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Quantum Cryptography using Nonlocal Measurements

By O. Cohen

Physics Department, Birkbeck College, University of London,
Malet Street, London WCI1E 7HX, England

(21.VIII.1996)

Abstract. We demonstrate that there are a number of ways in which nonlocal measurement tech-
niques can be used to facilitate quantum cryptographic key distribution. We show that cryptog-
raphy schemes based on nonlocal measurements can possess features which had previously been
thought to be impossible in quantum cryptography. We also find that such schemes have interesting
implications for the detectability of eavesdroppers, and for the possible ways in which eavesdropping
tests can be carried out.

1 Introduction

Quantum cryptography is a new discipline which has its origins in an idea of Wiesner [1]
which was subsequently taken up by Bennett and Brassard [2] and others. The objective
of this discipline is the transmission of data which can then be used as a secret key for
cryptographic purposes, and to guarantee, or at least to ensure with a high level of confidence,
that any unauthorized attempt to intercept the transmission will be detected by the two
legitimate users (“Alice" and “Bob"). Successful transmission results in Alice and Bob
sharing a random and secret sequence of bits which can be used as the key. Quantum
cryptography represents a significant development in both physics and cryptography. It
encompasses the first practical application of the Bell inequality [3] and one of the first
practical applications of Einstein-Podolsky-Rosen-Bohm entangled states [4, 5|. Exploitation
of the uncertainty principle and Bell’s theorem, which are fundamental quantum principles,
enables quantum cryptography to offer a theoretical guarantee of security of key distribution,
which is unobtainable in conventional cryptography:.
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The new cryptography schemes described in this paper involve a novel kind of quantum
measurement technique [6, 7, 8] which facilitates the measurement of nonlocal observables.
We find that certain conditions previously thought to be necessary for the viability of any
quantum cryptography scheme [9] can in fact be bypassed by schemes involving nonlocal
measurements. We show that it is possible to formulate a scheme in which the cryptographic
key information is generated using eigenstates of two commuting operators, which effectively
constitute a single “alphabet". We describe another cryptography scheme in which all of
Alice and Bob’s measurements are carried out on the same two particles. We then examine
the opportunities for, and methods for detecting, eavesdroppers. We find that the eaves-
dropper detection techniques which are made feasible by our new cryptography schemes offer
definite advantages when compared to the possible methods for detecting eavesdroppers in
previous quantum cryptography schemes. Specifically, we describe a test which is guaran-
teed to reveal whether an eavesdropper has intercepted any single transmission; whereas the
eavesdropping tests in previous schemes have been of a statistical nature, and have generally
required a large sample of data. We also describe a cryptography scheme where eavesdropper
detection takes place automatically during the key generation process itself, so that there is
no need for a separate eavesdropping test. In addition we find that the new schemes do not
need to sacrifice any of the potential cryptographic key data in order to facilitate eavesdrop-
per detection, whereas previously it had been thought that a “sacrificial protocol" would
be unavoidable in any quantum cryptography scheme which uses the minimum number of
alphabets [9].

2 Quantum Cryptography

The original quantum cryptography schemes [1, 2] involved the use of a set of four nonde-
generate eigenstates, consisting of two nonorthogonal pairs of orthogonal states. There are
various ways in which such sets can be realized in practice. One could use photon polar-
ization states (e.g. horizontally and vertically polarized, and left- and right-hand circular
polarized) or spin-component eigenstates of spin-3 particles (e.g. | 1), | |2) and | 1.),] |2)).
The sender (Alice) attempts to generate a secret shared bit by preparing each transmitted
particle in one of the four eigenstates—in doing so she must choose each time between one
of two possible measurement bases. The receiver (Bob) measures the polarization (or spin)
% particle), choosing randomly between the same two
measurement bases as those used by Alice. After a sufficient number of particles have been

of the transmitted photon (or spin-

transmitted, Alice and Bob communicate over a public channel in order to compare the mea-
surement bases they used for each transmission. Each time these bases correspond (i.e. for
about 50% of the transmissions), and provided there has been no interception by an eaves-
dropper, Alice and Bob will have generated a secret shared bit towards their cryptographic
key.

The use of such nonorthogonal pairs of states to transmit a random sequence of bits from
Alice to Bob means that straightforward passive eavesdropping by an adversary (“Eve") is
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impossible. This is because Eve does not know to which of the two pairs of orthogonal states
each transmitted state belongs, and so any attempt by her to perform a measurement on the
transmitted state will be liable to modify it, with significant probability. (Any measurement
procedure chosen by Eve which fails to disturb two nonortogonal pairs of states cannot
reveal any information about them [10].) Some of these inadvertant modifications by Eve
will almost certainly show up later when Alice and Bob carry out their eavesdropping test.
There are various ways in which Alice and Bob can test for the presence of an eavesdropper;
the most straightforward method being for them to select a “sacrificial" portion of their
transmitted bit sequence and verify, using a public communication channel, that Alice’s
and Bob’s versions of the string are identical. If some or all of the transmitted particles
have been intercepted by Eve who has then retransmitted similar particles in an attempt
to avoid being discovered, then there will almost certainly be some discrepancies between
Alice’s and Bob’s retained bit strings (i.e. between those results obtained when they chose
corresponding measurement bases). The probability of such discrepancies being discovered
approaches unity as the size of the dataset used for the eavesdropping test is increased.

Rather than using four nonorthogonal states (i.e. two pairs of orthogonal states), Bennett
[11] has shown that quantum cryptography can be carried out using only two nonorthogonal
states. In Bennett's two-state scheme Alice prepares and transmits one of two nonorthogonal
states, |u) and |v), say, which represent respectively 0 and 1, and Bob subsequently chooses
to measure one of the two projection operators onto subspaces orthogonal to |u) and |v)
(i.e. he measures either 1 — |u)(u| or 1 — |[v){v]). On some occasions Bob’s results will be
inconclusive. The remaining instances should consist of occasions when either Alice sent |u)
and Bob measured 1 — [v)(v|, or Alice sent |v) and Bob measured 1 — |u)(u|, and should
thus give perfectly correlated results which can be used as the basis of the cryptographic
key. The security of this two-state scheme against various eavesdropping strategies has been
examined in detail by Ekert et al. [12]. Recently Huttner et al. [13] have proposed a quantum
cryptography method which combines features from the four-state and two-state schemes.

An alternative quantum crytography method using Einstein-Podolsky-Rosen-Bohm
(EPRB) [5] pairs was put forward by Ekert [14]. In Ekert’s scheme a central source sends
EPRB particle pairs to Alice and Bob, one particle of each pair going to Alice and one to
Bob. Alice and Bob each choose between three possible spin-measurement directions, two
of which they share. On those occasions when they choose the same direction for their spin
measurements, Alice and Bob can exploit the perfect EPRB correlations to generate a secret
shared bit. The eavesdropping test is carried out by using the rejected data (i.e. results
obtained when Alice and Bob choose different measurement bases) to check for an expected
violation of the Bell inequality. Subsequently, Bennett, Brassard and Mermin [10] showed
that EPRB states can be used for quantum cryptography without recourse to Bell’s theo-
rem, by using just two measurement bases, shared by Alice and Bob, and carrying out an
eavesdropping test similar to that used in Bennett and Brassard’s single particle scheme [2].
Bennett, Brassard and Mermin went on to show that their simplified EPRB-based scheme
1s equivalent to Bennett and Brassard’s scheme.
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In cryptography schemes involving EPRB pairs, a more sophisticated eavesdropper might
attempt to replace the particle source with a device producing three-particle entangled states.
She would arrange that two particles from each triplet are transmitted to Alice and Bob, with
the intention of remaining undetected while obtaining information about Alice and Bob’s
key data through correlations between the results of Alice’s and Bob’s measurements and
the results of her own measurements on the third particle. However, Bennett, Brassard and
Mermin have shown that, for their EPRB-based scheme, any such eavesdropping strategy
cannot succeed; any such fake source certain of passing the subsequent eavesdropping test
would fail to yield any information whatsoever.

As well as security considerations relating to the possibility of eavesdropping occurring
during the particle transmissions, we must also take into account the security of the key data
once it is in the hands of both legitimate parties. From this point of view, the particles used
in EPRB-pair cryptography schemes could in principle be stored by Alice and Bob until the
key is needed, and any attempt by an intruder to obtain the key prior to Alice and Bob’s
measurements would be detectable in the subsequent eavesdropping test. On the other hand,
in single particle quantum cryptography schemes the information stored by Alice, after each
particle transmission, is classical and could in theory be copied without detection.

All the cryptography schemes described so far in this section involve binary “alphabets";
that is, each measurement performed by Bob can, at best, distinguish between only two states
and hence can generate at most one bit towards the key. However, Bennett and Wiesner [15]
have described a two-bit cryptography scheme which uses an alphabet of size four, arising
from the use of the “Bell operator" basis [16] which has dimension four. Phoenix [17] has
pointed out that quantum cryptography can in theory be carried out with alphabets of
arbitrary size, by using operators with the appropriate number of nondegenerate eigenstates.

3 Measurement of Nonlocal Observables

In this paper we examine methods of implementing quantum cryptography which involve
the application of nonlocal measurement procedures. Although, to the best of our knowl-
edge, nonlocal measurements have not been involved in any previous quantum cryptography
scheme, it has recently been shown (18] that nonlocal measurements can be used to carry
out another kind of quantum communication, namely “teleportation" in the sense originally
described by Bennett et al. [19]. The sort of nonlocal observables we will use in this pa-
per were first described by Aharonov and Albert [6, 7], and the concept was developed by
Aharonov, Albert and Vaidman [8]. The basic objective of a nonlocal measurement is to
measure a combined property of two (or more) spacelike-separated regions in such a way that
the corresponding separate properties of these regions may remain undetermined and not
well-defined. A nonlocal measurement is carried out by preparing a number of apparatuses
in an entangled state, and then arranging that impulsive interactions take place between the
different apparatuses and the separated components of the measured system, and that these
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interactions take place simultaneously (or in spacelike separated regions).

This technique is best demonstrated by means of a simple example. Although Aharonov
and Albert’s analyses of the technique are carried out using the Heisenberg picture, it can be
described straightforwardly in the Schrodinger representation. We choose for our example a
system consisting of two spin-1 particles, intially in an arbitrary state which is not necessarily
entangled. Our nonlocal observable is the total z-component of spin for the two particles,
given by g, + ;.. We want to measure this observable at time ty. In order to demonstrate
that this is possible, we first consider an apparatus that carries out an impulsive measurement

of the local observable o,, through the Hamiltonian
Hi(r]Lz = _(j(t)P(le, (31)

where P refers to the momentum of an internal “pointer" in the apparatus and g(t) is zero
everywhere except in the interval [ty — ¢, ¢y + ¢] and satisfies

to+e
/ g(t)dt = A. (3.2)
t

0—€
Before the interaction between apparatus and particle takes place, the position ) of the
apparatus’s internal pointer is measured and found to be q,. The initial spin-state of the
particle is unknown and assumed to be o 1.) + 3| |.). Hence the initial state of apparatus
plus particle can be written

(W (t:) = la:) ® (af T2) + 5] 1)) (3.3)
where
(qla:) =6 (q—qi). (3.4)
The Hamiltonian H},ﬁ{ leads to the time evolution
() = e I SRR gy (3.5)
where
/g(t')dt' = 0 (3.6)
th=f_
Hence

() = {1 -2 [ oyt Por. - ( [ attrie) Pyt - } a)@(al 1) + ] 1.)
(37)

(q¥(t)) = a {1 - ]t g(t’)dt'aq + % (ft g(t')dt') % — - } (qlg;) ® | 12)

: B t AN
+8 {1 +ft g(t)dt' 5 + % ([ g(t')dt) 5 " } (dlg:) @1 ).
(3.8)
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So
W(t>to+e) =alg+A)@|T1:)+Bla—A) @] L) (3.9)
It follows that if we measure the apparatus pointer position ) after the interaction has taken

place, and obtain the result gs, then the z-component of spin of the measured particle will

be given (in units of 1/2) by
1
8§, = — — i) - 3.10
s: = = (95 — @) (3.10)

Now suppose we have two such apparatuses that interact with two spatially separated spin-%
particles through the Hamiltonian

HY = g(t) (Pyov, + Proas) (3.11)

wnt

where once again g(t) is zero everywhere except in the interval [t, — €ty + €] and satisfies
to+e
/ g(t)dt = A. (3.12)
f.()—(
We prepare the internal pointers of the two apparatuses in an entangled state |®,,) which
satisfies
(621 + QZ) |(p12> = OI(DI'Z) (3 13)
(P1 = Pp) [P12) = 0[D12)
and then separate the two apparatuses and allow them to interact with the two spin-;

particles at time tg.

(Q1 + Q2) and (P, — P,) together constitute a complete commuting set of observables
for the two-pointer system and so |®2) is uniquely determined by (3.13), and can be written

[P12) = foodfhlf]i)ﬂ = qi)2- (3.14)

The initial spin state of the two spin-% particles is completely arbitrary, and so the initial
combined state of apparatuses plus particles can be written

|‘I’12(0)> = /j dgilgi)1| — @i)2 @ (a] TizT2:) + 0] Tazles) +¢f LizT2:) + 4| L1:l2:)) . (3.15)

After the interactions between apparatuses and spin-% particles have taken place the com-
bined state will be

W2 (t > to+€)) =
fiomdql {algp + A1l — @+ A)2 @] T1zTaz) +blgi + A)1| —qi — A)2 ® | Tizl22)
el — AN — i+ A @ | 1212:) +dlg — AN — @ — A)2 ® | [1212:)} - (3.16)

Hence the total z-component of spin o,, + 05, for the two particles will have the value S,

given (in units of i/2) by
1

S, = A (qr1 + qf2) (3.17)
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where gg; and gy, are the final pointer positions of the two apparatuses, which can be
determined by carrying out measurements of J; and @». This means that, if Q; and Q, are
measured locally, a nonlocal measurement of o;, + g,, will have been completed. It is not
necessary to bring the apparatuses to the same place in order to measure ; and Q5. The
actual final pointer position readings gs, and g, could be recorded automatically at each
apparatus, or the readings could be taken by two experimenters observing the apparatuses
and exchanged through a communication channel. Both experimenters would then be aware
of the result of the measurement of o, + o,,, but the local observables o, and o5, will not
have been measured.

The reader will no doubt have realized that the state |®,5) in which the apparatuses are
prepared is an idealized state with no limits on the possible positions of the internal pointers.
A more realistic state would be |®;,) given by

5 E
|®12) = ]_E dgi|gih| — gi)2- (3.18)
In this state the possible positions of the pointers are restricted to the range [— E, E]. This
restriction necessarily precludes the possibility of the momentum representation of |®;;)
giving an absolute correlation between the initial momenta of the two apparatuses. The
momentum representation of |®;,) is given by

(il ol 12) = sin [ 2 (7~ p2)]. (3.19)

T (p1 — p2) h

This function is sharply peaked about p; — p, = 0, but it has a non-negligible value over
a range of width ~ h/FE, as we would expect from the uncertainty principle because of the
restriction on the range of ¢;; and ¢;2. However, our derivation of the nonlocal measurement
formula S, = (g1 + qf2) /A will go through in exactly the same way if we take the initial
state of the apparatuses to be |®,,) rather than |®,5).

The nonlocal measurement of o,, + g5, can leave the system of two spin—% particles,

which may never have interacted with each other, in an entangled state. If the measurement
of 0. + 04, yields S, = 0 then after the measurement the two-particle spin state will be a
superposition of the form | T1.12.) + 8] [1.T2.).

By carrying out alternate nonlocal measurements of o1, + g2. and oy, + 02, it is pos-
sible to prepare any system of two spin-% particles in the Einstein-Podolsky-Rosen-Bohm
(EPRB) [5] state 1/v/2(] T112) — | 1112)); this preparation will be achieved whenever we get
two successive null results [18]. In other words, if we measure oy, + 0,, and obtain S, = 0,
and then measure o,, + 0,5, immediately afterwards and obtain S, = 0, then after these
measurements the particles’ spin-state will be the EPRB state; the particles can have ar-
bitrary spatial separation and need never have interacted with each other. If we subject
a large number of pairs of spin—% particles, initially in arbitrary spin-states, to successive
measurements of o, + 05, and 0, + 09,, we would expect about one quarter of these pairs to
give null outcomes for both measurements and hence to be in the EPRB state immediately
following these measurements.
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[t is possible to measure nonlocal observables with continuous spectra by applying a
similar procedure to that outlined in this section [6]. However, for the purposes of crypto-
graphic applications, we restrict the nonlocal observables used in this paper to combinations
of spin-components such as o, + 75,.

It should also be mentioned that a detailed analysis of causality constraints on nonlo-
cal measurements has recently been carried out by Popescu and Vaidman [20], but their
conclusions do not affect the validity of the results presented here.

4 Using Nonlocal Measurements for Quantum Cry-
tography

In this section we describe three new cryptography schemes, all of which incorporate nonlocal

measurements.

4.1 Scheme A

As we have just seen, nonlocal measurements can be used to prepare any spatially separated
pair of spin—% particles in the EPRB state. Hence an obvious way in which nonlocal measure-
ments could be incorporated into a quantum cryptography scheme would be for Alice and
Bob to prepare a series of pairs of spin-% particles in the EPRB state by such a method. For
each pair of particles, they can monitor, over a public communication channel, whether they
have successfully prepared the EPRB state, by measuring and comparing the internal pointer
variables of their respective apparatuses for each pair of successive nonlocal measurements
of o1, + 02, and 7,, + 09., and checking that they sum to zero in each case. Each time they
succeed in preparing a pair of particles in the EPRB state they can then generate a secret
shared bit towards their cryptographic key by carrying out local spin-component measure-
ments on their spin-% particles along an agreed direction. The results of these measurements
will, with probability 1, be anticorrelated and known only to Alice and Bob. Previous
EPRB-based cryptography schemes [10, 14] have required Alice and Bob to choose between
two [10] or three [14] directions for their spin-component measurements. The use of more
than one direction for spin-component measurements in these schemes is necessary in order
that the subsequent tests for the presence of eavesdroppers can be carried out effectively. In
our EPRB-based scheme only one direction for the spin-component measurements is needed,
because the eavesdropping test can be carried out on the transmitted apparatuses, rather
than on the spin—% particles which never leave Alice and Bob’s possession. We will consider
the eavesdropping possibilities for nonlocal measurement based quantum cryptography in
Section 5.
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4.2 Scheme B

The method just described (Scheme A) is an unnecessarily complicated and inefficient way of
exploiting nonlocal measurements for quantum cryptography. Alice and Bob do not need to
prepare each pair of spin-% particles in the EPRB state in order to be able to use that pair to
generate a secret shared bit. Rather, they simply need to prepare each pair of particles in a
state which will guarantee that the results of their subsequent spin-component measurements
will have a definite correlation (or anticorrelation) and will be known only to them. They
can achieve this by measuring just one nonlocal observable, for example o, + o,.. If this
measurement yields the result S, = 0, which can be confirmed by Alice and Bob through a
public communication channel, they will know that the spin-state of their pair of particles
must be some arbitrary superposition | Ty, ]2.) + 3| l1:12:). Subsequent local measurements
of 7,1, and o,, by Alice and Bob will then, with certainty, give anticorrelated results and can

thus be used to generate a secret shared bit towards the cryptographic key.

Blow and Phoenix [9] have argued that any secure quantum cryptography scheme requires
the use of at least two “alphabets", consisting of eigenststates of noncommuting operators,
and that any such scheme that uses the minimum number of alphabets must sacrifice some of
the potential cryptographic key data in the test for eavesdropping. (An alphabet is defined
as a set of given symbols, which are used for the assignment of numbers for the cryptographic
key.) However, Scheme B uses as alphabets the eigenstates of o, and o,,, which operators
commute; and since the results of measuring o,, and o,, will always be anticorrelated we
can reasonably argue that essentially only one alphabet is involved. Furthermore, none of
the potential key data need be sacrificed in the eavesdropping test which, as we will see,
can be carried out on the apparatuses prior to the generation of key data from each pair of
spin—% particles.

4.3 Scheme C

[t is possible in principle for Alice and Bob to carry out cryptographic key distribution by
performing a series of measurements of o, + 0,5, and oy, + 09, alternately, on the same
pair of particles. Each time one of these measurements yields a null result a secret shared
bit can be generated by carrying out local spin-component measurements, as in Scheme B.
Alice and Bob’s two-particle system will then be in a suitable state for their nexrt nonlocal
measurement, the result of which will be completely unpredictable. Suppose for example
Alice and Bob measure o,, + 05, and obtain the result S, = 0; the state of their two-particle
system will then be a superposition of the form a| T1,/2.) + b] 11:72.). They then carry out
local measurements of o, and g5,. Suppose these measurements yield s;, = 1 and s,, = —1.
These results will contribute one bit towards the cryptographic key, and the two-particle
system will be left in the state | T1.]2.). Alice and Bob then measure oy, + 0,; the outcome
of this measurement will be unpredictable since

| lel‘Zz) = %{I Tl.rT'):r:) - | llxl?z) - | Tl:cl?x) 4= | llmTQ:)}
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= %{IST = 2) - |S.r =3 _2> - \6"‘6‘7 - 0>}

[f Alice and Bob obtain S, = 0, they can generate another secret shared bit towards their
key, and they then proceed with the next measurement of 0. + g,.. If they obtain S, = +2
they cannot generate a secret bit from the oy, + 02, measurement, but just proceed with
the next measurement of o,, + g2.. In both cases the outcome of the next measurement of
01, + 02. will be completely unpredictable. This method shows that, in principle, nonlocal
measurement based quantum cryptography can be just as efficient in its use of resources as
other quantum cryptography schemes. Whereas previous schemes have used a small number
of apparatuses but a large number of transmitted particles to generate the key data, the
scheme we have just described requires a large number of apparatuses but only two particles
to generate the key data. There is no reason why the apparatuses themselves should not be
microscopic, with the internal pointers consisting of single particles.

5 Detecting Eavesdroppers

[n the cryptography schemes described in the last section, the spin—;l; particles on which the
key data generating measurements are performed never leave Alice’s and Bob’s possession.
Hence any risk of eavesdropping must arise from the possibility of a third party (“Eve")
intercepting the transmitted apparatuses prior to their interactions with the spin—% particles.
The two apparatuses used for each nonlocal measurement could be prepared in an entangled
state by Alice, and one of the apparatuses transmitted to Bob; or the two apparatuses could
be prepared at a central source, and one apparatus transmitted to Alice and one to Bob.
[n the first case there is a risk of Eve intercepting one, and in the second case both, of the
apparatuses.

We will consider two different kinds of eavesdropping which we label “type 1" and
“type 2". Type 1 eavesdropping involves interception of the transmitted apparatuses, straight-
forward measurement of one of the variables P and @ for each apparatus, and then retrans-
mission of the apparatuses. This sort of eavesdropping is analogous to the more straight-
forward cases of eavesdropping considered by Bennett and Brassard [2] and by Ekert [14].
I'ype 2 eavesdropping is more sophisticated; in this case, after intercepting one or both of a
pair of entangled apparatuses, Eve does not measure P or (Q directly but attempts to prepare
the intercepted apparatus(es), together with a similar apparatus already in her possession,
in a suitable entangled state. She then retransmits the intercepted apparatus(es) to their
intended destination(s) and allows her own apparatus to interact with a spin—% particle in
her possession. (Alternatively, if the apparatuses originate from a central source, Eve could
attempt to replace this source with a new source producing three-apparatus entangled states;
she would retain one apparatus of each triplet, which would later interact with her spin—%
particle.) By doing this Eve hopes that a nonlocal measurement will be carried out involv-
ing her own particle and one or both members of Alice and Bob’s pair of particles. If this
objective is achieved, Eve may be able to infer the results of Alice’s and Bob’s subsequent
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local spin-component measurements from the result of a spin-component measurement on
her own particle; thus she could gain access to Alice and Bob’s key data. A similar type of
eavesdropping, but where Eve attempts to replace the legitimate two-particle source with a
source producing suitable three-particle entangled states, was considered by Bennett, Bras-
sard and Mermin [10] for their EPRB-based cryptography scheme; they showed that any
such attempt would be incapable of yielding any useful information relating to the key.

We consider first type 1 eavesdropping. Suppose that the two apparatuses, labelled “1"
and “2" with interaction Hamiltonian given by (3.11), are prepared by Alice in the state
|®,2) given by (3.13), and that apparatus 2 is then transmitted to Bob. Eve manages to
intercept this apparatus and measures (Q;, obtaining the result ¢;;. Once Eve has carried
out this measurement the position of the pointer of apparatus 1 will also be well-defined and
equal to ¢, say; and if Eve knows how the apparatuses were prepared she will be able to
determine the value of ¢;,, since

g1+ G2 = 0. (5.1)
Eve then retransmits apparatus 2 to Bob. Once Bob receives this apparatus Alice and Bob
allow their apparatuses to interact with a pair of spin-é— particles as usual. They then measure
1 and @Q,. If the results gy and gy, of these measurements satisfy g, + g2 = 0, Alice
and Bob will erroneously infer that the spin-state of their two-particle system must be some
superposition a| 1. 12.)+ /3] [1.72:). In fact, as a consequence of Eve’s intervention Alice and
Bob will not have carried out a nonlocal measurement; without realizing it, they will have
performed two local measurements, of 01, and 0,,, and immediately after these measurements
the spin-state of their two-particle system will be either | T1.]2.) or | |1:.T2.). This is because
Eve’s measurement will have disentangled the apparatuses’ two-pointer wavefunction, thus
precluding the possibility of the apparatuses being used for a nonlocal measurement. After
interacting with the apparatuses, the values of the z-components of spin of the two particles
will be given by

1
1z = E (Qfl = (;11)
(5.2)
1
So, = E (Q'fz - Qiz)
and so it will still be the case that
1
S1z + S2. = A (gr1 +qp2) =0 (5.3)

as 1t would be if a nonlocal measurement of o,. + 7,. yielding S, = 0 had been carried
out. However, immediately after Eve’s intervention, ¢;; and ¢;» will have well-defined values
known only to her, and since she can also obtain the values of gy, and gy, by listening in
on the public communication channel through which Alice and Bob exchange the results of
their pointer measurements, she will be able to calculate the values of s;, and s,, from (5.2).
In this way Eve can gain access to the spin-component measurement results on which Alice
and Bob base their cryptographic key.

It is essential, then, that Alice and Bob devise a reliable test that will detect the presence
of a type 1 eavesdropper. A suitable such test can be carried out as follows. Alice and
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Bob arrange that they are in contact through a public communication channel just before
they carry out their apparatus pointer measurements. Every so often they agree to measure
P; and P, instead of @y and @,. (The occasions when they do this can be determined by
a random number generator held by one of the two parties.) If there has been no type 1
eavesdropping, (i.e. if Eve has not intercepted one or both of the apparatuses and measured
@1 and/or Q2) then Alice and Bob will certainly find that the results ps, and py, of their P
measurements are equal, because of the pointer momentum correlation in the initial prepa-
ration of the apparatuses, given by (3.13). However, if Eve has intercepted one (or both)
of the apparatuses and measured ()1, @3, or indeed any linear combination of @; and @,
(apart from @, + Q2 which would yield no useful information whatsoever), then any such
measurements will definitely have disturbed the pointer momentum of the intercepted ap-
paratus(es). Since neither ), nor Q2 commutes with P, — P, any measurement by Eve of
(21, Q2, or any linear combination of ; and @, apart from Q) + 5, will mean that Alice
and Bob will almost certainly not obtain ps; = py, when they measure P, and P,. Hence,
by measuring P; and P, Alice and Bob should be able to detect Eve’s presence immediately.
The P measurements can be carried out before or after the apparatuses have interacted with
Alice and Bob’s spin—% particles, since the Hamiltonian given by (3.11) will not change the
apparatuses’ momenta.

For this test to be effective, it is necessary that Alice and Bob are able to measure
their pointer momenta to an accuracy of ~ h/A, where A, the change in pointer position
resulting from a measurement of spin 1/2, is the accuracy with which Eve needs to measure
the pointer position, and is given by (3.12). If the initial state of the apparatuses is |(i>12),
given by (3.18), rather than |®,), then it is also necessary that the disturbance of pointer
momentum resulting from Eve’s intervention be much greater than the “intrinsic" momentum
uncertainty which in this case is ~ h/E. This condition will be satisfied provided A << F|
i.e. provided that the pointer deflection for spin h/2 is only a very small fraction of the full
range of the pointer,

The test just described is in some ways similar to the eavesdropping test in Bennett and
Brassard’s scheme [2], where a random subset of the data for which Alice and Bob choose
corresponding measurement directions is compared using a public commmunication channel
and checked for agreement. However, the probability, in our scheme, of Eve being detected
after a single transmission if she has measured @), and/or (); and Alice and Bob subsequently
carry out the eavesdropping test as described by measuring P, and P, is effectively unity;
whereas in Bennett and Brassard’s scheme the equivalent probability that Eve is detected
for a single transmission is only 0.25. (In Ekert’s EPRB-based scheme [14] the possible
presence of an eavesdropper is monitored using a statistical test based on the Bell inequality;
such a test necessarily involves a large dataset and rules out the possibility of detecting
an eavesdropper from data relating to a single particle-pair transmission.) Eve's greater
vulnerability to immediate detection in our scheme arises because Py, P, and hence P, — P,
have continuous spectra, so that if the initial state of the apparatuses is an eigenstate of
P, — P, with eigenvalue zero, then any uncontrollable disturbance of the pointer momenta
(such as would be caused by Eve measuring Q; and/or Q,) will mean that subsequent
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measurements of P, and P, will have a negligible probability of yielding equal results, whereas
in the absence of such a disturbance these measurements would be certain to yield equal
results. Previous quantum cryptography schemes [1, 2, 10, 14] have used polarization or spin-
component measurements, for both the key-generation processes and the eavesdropping tests.
The operators corresponding to these measurements have spectra of just two eigenvalues.
It follows that in these schemes, if Bob measures the polarization or spin of a transmitted
particle using the same basis as that chosen by Alice for the initial preparation, then there
is at least a 50% chance that Alice and Bob’s results will agree even if the particle has been
intercepted and subjected to an intermediate measurement using an alternative basis so that
the initial state is disturbed.

If the observables used for generating the cryptographic key data in a quantum cryptog-
raphy scheme did not have discrete spectra, it would be impossible to form an alphabet from
the eigenstates. In this sense the use of discrete spectra for the key generation process is un-
avoidable. This is why previous quantum cryptography schemes, in which the eavesdropping
tests are carried out on the same quantum systems, and using the same observables, as those
used for key generation, cannot exploit the much enhanced detectability of eavesdroppers
which arises from the use of observables with continuous spectra. Our cryptography schemes
using nonlocal measurements can, however, take advantage of this enhanced detectability,
since the eavesdropping test is carried out on the apparatus pointers, which are not involved
in the generation of the key data itself. This key data can still be generated using a practical
binary alphabet, as in previous schemes. Furthermore, as we have already pointed out, none
of the potential key data is sacrificed in our eavesdropping test.

We now describe a second method which can be used to test for the presence of a type 1
eavesdropper in nonlocal measurement based cryptography. In order to carry out this test,
Alice and Bob must use two difterent kinds of apparatus pair. The first kind of apparatus

pair interacts with Alice and Bob’s spin-% particles through the Hamiltonian

Hi(r‘f}t) = Q(t) (Plalz + P2(72z) (54)
and is prepared in the state |®)5), given by
(@1 + Q2) [P12) = 0[P12)
(P = P) |®12) = 0]®)3)

as previously. The second kind of apparatus pair interacts with the particles through the

Hamiltonian
Hi(:’t) = g(t) (Q101: + Q202;) (5.6)
and is prepared in the state |¥,), given by
(Q1 — Q2) [¥12) = 0|¥y3) (5.7)
(P] + .Pg) ‘\IIIZ) == O|\I’12>

In both cases g(t) is zero everywhere except in the interval [t, — €, to + €] and satisfies

to+e
[ g(t)dt = A. (5.8)

0—¢€
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T'he two kinds of apparatuses are externally identical. It is arranged that the apparatus
oreparer (i.e. either Alice or a central source) tosses a coin just before each transmission,
and depending on the outcome, distributes a pair of apparatuses of either the first or second
<ind. Alice and Bob make contact with each other (or with a central source if such a source is
1sed) through a public communication channel, immediately after each interaction between
1 pair of apparatuses and a pair of spin—% particles, but before they carry out their apparatus
pointer measurements. Alice informs Bob (or the central source informs Alice and Bob)
which kind of apparatus pair was sent. If a pair of apparatuses of the first kind was sent, then
Alice and Bob measure (; and ()3, thus carrying out a nonlocal measurement of oy, + a75,,
the outcome of which will be given by

1

S: = < (an +ap2) (5.9)

A
1s previously. If a pair of apparatuses of the second kind was sent, then Alice and Bob
neasure P and P,; once again they will have carried out a nonlocal measurement of oy, +03.,
but this time the outcome will be given by

1
S, = A (Pr1 +Pr2) . (5.10)

Now, if Eve intercepts one (or both) of the apparatuses before they reach their destination(s),
she will not know which kind of apparatus she has intercepted; hence she will not know
vhether to measure P or Q. If she has intercepted an apparatus (or a pair of apparatuses) of
‘he first kind, and she then measures P, (and/or P;) then such a measurement will disturb
:he apparatus pointer positions, and Alice and Bob will almost certainly not subsequently
ind that, after the apparatuses have interacted with their particles, ¢ + g2 = 0, 24, or
—-2A; whereas they will definitely obtain one of these results if neither P, nor P, has been
neasured. Similarly, if Eve has intercepted an apparatus (or a pair of apparatuses) of the
second kind, and she then measures 2 (and/or @)}, then Alice and Bob will almost certainly
not find that psy + pr = 0, 2A, or —2A, whereas they will be certain to obtain one of these
»utcomes if neither 0, nor (2 has been measured. Hence there will be a probability of 0.5
:hat Eve is detected each time she attempts to gain access to one cryptographic bit; and
Eve’s presence will become manifest during the cryptographic key generation process itself,
so that Alice and Bob do not need to carry out a separate eavesdropping test.

We now address the question of whether our nonlocal measurement based cryptography
schemes are vulnerable to “type 2" eavesdropping. This time Eve’s strategy is not to mea-
sure P or (Q for the intercepted apparatus(es), but to attempt to prepare the intercepted
wpparatus(es), together with a similar apparatus of her own, so that the three-apparatus
system is left in a suitable entangled state. Suppose for example, that Alice and Bob use just
»ne kind of apparatus pair, with interaction Hamiltonian given by (5.4), and prepared in the
state |®13) given by (5.5). Eve manages to intercept one or both of the apparatuses before
:hey reach their destination(s). Her aim then is to prepare the intercepted apparatus(es)
and her own apparatus so that the three-apparatus system is left in the state |[®,53) which

(Q2 + Qa) |(I)]23) — 0|‘1>123)
(PZ - PS) I‘D123) = 0|(I)123)_ } (5'11)

satisfies
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[f she can achieve this undetected, and if she then retransmits the intercepted apparatus(es)
and allows her own apparatus to interact with a spin-é particle in her possession, Eve will
be able to arrange that a nonlocal measurement of o4, + 03, is carried out, the outcome of
which will be given by

S = 30+ 550 = 5 (472 + ). (5.12)
She can determine the result of this nonlocal measurement after measuring her apparatus
pointer position Q3 (which will yield the result gs3), since Alice and Bob exchange the results
qn and gy of their pointer position measurements through a public communication channel.
In those instances where g5 + qp2 = 0, Eve proceeds to measure 03,, and the result s, of
this measurement will enable her to determine s, from (5.12), and hence she will also be
able to determine s, since s;, = —s3, in these cases. In this way Eve would be able to gain
access to Alice and Bob’s cryptographic key data.

However, Eve must ensure that, after her interception, the state |®;53) in which she
leaves the three-apparatus system is an eigenstate of (@ + Q2); otherwise Alice and Bob
will almost certainly find that g7 + qg2 # 0, 2A, or —2A, which will immediately alert
them to the presence of an eavesdropper. But since, from (5.11), |®;23) is an eigenstate of
(P, — P3), it cannot also be an eigenstate of (Q1 + (Q2) because (@ + @Q2) does not commute
with (P, — P;). Hence, by preparing the apparatuses in the state |®,3) Eve risks immediate
discovery. Eve may instead attempt to prepare the apparatuses in a different state |®7,5)
which is an eigenstate of (QQ2 + (23) but not an eigenstate of (P, — P3), and so could still be
an eigenstate of (Q; + (?2). By doing this she would again hope to establish a correlation
between gs2 and gy3, and hence between s,, and s3,. However, |®],;) cannot be an eigenstate
of (P, — P;) because (Q; + @Q3) does not commute with (P, — P»). This means that, if she
prepares the apparatuses in the state |®/,,), Eve risks immediate detection if Alice and Bob
carry out the first of the type 1 eavesdropping tests described earlier, i.e. if they decide to
measure P; and P, instead of 0; and ;. On the other hand, if Alice and Bob use the second
type 1 eavesdropper detection method and use two different kinds of apparatuses, Eve will
not know the state of any apparatuses she intercepts, and so will risk destroying the initial
entanglement of the legitimate apparatuses if she attempts to prepare the three-apparatus
systems in suitable entangled states. This will once again show up in Alice and Bob’s pointer
measurements and so Eve risks immediate detection in this case also. We conclude that
a type 2 eavesdropper is just as vulnerable to detection as a type 1 eavesdropper for the
nonlocal measurement based quantum cryptography schemes we have described.

We end this section by briefly assessing how secure Alice and Bob’s stored information
is during the key-generation process, for the schemes we have described. For those schemes
where Alice and Bob use a new pair of spin—% particles for each nonlocal measurement (i.e.
Schemes A and B in Section 4), they will in principle be able to store the entangled pairs
created by successful nonlocal measurements, until the key is needed. Any raiding of Alice’s
and Bob’s particle stores prior to the key-generation process will not, in these cases, yield
any useful information. This feature is similar to the storage advantage of Ekert’s scheme
[14], in which Alice and Bob’s particle pairs can in principle be maintained in the EPRB
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tate until needed for the key. However, in the last of our cryptography schemes in Section
| (Scheme C), where Alice and Bob’s nonlocal measurements are all carried out on the same
vair of particles, it will be necessary for them to perform their key-generating local spin
neasurements immediately after each successful nonlocal measurement. In this case their
tored information will be classical and hence vulnerable to theft and/or duplication. In
3ennett and Brassard’s scheme [2] Alice’s information is also classical and so is vulnerable
n a similar way.

3 Conclusion

Ne have examined a number of quantum cryptography schemes which incorporate nonlocal
neasurements. These schemes contain a number of interesting features. All of the key data
‘an be generated using a single alphabet; alternatively, all of the key data can be generated
rom a single pair of particles held by Alice and Bob.

The use of entangled apparatus states for which the correlated observables have contin-
1ous spectra leads to enhanced detectability of both straightforward (“type 1") and more
ophisticated (“type 2") eavesdroppers. In both of these cases we have formulated a test
vhere the eavesdropper will be revealed immediately after a single intercepted transmission.
Ne have also described an alternative method for detecting eavesdroppers which is built into
he key distribution process itself and obviates the requirement for a separate test. None of
he potential cryptographic key data need be sacrificed in order to facilitate eavesdropper
letection by either of these methods.

The cryptography schemes described in this paper are not the first applications of non-
ocal measurements for quantum communication; previously a method using nonlocal mea-
urements for teleportation of quantum states has been formulated [18]. So far, however,
here have been few practical suggestions as to how applications such as these might be im-
slemented in the laboratory. It is hoped that the work presented here will help to motivate
urther research in this field.
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