3.18) is a consequence of (3.17) and the remarks before Prop. 3.4. O

The considered flows 57 on the differentiable manifold Ejs, which is homeomorphic to the
torus T, are obviously differentiable

d _

dt’n 0= —i[h°(3°0),7%0] € B*, forall p€ Ej, (3.19)
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where ‘B* contains the tangent spaces of E3. Eq. (3.19) gives rise to the vector field

2= —i[ﬁo(g), o], forall p€ Ey4. (3.20)

Using the phase angle parametrization of (3.6), (3.7), we have e.g.

Yok =gt =gitnglgiln (3.21)

and 4
A% 9 _ :2_’9_ (3.22
0 iln, 0] =250 (3.22)

For a one-times differentiable function f € C!'(Fj3) we introduce

(3 1)(0) = S8 F(@)emo = & F3ROMico = (X051 () (3.23)

where the total differential df(e) may be realized by an element in B** = B (which is not
unique). A% extends to C; := A® C'(Es) = C'(Es, ) by

. d ~
(A% A4](p) := EA(T?QH::O: for all p € Ep. (3.24)

Let us further introduce Cj 5 := s ® C'(Es) = C'(Ep, Aa) and Cjg 1= Upee Cha .t

3.5 Proposition
Let be 7° = exp(itL*°) the x-automorphisms of Prop. 3.4. Then C}, is a core for the

corresponding generators L*® and for A € C*(Es, Ay) = Cj o one has

(L7 A)(0) = [H(0), Al0)] — i [A\** A) (o). (3.25)

PROOF: The form of (3.25) follows from Eq. (3.17) by differentiation. Since the A° and @/
are in Cj, ﬁ‘m leaves Cj invariant. By the product structure of ay,, each Cj , is left invariant.

Thus C}, is a core for L% [34]. O

The minimizing set G3(2) in Prop. 3.1 is in G(A) whereas the dynamics (Cs, R, 7Y acts
in Cg. By means of Eq. (3.12) we extend the states in G%(2) to states on Cs and denote the
corresponding minimizing set by G3(Cg), in spite of the elements in G(2) not all being in
F§C FP(A).

3.6 Proposition
The set G%(Cy) (affine homeomorphic to G3(2)) is homeomorphic to M} (Eg) by means of

a7 [ Wdule),  ne MF(Ep),
Eg

SWe renounce in our simple cases to introduce total differentials and Poisson brackets for functions in
.
5,0
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which is the central decomposition on Cz. G%(Cy) is (therefore) a Bauer simplex with compact
extremal boundary 9,6%(Cg) = {w§ | 0 € Ez}.

G%(Cs) consists of all 3-KMS-states of (Cg, R, 77°") (which minimize fo(f3,-) of Proposi-
tion 3.1) and is a face in &(Cg). Its elements are called “stable thermal phases at (3”.

PROOF: There is a bi-unique reduction of w’ € G4(Cs) to a state on A which is affine

homeomorphic to M} (Ejs) according to Prop. 3.3 (ii). By direct calculation every wf €
9.65(Cp) satisfies the 3-KMS-condition for 777 [29] and by convex superposition so do
all w,, p € M!(Eg). Let be w a f~-KMS-state to (Cs,R,7%"). Then it has the central
decomposition w = fEﬁ w?d p(p) [35], [36], where w? € G(A) and w?|q,,, sees the dynamics
with hY" (o) = K% (). But w?|e,, is then the unique KMS-state to this dynamics for all
k € N. It has the form (3.3) and minimizes the free energy. O

4 Equilibrium Dynamics and KMS-States of the Inho-
mogeneous Model

Similar to the homogeneous case we extract the first information on the inhomogeneous
equilibrium dynamics from the limiting Heisenberg generator acting on local observables.
In the spirit of a perturbation theory we employ the homogeneous representation space H9
resp. the “homogeneous C*-algebra” Cs C ‘B(’Hg). The weak topologies w-, s—, o-w- refer
to this representation. Thus we study for A € A,

s—lim[H,(\':), A] = s-lim[HgSr), A] + s-lim[ Py, A

Neg ! Neg A'eL
where H“\r), Hﬁm, and P, are from Eqns. (2.5), (2.7), and (2.8), respectively, using (3.1),
(3.2).

4.1 Lemma
Under the model Assumption 2.1 it holds for A € A,, A € £,

sclim(Py, 4] = (P2, Al (4.1)
where
Py =Y "6h; € C(Es, %) C C(E, %) = Cp (4.2)
kEA
with
Shi(0) = dexny — dgx (0 0) by — dgx (0;b°) by. (4.3)

PROOF: First we consider the case dgp = dgx + dgi for the inhomogeneities in (2.9). dg
has to be chosen according to the model Assumption 2.1. For A € 24 and A’ O A we have

(Pa Al = 3 denmi - |{,7(2 69k 0}) () b) = ﬁ—,t(z 6) (3 g b, A|

keA keA’ k'eA! keA! k'eA!
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{Z OEk N, A]

keA
(S d] (g ) - (g Sow) [,
keA | |k’€x\’ | kGA’ k'eA
1
(S (g X we) - (g o) [ e ]

k—00

Now use || - || llm i\’ Z Sgk by = 0 (since dgp —>
(0;b*) 11, comp. (3 10) Thus we have

SNléIII:l[P/V Al = [Zéaknk, ] {qukbk, ] b {ngybk: ]

— 0) and s-lim =+ Z by =: by with b3(0) =

A'EQ iA |

keA keA k'eA
_ [Z (Bei e — i bl bs — g bi b) 4] .
kEA

This proves Eqns. (4.1), (4.2), and with b3(0) = (0;b*) 11 it follows Eq. (4.3).

Now we consider the case of Py with arbitrary g, according to the model Assumption 2.1
and choose dgy as klim gkk- Then we have
"> 00

0 < lim H[PN,A] - [Zd&k ng — —’ Z ((59[; +5_g_k_:) b;bk',A]”

ANeg || Rt

— i H{ S+ Sgw = gep (b:,AH'
A}IEI}: A kaE:\’ ( 9k 9k gkk) Dk Ok

2 N

< limo— > [8gk+ gk — gue| 1071181 1IAIN =

neg [N ey
with Assumption (2.11). Eqns. (4.1)-(4.3) then follow immediately. O

The inhomogeneous coeflicients dsy and dgir in Py make the handling of iterated com-
mutators incomparably harder than for homogeneous commutators. Nevertheless we may
announce a structure similar to the homogeneous model, the proof of which we indicate in
the Appendix.

For this we introduce the one-particle Hamiltonians hir) € C(E3, Ay) by
W= hd 4 Gy (4.4)
with 23" from (3.15) and 8hy from (4.3).

For an automorphism group 7, in C3 and a bounded selfadjoint operator P £ Cz we
denote by (7,)¥ the perturbed automorphism group (cf. e.g. [13]).
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4.2 Theorem
(i) For each BCS-model satisfying Assumptions 2.1 and for each § > 0 (8 > (.(u),

Eq. (3.4), and p € R fixed) there is a unique C*~dynamical system (Cs, R, 7°(")) such
that for each A € Cgp and A € £ there is a tg > 0 with

rf0(4) = o-welim(r* )Py (4) = (OO R () for It < .

For arbitrary A € C(Eg, ) = Cy, 77" (A) writes as
[V (A)](0) = (® &M @) A7) (@ (@) (45)
kEN kEN
with
0 = hi(0) = exnk — (9 + dgx) (0:b) b — (9 +3gx) (0;b) b € C(Ep, Aqry),

and hj = hy — png.

(ii) It holds
8 Br 8 B Br

T, =T, OKy =K,0T, .
(iii) Denoting
HYD =3 "h] € C(Es Un) = Caa,

the generator L) of /") has on the core Cj, the form

L") A(0) = [HR"(0), A(0)] - i\ A(e), A € C}(Ep,n) = Cja.

PROOF: Appendix. g

If the asymptotic behaviour of A — P, is more restrictive (P, could be a quasi-symmetric

net), the C*-dynamical system rf ™) of the inhomogeneous model can be obtained as the

thermodynamic limit of the local dynamics as in Prop. 3.4 for the homogeneous model. For
this treatment and more technical details we refer to a future work.

Let us here remember the numerical parametrization of Ej in terms of 9(0) = Arg (0;b%).

Together with

5
Ak;:l 4 228y g g;b)’:’1+ 2

l AO:
and Ay from Eq. (2.8), we obtain
hi(0) = h = exny — [Dge " OHObr 4 Al 0H50)p, ]

where

09 := —Arg (1 - %)
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1s a microscopic fluctuation around the macroscopic phase 1.

Since we are looking for the grand canonical equilibrium states, we have a more detailed
look at HY" € C(Ejs,Uy) = Cs.5 with

HY (o) = HY"® =" {(e,c — )y — Ag[e T OH0pr 4 eiw“*’k)bk]} . (4.6)
keA

The corresponding automorphisms T{Br arise with the flow 7Y™ = id and leave the center of

Cs invariant.

4.3 Theorem
(i) The extremal 3-KMS-states w? for the C*~dynamical system (Cg, R, 7°") are indexed
with p € Eg and are locally given as wjy := w®|c, ,

(g5 4) = try (e PH @A), A€ C(Ep, U)X Cpp. (4.7)
w? = fEﬁ w?df(p) is the unique gauge invariant 3-KMS state.

(ii) Replace in w of (3.7) ¥ by o € Ez with 9 = Arg (0;b") and extend this state w§ to Cs
in the way of Prop. 3.3 (ii) leading to the restrictions wy, on Cga for all A € £. Then
it holds

Wl = (W)@ = (W)X, forall A€ £, (4.8)
where the perturbed KMS-state is defined in the sense of [13, Corollary 5.4.5]. It holds

(W )P = (wg,)PA©@ with w8, on the right hand side as state on % and (wg,)*x(@

extended to Cg . Varying o € Ey one obtains a homeomorphism between 0,6%(Cp)

and 9.653(Cs), which expresses a stability of the (pure) phase structure against the
considered singular perturbations.

(iii) The set of all 3-KMS-states for (Cg, R, 7°") constitutes a Bauer simplex & 3(Cj) which
is affine homeomorphic to M1 (Ej).

(iv) Consider w € 3.643(Cs) as state on A. Then the free energy density f(3,w) exists and
it holds f(3,w) = fo() = fo(B,w) (see Prop. 3.1).

PROOF: (i) Clearly Eq. (4.7) defines extremal S-KMS-states. If w is extremal 3-KMS, then
it is a factor state. But it must have the form

w :/ p’dpu(e),  ¢° € 6(Cp),
Ej

cf. Eq. (3.12), and [35], [36]. A necessary condition is, that w is pure on the center of Cg and
thus d (o) = d(o — 0')d o', It sees locally Hfr(g) and has necessarily the form (4.7).

Now use the parametrization ¥ € [0, 27| of E3. For web € 9.65(3) it holds w? o hf; =

9+20 s ; ; : :
w% . This implies the gauge invariance and the uniqueness of w”.
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(ii) Eq. (4.8) is calculated in terms of the density matrices. Since Prlega = Pa, AC At
defines a mapping of w§ onto w? for all p € Ej, which is clearly bi—unique and w*-continuous.

(iii) Obvious.

)
(iv) The restriction of a factor state w? € 9,63(C5) to 2 is given by the product state (use
6

(4.6) and (4.7))

e~ Phi(e)

® Qk “’ith Qk | e
kEN trog (e=Phk(@))

Then one calculates

<§Ngk;|-’§§> = wz ( ngjmh(@))

ke/\
E\ Ap . BE
zwkt I & k' o —i60 k
k;ﬂ Gkk! T anl( 5 ) _QE;CJF tanh( 5 )
W > G (0 5 brbi) (4.9)
keA

with Ey, = \/(E,:c — p)? + AZ. Now use that (gx;biby) is uniformly bounded and condition
(2.11) in our model assumption. Thus the last term in Eq. (4.9) vanishes in the ther-

modynamic limit. Again using (2.11) and the convergences kllm A = Ay, hm £ = &,
— 00

klim dgr = 0, klim 0 = 0, and klim B = By = \/( ©)? + A3, we find for the (net) limit:

I\‘g,} <% Ok ; f{\’[> = (e —p) (1 - s;jo,u tanh (ﬁ%)) —-g (2%)0 tanh (1325,\))

HY
= lim< 0;— > (4.10)
Acg ,% |A
We find for the entropy density of the factor state Q) ox € 0.55(Cs) (as state on 2A):
kEN
limy —tr, (@ ok In @ gk) = lim— ) trg(oxlngy) = trg(olnp)
\| kEA k€EA Aeg | \| Z

1
i L ()
neg A A \e RN
since limy_, 0k = 0. Now the first equality in (iv) follows with Prop. 3.1. The second one
follows in the same way by replacing H with H} in (4.9) and (4.10). 0O

In Propositions 3.1 and 3.2 we have determined the limiting Gibbs states of the homo-
geneous BCS-model with the help of the minimum principle for the free energy density as
a functional on GP(A). (iv) demonstrates that the free energy alone is not suited to iden-
tify specific KMS-states (or even limiting Gibbs states), because there are arbitrarily many
states w € GP(A) or w € GP(A) with the same free energy density fo(3). For the inhomo-
geneous model the permutation symmetry of the limiting Gibbs states (KMS-states) is lost
and there is no obvious domain where the free energy density has to be varied.
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4.4 Theorem
Denoting

By o= \/(sk — )2+ A2, and 9y =9+ 60,

for all k € K the complex gap parameters Age™ "k of the extremal 3-KMS-state states
satisfy the "‘selffcousistency equations”

1 P I @ — »— 1)
l\lg}: |\| Zglk 2Ek( tanh ( 5 ) Aje (4.11)

PROOF: An elementary calculation shows for g = exp( £ — Bhi(0))), 0 € Ejy:

llm <®kEN Ok ’Zbk> = }\léré m Z 3 Ek e~ tanh (;3§k)

keA

Ay .J’Eo) A

—1) L
= —e¢ taull(
2E, 2 g9

—9
e .

&

Using limy 00 gix = g + g5 and (1 + %L)AO = Ae % it follows

, GF
Ae” = lim m Z g+o Jt k e "% tanh (Tk)

Ael
e~ tanh (%) )

= 11m

a

Thus we have demonstrated that in our model class, which is rather large for a pertur-
bation theory, the dynamics and KMS-states may be determined explicitly and have the
expected shape. In the special case, that the perturbations constitute a quasi-symmetric
net [1] one can employ {22] to derive that the unique gauge invariant S-KMS-state w” of
Theorem 4.3 is the unique limiting Gibbs state. In our general case the corresponding state
ment is still unproven, in spite of having at hand the minimum principle of the free energy
density for extremal KMS-states. The equality of the inhomogeneous and homogeneous free
energy density demonstrates how coarse grained the thermodynamic level is in comparison
to the quantum statistical equilibrium states.

The self-consistency equation (4.11) for the k-dependent complex gap parameters Age ™"
are here rigorously formulated and deduced in the thermodynamic limit. They have here
solutions which are fixed up to a k-independent, global phase . The other way round v
is obtained as the average of those ¥, which correspond to a solution of the gap equation.
This makes explicit the collective nature of the macroscopic phase angle.
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Appendix

A  Proof of Theorem 4.2

(i) We consider only the special choice of the coupling constants
gk = 09k + Ogk, (A1)

i.e. we use the asymptotical form of the gir. The general case follows with

un } Py — (Z dekny — W Z (dgx + 3&;) b;bk,)H (A.2)
k'eA
= H]lﬂ > (6gkx — Ogic — Ogir) b;bk,“ _—
kk'eA

according to the Assumption 2.1. Now use [13, Proposition 5.4.1|
[77(4) = n(A)|| < (" -1 JlAll,  Pec

for the difference term. Thus it suffices to prove (i) for

ka N — m Z (8gx + Ogkr) brbe.

keA k,k'eA

We estimate the perturbation series of (Tfo(r))”f‘ for these inhomogeneities and show that

all occurring limits can be interchanged. We consider only the case (TtBO) A, The reduced
dynamics (7/°")P* can be treated in the same way.

To simplify the notation, we write:

At = 7P04), for A€

We divide the rather lengthy proof in a number of Lemmata. Their proofs will be
sketched while for details we refer to a future work in a more general context, which includes
the present results.

A.1 Lemma
For Ag e UAq, n e N, and t, t,,..., t, € R it holds

s-lim [PR‘, [ - [Pil,fl?}] H [ Pt { o [Pg“,AE] H (A.3)

Aegl

with P, Q = Y dhy € C(Es,Uq) from Eq. (4.2).

ke
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PROOF: One can show that [P, [---, [Py, A4] ---]] is a fixed polynomial in the following
kinds of operators:

keg
|A| Zak Tr, T €°B and a, € C with kli_zxc}o by = 0, (A.4)
keg

Bq, Bq € C(Eﬁ,QlQ).

I]TI 3"z is uniformly bounded and strongly convergent (Prop. 3.3 (ii)), i/\l Y ai Ty converges
kes keL

in norm to 0 and By is fixed. Thus s-limpee [Py, [+, [Py, Ah)] - +]] exists. The (norm-)

limit of a monomial in operators as given in (A.4) vamshes if it contains a term l’\l Y ay T
keg
Moreover, the commutator of such a monomial with P, vanishes in the limit as well as

the commutator of P, with iAI Y~ k. This allows to write down the n-fold commutator
keL

[Pﬁ", [ : [Pf\',A ] H up to terms vanishing in norm for large A € £ and (A.3) follows.
O

A.2 Lemma
For Aqg € Ao, n € N, and t € R it holds

o-)\vé}:im/ot dt, - - - /Ot dtnt[P;", - t Py, )] (A.
/0 dtl.../o " dt, {Pgtn, { [Pgtlw_la] H ,

PROOF: For each w € Mj,, we show lim f(; dty s [ ity G [P, [ [PRS AbLJ]) =

(@)
~—

Jydtyi-- 5" n< [PE* [ [PR AR .. ]]> The n-fold commutators in (A.5) are uni-

formly bounded in norm for all ¢, ¢,.. ., t, and sufhiciently large A € £. This allows to apply
the dominated convergence Theorem (Lebesgue) which is still valid for the nets indexed by
£ (32, Prop A2.2.3] and we find:

i v [ s [PM] --ﬂ‘)
/ o [ g - ] )

The strong and the o-strong topology coincide on norm bounded sets [37, Lemma I1.2.5]
and the o-strong topology is finer than the o-weak topology. Thus Lemma A.1 implies

tim (w5 [Py, [, (PA, A8 ) = (w5 (PR [ [PA, 48] ). 0

A.3 Lemma
Let ben € N, Q € £, and set

Cy 1= THax {”Z brll Zésknk“ , HZ dgxby.
ke ke ke

LIl 16| lI8exnl 18gxb | 1 & € 2}
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Then it holds:
(i) H[p}p, [ Py A ”H < nl (12Co)" C2 || Aall,

[ [ awpe [ [pra) )| < zconr G aa

o3 t th—1 l
dt, - - dt,, [P“‘,[---,[P“,A‘]---”H & o Bord .
(iii) ;”/0 ) /{; b L Ag 00 or oo,

PROOF: We only have to prove (i). Then (ii) and (iii) follow immediately.

At first we estimate the number of monomials of operators as in (A.4) in a commutator
Py [Py AL) - -] Using [A, BC] = B[A,C] + (A4, B]C to factorize the n—fold commu-
tators, one finds that there are at most 6" n! such monomials. Note, that this estimation
also counts monomials which vanish in norm for large A.

Now we give a norm estimation of such a monomial. For this we have a look at the
various terms in such a monomial:

[.) The operators Bgq in (A.4) are of the form [My,[ -, [My,, AL] -], ki < n, and M;,

I < i < ki, is the time evaluation of some M € {3 b, 3 b5, 3° Sgibr, 3. Sgkbt, 3 dexny}.
kEQ  k€Q  keQ ke ke
This implies:

| Ball < (2Ca)"" || AG|| - (A.6)

[I.) Now consider a term ﬁ > xx as in (A.4). The operator z € B is given by z =
kel
Ni [y [Ny Neya] ), k2 < n—1, where N; € B, 1 <@ < ky + 1, is the time evaluation

of some N € {b,b*}. This implies:

HIAI z:kH < (2Cq)k2H1. (A7)

[11.) Finally we have to specify - Al Y ag zg, with 11m ar = 0 in (A.4). Here one finds that
keg
B3x=[Ny,[ [Nk Negt1] -], ks <n =1, w1th N; € B, 1 <1i< ky+ 1, as the time
ka+1 ) o
avaluation of some N € {b,b*} as above. ay is given by ay = [] ¢} and ¢, € {1, dek, Sgk, gk }

for 1 <11 < ks + 1. This implies:
e < oo e

[V.) Each monomial contains exactly one term Af, and the number of commutators which
can be found in the above terms is exactly n. Thus we have k; + ko + k3 = n and the norm
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of a certain monomial M is estimated with Eqns. (A.6)—(A.8) by
M| < (2Cq)f Rt [l ag]| = (2C0)"*? || Aol -
Together with the number of monomial 6" n!, (i) follows. a

Now we are ready to prove the main result of Theorem 4.2:

o-w-lim(r*)" (4g) = (/)75 (4q).
A€

We consider the perturbation series |13, Proposition 5.4.1] of (TFO)P'\(.4Q) for Aq € Uq,
NC A and Lt <

1.
12Cq "

-1

o t
(Ttﬁ())[{«(AQ) = T,ﬁO(AQ) + Zin / iy < / dt,, I:Pin [ “n [P‘t\l‘4£3J . ”
P 0 0
Using Lemmata A.2 and A.3 (iii), we can evaluate the o-weak limit by the help of an

£/3-argument.

Finally, the C*~dynamical system (Cs, R, 7) is obtained for arbitrary A € C; as

8 . B0y PA
°(A) = lim(r, ") 2 (A).

The rest of Theorem 4.2 (i) follows by straight forward calculations.

(ii) Compare Eq. (4.5) for 79 and 7°" and use Prop. 3.4.

(iii) Differentiate Eq. (4.5) and observe that Tf(r) leaves Cé,o invariant. m)
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