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Generalized Deformed Para-Bose Algebra
With Complex Structure Function

By Ha Huy Bang1 and M.A. Mansur Chowdhury2

International Centre for Theoretical Physics, 34100 Trieste, Italy

(21.VIII.1996)

Abstract. The generalized deformed algebras have been studied for para-Bose systems considering
the structure function in the complex form. These algebras have been extended to 5(7(2) and

SU(l, 1) realizations of generalized deformed para-Bose oscillators. Interestingly, one can reproduce

their form of algebras from these generalized algebras in the limiting cases.

PACS number(s): 03.65F - Algebraic methods.

In the last few years there has been increasing interest in particles obeying statistics
different from Bose or Fermi statistics. These generalized statistics are called para-Bose and

para-Fermi statistics [1-4]. Since the advent of the theory of parastatistics there have been

many attempts to generalize the canonical commutation relations. In particular, quantum
deformations of the Heisenberg algebra and their possible physical applications have been

widely investigated. Naturally, some properties of the deformed para-Bose systems have also

been considered [5-8].

In general, it is assumed that the deformation parameter q takes only real values.

Recently, in ref. [9] L. De Falco and co-workers have studied a general q-deformed Heisenberg
algebra with complex deformation parameter. Using bosonization method they obtained q-
boson realization of the said algebras and used these to find the energy spectrum of harmonic
oscillators. Next, the authors of ref. [10] have shown that the non-Hermitian realization of

'On leave from Department of Physics, Vietnam National University, 90 Nguyen Trai. Hanoi. Vietnam.
2On leave from Research Center for Mathematical and Physical Sciences, University of Chittagong, Chit-

tagong. Bangladesh.
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a Lie-deformed Heisenberg algebra essentially amounts to the case of a Q-deformed algebra
with complex q.

In this letter we have studied the generalized deformed algebras for para-Bose oscillators
with the complex structure function. We have also extended these algebras for Holstein-
Primakoff and Jordan-Schwinger realizations of SU(2) and 5(7(1,1). It is interesting to note
here that from our generalized deformed algebras with the complex structure function one

ran get not only their deformed algebras but also deformed para-Bose algebras [9-15].

For a single mode para-Bose system the commutation realizations (CRs) are characterized
by [16, 17]

[a,M]=a, [a+,AT\ -a+

where
aa+ + a+a p

~~
2 2

and p is the order of the para-Bose system.
Also

aa+ f(M+l). a+a f(M)
with

/(n)=n + i{l-(-ir}(p-l).
Hence

[a, a+] f(N + 1) - f(jV) 1 + (-iyV(p - 1).

From these relations, an operator A+ was constructed so that [16, 17]

A+ a+ *L±1A -n HAf+iy
\a,A+} l, \A+,Af] -A+,

where the number operator TV is defined by M A+a.
To construct the generalized deformed para-Bose oscillator algebras, corresponding to the
annihilation and creation operators â and à+ respectively, we begin first with the generalized
deformed Bose algebra for two operators a and A^ satisfy the CR [18, 19]

[5, Ä+] F(N + 1) - F(N) [N A 1] - [N], (1)

where [8, 17]

-
_

ä+(N + 1)

f(N Al)'
For our system where 5 and b are not Hermitian operators the relation (1) corresponds to
two relations :

[â,É} [NAl}-[N], {è\à+ï {N+lY-[NY. (2)
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The last relation in (2) is the adjoint one of the former. The number operator N satisfies,
by definition, the CRs

[ä,N] ä, [B,N} -B, (4)

which implies
[à+,N] -â+, [Ë+,N]=B+. (5)

With the help of (3), (4) and (5) we find that

[b,N] -b, [b+,N] b+.

From the relations (2), (4) and (5) we obtain

ä=[j^f(N + l), ~b~a=[j±f(N). (6)

Using (6) we get

làA=[-^7^f(N+l)-[-^-f(N)=G(N). (7)

{b\â+} f(N + l)^-f - nN)Vjf G'(N). (8)

We have just constructed the most general form of CRs (7) and (8) for non-Hermitian
operators of generalized deformed para-Bose oscillators with the complex structure function.
It includes as special cases the various forms of the CRs defined in the literature [5, 7, 17,

20].

The boson realization of the operators à and B which satisfy CR (2) according to refs.

[6, 14, 21] takes the form:

N+l v '

* W£±f
where N A+a Af.
Combining (3) and (10) we arrived at

V N + 1

Relations (9) and (11) denote the non-linear realization of the single-mode generalized
deformed para-Bose algebra in terms of a single para-boson. Further, by using the method of
Jannussis [14] we may rewrite the above relations as

(Yl'lLoG(l))n=N ,19v

\ f(N+l) a' (12)

b a+. {Y,ï=0G(l))n=N ,ir.
\J f(N + l)

¦ [U)
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It is possible to apply these results for any deformed para-Bose oscillator.

As a next step, the Fock space representation constructed in the following way :

(14)

(15)

(16)

(17)

Relation (17) generalizes the corresponding one of ref. [16] to the case of para-3ose oscillator.

The orthonormalized eigenstates \n > of the operator N may be obtained oy repeated
applications of b on |0 > :

\n >= c(6)"|0 > (18)

where numerical norm c,, can then be determined from (6) and (15)

N\n> n\n >,

< n\m > 0,iin,

â|0 > o,

âb|0 > p[i]|o>

K >=
V(n)\yJ[r l'Uni!

(19)

with [n]\ [n][n - 1]...[1], [0]! 1, /(n)! f(n)f(n - 1).../(1).
Taking into account of (6), (19) and after some manipulations the expressions for â and b

are

a\n > \
[nl3/2

/WJrr^72>-1>'
n\n\ li'

b\n >= \ /(
J[n+ l]*[n + 1]

n + l)Vj Li '-

n+ 1
n + 1 >

For the real function F(x) it follows that

a\n >

b\n >= à '"In >

—f(n)\n- 1 >,
n

——rf(n+l)\n+ i >
n + 1

(20)

(21)

Furthermore, for [n] n, we can deduce the results of ref. [16] from (20) and (21).

Let us turn to the case of Holstein-Primakoff realizations of 5(7(2) and 5(7(1,1) algebras
in terms of a generalized deformed para-Bose oscillators. For 5(7(2) we get

J+ b^[2o-N],
J_ yj[2a - N]'a

and define the functional form of J3 by the CR

[Ì+,J_] [2Ì3).

(22)

(23)

(24)
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Using (6) and (22)-(24) we obtain

J[N}*[N} J[N + iy\N + l]
[2J3] [2o+l- N] Vi_Li_i/(yv) _ [2ff _ N]Y1 _LL lf{N + 1}. (25)

Hence
[J3, J+\ {J3(N) - J3(N - \)}J+, (26)

[J3,L] -J-{J3(N) - J3(N - 1)}. (27)

In the realization of ref. [11] with p 1, F(x) satisfies the following relation

F(x)F(y + 1) - F(x + l)F(y) F(x - y),

then from (25) we get
J, N -er. (28)

From (26)-(28) it follows that
[J3,J±} ±J±.

These relations show that the CRs (24), (26) and (27) reduce to the generalized deformed
bosonic SU(2) algebra which was previously considered in ref. [11]. They also contain the
results given in refs. [12, 13] in the limiting cases.

Similarly, Holstein-Primakoff realization of 5(7(1, 1) is

K+ byf[2a + N],

K. yj[2a + N]ä,

-\2K3] [K+, K-] [2a - 1 + N] V ± f(N)

-[2a + N]V[ Ni+\ >-f(N + 1).

From which we can find

[K3, KA {K3(N) - K3(N - 1)}K+;

[K3, K.) -K.{K3(N) - K3(N - 1)}.

Next, let us focus our attention to discuss Jordan-Schwinger realization of complex generalized

deformed para-bosonic SU(2) algebra. In this realization J+ and J_ take the form
./+ b\a2, J_ &2^ii an(l

[2J3] [J+,J_]. (29)
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It is easy to see that

[2./:,] ^r-^-HvT+i—-f^n»2 + d

t/[Ni + l)*[Afi + l]x/[JV2]'[Ar2]

These relations can be reduced to the result of ref. [9] for p 1, q is complex parameter and

F{x) [x] il^fÇ (31)

Also like before from (30) we have

[J3, J+] {J3(NUN2) - J3(Ni - 1,N2 + 1)}J+, (32)

[J3> J_] -L{J3(NUN2) - JAN, - 1,N2 + 1)}. (33)

It is worth mentioning here that the CRs (29), (32) and (33) coincide exactly with the
corresponding CRs of the generalized deformed bosonic 5(7(2) algebras in terms of the
generalized deformed usual oscillators [19].

By the same way as mentioned above the generalized deformed bosonic algebras 5(7(1,1)
in Jordan-Schwinger realization is given by

- - - J\NA'INA J\N2y\N2}
[K+,KA -[2K3] V

Ni
V

N2
-f(Ni)f(N2)

v/l/V! + 1]*[7V! + 1] J[N2 + 1]*[/V2 + 1]

- AT1 + 1 N2A1 W + ^+ ^
[K3,K+] {^3(^1,^2) - k3(N, - l.JVa - 1)}A'+,

[Ks,*-] -K_{K3(NltN2) - K3(N, -1,N2- 1)},
where A"+ 6j63; K_ — âj^.
In the case of the deformed q-harmonic oscillator for p 1, q is real parameter and F(x) as

in (31), the above CRs yield [15]

[K+,K-} -[2K3], [K3,K±} ±K±,
with K3 i^+^+il.

In conclusion, we can say that our result is most general because it can provide all the
deformation algebras with an appropriate choice of structure function. We hope it can be

applied to study the deformed quantum field theory problems.
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