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A semi-classical relativistic black hole!

By F. Vendrell?

Institut de physique théorique
Université de Lausanne
CH-1015 Lausanne, Switzerland

(7.VIII.1996)

Abstract. A new two-dimensional black hole model, based on the “R = T relativistic theory,
is introduced, and the quantum massless scalar field is studied in its classical gravitational field.
In particular infrared questions are discussed. The two-point function, energy-momentum tensor,
current, Bogoliubov transformations and the mean number of created particles for a given test
function are computed. I show that this black hole emits massless scalar particles spontaneously.
Comparison with the corresponding field theory in a thermal bath shows that the spontaneous
emission is everywhere thermal, i.e. not only near the horizon.

1 Introduction

S.W. Hawking discovered that, due to quantum mechanical effects, black holes spontaneously
create and emit particles in 143 dimensions. He showed furthermore that the mean number
of spontaneously created particles is thermal near the event-horizon [1]. The two-point
function and the energy-momentum tensor of quantum matter were also computed in the
gravitational field of black holes by other authors and their thermal properties studied [2, 3].
From these results it has been concluded that, near the event-horizon, the radiation of a
143 dimensional black hole is indeed thermal, with temperature inversely proportional to
the mass.

'Work done towards a Ph.D. at Lausanne University.
2Leaving for Blackett Laboratory, Theoretical Physics Group, Imperial College, London SW7 2BZ, UK,
October 1996.
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Recently there has been renewed interest in the study of 141 dimensional black hole
models [4, 5], for which the technical difficulties encountered are of less importance than in
the 143 dimensional case. In the present paper I investigate the semi-classical properties
of a new 141 dimensional black hole model, based on the “R = T” theory. This theory
was introduced by R. B. Mann [6]. The scalar curvature which defines this model vanishes
everywhere, except on a light-like straight line where it is infinite and from which the horizon
originates. I show that this infinite and localized curvature induces an emission of massless
scalar particles which is thermal everywhere, i.e. not only near the horizon, and that the
temperature of the radiation is proportional to the relative amplitude of the curvature.

In section 2 the “R = T theory is reviewed and the new black hole model is introduced.
In section 3 the quantization of the massless scalar field theory is reviewed in 141 dimensional
Minkowski space-time. The quantization is extended to curved space-times in section 4,
where it is also shown that the two-dimensional massless scalar field theory may be reduced
to two independent one-dimensional scalar field theories under some specified conditions.
Section 5 is devoted to the formal study of one-dimensional field theories obtained in this
way. Relevant observables for the massless scalar field are introduced in section 6. Section 7
is devoted to the study of one-dimensional massless scalar field theories in a thermal bath.
The results obtained are finally applied to the new black hole model in section 8.

2 The relativistic black hole model

The classical Einstein equations for the gravitational field are given by
1
R, — ;2-_(,'#,,}2 = BuG T (2.1)

where G is the universal gravity constant and ¢ = 1. They imply the covariant conservation
of the classical energy-momentum tensor 7,,:

V*T, = O. (2.2)

The Lh.s. of eq. (2.1) vanishes for all 14+1 dimensional metrics, so that curvature is arbitrary
and matter is excluded from 141 dimensional space-times [7]. In consequence the Einstein
equations have no physical contents in two dimensions.

In spite of this fact, R.B. Mann [6] has extracted a non-trivial theory of gravity from the
Einstein equations by considering the limit D — 2%, where the space-time dimension D is
allowed to take continuum values. The trace of eq. (2.1) is given by

D
(1 _ 5) Rlz) = 8rGT(z), (2.3)
using ¢** ¢g,, = D. Assuming that the constant G depends on the space-time dimension D
and that the limit

. g
— = G 2.4
Dl.]-[.rzl+ 1—-D/2 G (2]
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exists, then equation (2.3) implies
R(z) = 8rGT(z), (2.5)

where T'(z) = T% (x) is the trace of the energy-momentum tensor. Equation (2.5) does not
imply the covariant conservation of T),,(z), so eq. (2.2) has to be imposed by hand.

For the trace T'(z) Mann et al. [5] have considered the form

il = —A—/I—é(xl—xl), (2.6)

o

and have shown that eqs (2.5) and (2.6) admit eternal black holes with a pair of horizons as
solutions.

I assume now that T'(x) is given by

M
oy — +_ o 9
I'(x) s 2T —z5), (2.7)
where z* = (2° + ') /v/2 and the constant M is strictly positive. Equation (2.7) is con-
sistent with eq. (2.2) and describes a pulse of classical matter traveling with the velocity of
light towards the left at 2% = zF. From eqs (2.5) and (2.7) the scalar curvature is given by
R(z) = 4M é(a* —z}). (2.8)

o

This equation defines a black hole model, as shown below, and is solved in the conformal
gauge

ds* = C(z)dztdz". (2.9)
Equation (2.8) implies that the conformal factor C'(z) satisfies the non-linear equation

0,0_log|C(z)] = MC(zx)é(zt —zF). (2.10)

o}

This may be rewritten as:

s, if ot < 2T,
d0-log|C(z)| = (2.11)
MC(z}r,z7)+ C,, if gt > a2t

where C, is a real constant, which shows that the metric is modified at z¥ = z} by the pulse
of matter. This last equation implies that the conformal factor C'(z) depends only on z~ in
the half-plane 2+ > z, and that this is discontinuous at z+ = z}. This discontinuity comes
from the singularity of the curvature (2.8) at this same value of z* and it may be removed
by replacing the delta function (2.7) by a sharp continuous pulse centered in a neighborhood
of z+ = z}. It is easy to check that a solution of eq. (2.11) for C, = 0 is given by

dztdz™, i wt gt

dzt dz~
M(A—-z7)

ds? = (2.12)

H =¥z ad,
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Figure 1: The space-time structure of the relativistic black hole. The broken line denotes
the curvature singularity superimposed on the pulse of matter; 7" and E are the time-like
and space-time regions respectively; H is the horizon.

where A is an arbitrary constant reflecting the invariance of curvature (2.8) under transla-
tions of 7. Note that to obtain this solution the continuity of C'(z)~! has been required at
- = A and zt > zF, where the metric is singular.

In a given set of conformal coordinates the horizon will be defined as the curve where the
metric reverses its sign. It thus divides space-time into a time-like and a space-like region,
where the conformal factor is positive and negative respectively. The value of the metric
may be null or singular on the horizon. In our case it is singular. The horizon associated
with the metric (2.12) is made up of (see figure 1):

- a half-straight line defined by z* > z} and = = A which originates from the singu-
larity of the curvature;

- a half-straight line defined by % = 2} and z= > A superimposed on the singularity
of the curvature.

The space-like region is identified as the interior of a black hole, since the events located
in it are not in the past of any observer situated in the flat part of the time-like region for
all times. This black hole will be called a relativistic black hole, because it is based on the
relativistic equation (2.5).

Since the coordinates (z*,z~) € IR* are Minkowskian in the “past” half-plane Mp defined
by (see eq. (2.12))

Mp = {zeR? |zt <t} (2.13)
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they will be called incoming coordinates. Another set of conformal coordinates (y*,37) € R?
is defined by the transformation

¥yt = vyt
- (2.14)
2 (y") = A—e My
which satisfies:
lim z7(y") = A, (2.15)
y~—+oo
lim z7(y~) = —oo. (2.16)
Yy~ ——00
The horizon is located at y~ = 400 in the new coordinates. These coordinates cover only
the lower part of space-time R defined by
R = {zeR* |27 <A}, (2.17)
where the metric (2.12) is given by
M e My dytdy=, if y* <yl
de* = (2.18)
dy* dy, if g% >,

where y = z}. Since the coordinates (y*,y~) are Minkowskian in the “future” half-plane

My defined by
Mp = {yeR | y">y}}, (2:19)
they will be called outgoing coordinates.

The transformation (2.14), which relates incoming and outgoing coordinates. is intimately
related to the space-time structure. It will play an important role in the analysis of the black
hole semi-classical properties. Note that the right transformation z7(y~) may be extended
analytically in the whole complex plane and that it exhibits an imaginary period given by
22 for all the values of its argument:

T (y") = a” (y' +i2ﬁ7rn) , VneZ,Vy~ €R. (2.20)

This period will turn out to be the inverse temperature 3 of the black hole radiation.

3 Quantization of the massless scalar field

Before considering the quantum physics of the massless scalar field in 2D curved space-times,
its quantization in 2D Minkowski space-time should be reviewed. This cannot be carried
out by imposing all the Wightman axioms [8] in a standard way. In particular the positivity
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of the Wightman function cannot be satisfied for all Schwartz test functions because of its
bad infrared behavior. Consequently either the massless scalar field should be quantized in
an indefinite metric following G. Morchio et al. [9], or the space of test functions should
be restricted in order to satisfy the positivity condition, as proposed by S. Fulling and
S. Ruijsenaars [10]. For simplicity I will adopt the second point of view.

In the 2D Minkowski space-time the Wightman distribution of the massless scalar field
is defined on the Schwartz space S(IR?) by [11]

Wolhix b3] = [k Wa(k) ha(k) Ba(k)", (3.1)
where
— 1 d d
Wk = 5 {6(k-)m[a(k+)logk+1+6(k+)K[e(k_)logk_]}. (3.2)

Performing a 2D Fourier transform®, the Wightman distribution may also be expressed in
the form

W,[hy x b)) = [IR2d2$ o €73 b (2) Wo(, 2) ha(@)", (3.3)

where W, (z,z) = W,(x — z) is the Wightman function and is given by

Wilz) = —817 log ( —z? +iz%0* ) ~ (3.4)
where 7 is the Euler constant. The Wightman function (3.4) satisfies i) the covariance
property, W, (Az) = W,(z) for any Lorentz transformation A; i) the spectral condition,
Wo(k) = 0 if k? < 0; iii) the locality property, W,(z) = W,(—=z) if 2* < 0. However
the positivity condition, W,[k x h*] > 0 Vh € S(R?), is not generally satisfied (consider
;t(k) = ¢~°*"). In consequence a standard quantum relativistic interpretation of the theory
is not possible.

To elude this difficulty, the function space is restricted to all Schwartz functions vanishing
for null momentum. The test function space Sy(IR?) is defined by

So(R*) = {heS(R*) | h(0)=0}, (3.5)
and the Wightman distribution (3.1) restricted to this space function is given by

+oo dk i 25
Wlhix i3] = [~ g [RGB RG], (3.:6)

where 711,?12 € So(IR?). This clearly satisfies the positivity condition and thus defines a
scalar product on So(IR*). A restricted Hilbert space H may now be constructed from the

3The 2D Fourier transform is defined by 71(!:) = ﬁ fIRz d’z h(z)e k=,
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Wightman distribution (3.6), which is related to the two-point function of the scaar field ¢
by

(Qoy 0[] 0lha]' ) = W,[hy x B3], (3.7)
where Q, is the vacuum of H.

In 2D Minkowski space-time the scalar field ¢(x) satisfies the massless Klein-Gordon
equation:

¢ ,
dzt oz~ . 2/8)
[ts general solution will be written in the form
, 1 v . .
#x) = —= [4(z*) + 6-(z7) |, (3.9)

where ¢, (z*) and ¢_(x7) are the left and right moving fields. These will be called 1D fields,
in opposition to ¢(x) which is a 2D field.

The quantum scalar field ¢ is defined as a distribution by

8[h] = fw &z ¢(z) h(z), (3.10)

where h is any 2D test function belonging to Sg(IR*). The 1D test functions hy are con-
structed from the test function h by integrating on z¥:

| +oo
ha(e*) = —= [ " da¥ hia). 3.11
i(‘r ) \/5‘7? . T ( ) ( )

The Fourier transforms of A and hy are related by*
Ra(ke) = h(K)|, . (3.12)

and this shows that the functions A4 belong to the 1D test function space So(R) defined by
So(R) = {h:€S(R) | hs(0)=0}, (3.13)

ifh e So(R?). The 1D scalar field distributions are defined by
+o0
dalbe] = [ do* 4a(a*) ha(a®), (3.14)

where i+ € Sp(R). From the previous definitions we deduce that the 2D field distribution
(3.10) is equal to the sum of the 1D field distributions (3.14):

¢lh] = o4[hs] + o-[h_]. (3.15)

“The 1D Fourier transform is defined by Ei(k;) = 712_1f|R dz* hy(z?) emikzzt
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The 1D Wightman distributions will be defined on Sp(IR) x Sp(IR) by

Wj[hliXh;i] — /

— 00

+oo

+co
dx*/ dit his(e®) WE(zE — 2%) hyu(2%)",  (3.16)

where the 1D Wightman functions W*(z*,3%) = W*(z* — z%) are given, up to a constant,
by

1
WE(et —z%) = — log (2% — 2* +i0% ). (3.17)

From these definitions and eq. (3.4) we deduce that the 2D Wightman distribution (3.3) is
equal to the sum of the 1D Wightman distributions (3.16)

Wolhi x hy] = Wi hiy x 3] + W, [hi- x h3_], (3.18)
which are also given by
dk ~
W[ hix x hy ] 2; his(ks) hag(ke)T, (3.19)
¥

where k1, hy € So(RR). These are related to the two-point functions by the equations

(2, 0(2) #(2)1 Q) = W,(z—37), (3.20)
(R, p1(2%) 6£(%)1 Q) = Wi(z* —7%), (3.21)
(o, 61(2*) 62(27)' Q) = 0, (3.22)
from which the fields commutators are computed®:
[#(), 6(2)'] = = 0l(z ~ 2)?] sem (2° ~ 29, (3.23)
[6:(e%), 6:(a*)] = Jon(a* - a¥) (3:24)
[64(zt), 0-(27)] = 0. (3.25)

Equations (3.15), (3.18), (3.22) and (3.25) show that the 2D massless scalar field may be
considered as two uncoupled right and left 1D fields.

We close this section by defining the notion of particle in one and two dimensions. These
definitions will be useful below. The function & € Sy(R?) is said to be a 2D particle test
function if

h(k)

Similarly, the functions hy € Sp(IR) are said to be 1D particle test functions if

=0, VhkeR (3.26)

ko = —|ki1]

~

he(k¥) = 0, V¥ <. (3.27)

In the 2D Minkowski space-time eq. (3.12) implies that these definitions are equivalent.

5The equality 26(z?) sgnz® = sgnz* +sgnz~ is used to obtain eq. (3.24) from eq. (3.23).
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4 The massless scalar field in curved space-times

In this section the field distribution in curved space-times is introduced and the relationship
between field distributions in different coordinates is considered. The 1D field distributions
are defined as in the 2D Minkowski space-time, whereas the 1D test functions are defined so
as to take into account the metric. I show that, under specified conditions, the relationship
between the 2D field distributions breaks down into two relationships between 1D field
distributions, so that the 2D quantum problem is reduced to two independent 1D quantum
problems. The particle and vacuum concepts are discussed for asymptotically Minkowskian
coordinates at the end of this section.

I assume that the coordinates z € R? cover a whole 2D space-time. New coordinates y
are introduced by the transformation

and they will cover in general only a part R of space-time contained in the time-like region.

The scalar fields ¢(z) and gg(y) in these coordinates will be called the incoming and outgoing
fields respectively. They are related by

A

¢(y) = o(z(y)), Vy € R%. (4.2)

The field distributions in both coordinates are defined as follows [12]:

olh) = [, d% \/=g(@) 6(a) h(a) (43)
Sl = [y V-9 6) fw), (14)

where h, f € Sy(IR*). These definitions are a generalization of eq. (3.10) to curved space-

A
times. The determinants g(x) and ¢ (y) of the metric are related by

8.1‘ 12

9 (v)| g(z(y)), Vy € R?, (4.5)

where |dy/0z| is the Jacobian of the transformation (4.1).

Field distributions are considered as geometrical objects whose values do not depend on

the coordinates chosen to express them. The distributions (4.3) and (4.4) are thus related
by®

ol) = ¢lfl, VI eS(RY). (4.6)

A A
®Note that f € So(R?) does not necessarily imply f € So(R?). If f ¢ So(R?), eq. (4.6) is only valid
formally.
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. . . . - . A -
In the region R, this last equation defines the incoming test function f(z) in terms of the

outgoing test function f(y), and I will assume that f(a:) vanishes outside the region R.
Equations (4.2), (4.5) and (4.6) imply that these test functions are related in R by

fw) = fe), VyeR (4.7)

Assuming now that the coordinates z are conformal and that the transformation of
coordinates ¢ = z(y) is given by

(v*y7) — (& @h),z"(v7)), v*y)eR:,  (48)

then the coordinates y are also conformal. The property (4.8) is satisfied for the relativistic
black hole model (see eq. (2.14)). In 2D curved space-times, the massless Klein-Gordon
equation for conformal coordinates is formally identical to the one in 2D Minkowski space-

A
time. Thus the incoming ¢(z) and outgoing ¢ (y) fields satisfy respectively eq. (3.8) and

)
o = % (4.9)
whose solutions are given by eq. (3.9) and
A 1 A A
¢(y) = e+(y™) + 0-(y7) |- (4.10)

Vo

The relation between the left and right fields is deduced from eq. (4.2) up to a constant:

6:(y*) = ds(a*(¥*),  Vy*eR (4.11)
In 2D curved space-times the 1D test functions are defined by

By = # ]_J:dﬁ\/T(x)h(x), (4.12)

) = o= [ V-3 sw) (4.13)

These definitions include the determinant of the metric and are a generalization of eq. (3.11).
The 1D incoming and outgoing field distributions are defined as in Minkowski space-time and
are given by eq. (3.14) and

Bulr) = [ dr* 6us) fuly®) (414)

—00

Equation (3.15) is still valid in 2D curved space-times in the z and y coordinates:

olh] = ulhs] + o_[h_], (4.15)

o] = Gulfs] + o-1f). (4.16)
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The transformations for the 1D test functions are deduced from eqs (4.7), (4.12) and (4.13):

r* A
i) = %(y*)fi(x*(y*)), s ER. (417)

The metric does not appear explicitly in these transformations although they contain the
dynamics of the problem. They imply that the 2D field transformation (4.6) may be broken
down into two 1D left and right field transformations:

0. lfs] = o4 (h). 6_[f) = o_[F). (4.18)

I must emphasize that the 1D field distributions é’\:t and ¢4 are formally identical with their
Minkowskian counterparts. Equations (4.18) imply that the left and right modes of the fields
are not mixed up by changing coordinates. They are thus dynamically independent.

Note that the definitions (3.26) and (3.27) for 2D and 1D particle test functions are not
strictly equivalent in curved space-times in any coordinates (see eq. (4.12) or (4.13)). There
may however be approzimate equivalence if the 2D test function is “well localized”” in a
space-time region M where the metric is (asymptotically) Minkowskian. This shows that it
is difficult to give a precise meaning to the notion of particle in curved space-time and in
particular to make this meaning coincident with that of the Minkowskian field theory.

We note furthermore that the notions of particle are different in the z and y coordinates.
In the 1D language, the particles test functions are defined respectively by

he(kX) = 0, if k¥ <0, (4.19)
fe(p®) = 0, if p¥ < 0. (4.20)

These conditions are incompatible unless the transformation z(y) is the identity, i.e. the
scalar curvature vanishes everywhere. This incompatibility is the key to understanding the
creation of particles in curved space-times.

We assume from now on that the coordinates  and y are (asymptotically) Minkowskian in
past and future space-time regions Mp and M respectively (as is the case in the relativistic
black hole model). In consequence, they will be called incoming and outgoing coordinates
respectively. If the test functions h(z) and f(y) are well localized in Mp and M, and satisfy
respectively egs (4.19) and (4.20), then they will respectively describe incoming and outgoing
particles.

The incoming and outgoing vacuums, 1, and ¥,, will be defined in the 1D language by
bslhs] 0 = 0, (4.21)

Sulfsl¥, = 0, (4.22)

"Note that a 2D particle test function cannot in general be strictly localized, since its Fourier transform
does not contain negative contributions.
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where hy (%) and fi(y*) are arbitrary 1D particle test functions (i.e. they satisfy respec-
tively eqs (4.19) and (4.20)). Furthermore, if the corresponding 2D test functions h(z) and
f(y) are also well localized in Mp and M respectively, these equations imply from egs (4.15)
and (4.16)

¢(h]Q, =~ 0, (4.23)
SNV, ~ 0, (4.24)

and the functions k(z) and f(y) are 2D particle test functions (i.e. (z) satisfies eq. (3.26) in
the incoming coordinates and f(y) satisfies a similar equation in the outgoing coordinates).
We thus conclude that the vacuums 2, and ¥, are ordinary Minkowskian vacuums. In
particular, the incoming vacuum €, 1s formally equivalent to the vacuum of the preceding
section and consequently eqs (3.20) to (3.22) for the two-point functions are also valid in
curved space-times.

5 One-dimensional scalar field theory

In this section the one dimensional scalar field theories are studied. I show that the commu-
tation relations of the fields are invariant under any change of coordinates. The Bogoliubov
transformations between the incoming and outgoing field operators are obtained and their
implementability is discussed. Note that, for the relativistic black hole model, the physics
of the left moving field ¢, is trivial, since the transformation (2.14) between the left coordi-
nates is the identity. I shall consider from now on only the right moving field ¢_ and shall
drop the subscript —.

The scalar product ( , } of two test functions is given by (see eq. (3.19))

() = [ 5 B R, 5.)

where fi, fo € So(R). The norm || || is defined by

I = (F.0) (52)
We define furthermore the function spaces
S(Ry) = {FeS(R)| f(p)=0(p)](p) VPERY, (53)
2R, = {f | T(»)=0p)f(p) ¥pER and [[[|[<oo}.  (54)
Note that
SR = (2R, (5.5)

The set So(IR) is the particle test function space and Lz(gﬁ, IR,) is the particle wave function
space.
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We recall that the incoming and outgoing test functions are related by (see eq. (4.17))

dx

i) = 7o) few)  VyeRr (5.:6)
Y

It is not clear whether the inverse Fourier transform f(y) and the Fourier transform j,r\(k)
exist if f € Lz(‘:ll;, IR, ). For simplicity, I will assume in the following that f(y) exists a.e. and

is integrable, so that the existence of f(k) is certain. Note that f € L'(dy,R) implies that

A
f(z) is also integrable. This hypothesis is thus formulated in a way which is invariant under

~ A
any transformation of coordinates. It also implies that the Fourier transforms f (p) and f (k)
are continuous everywhere and vanish at infinity. The incoming and outgoing momenta will
be denoted by k and p respectively.

The Fourier transforms of the incoming and outgoing wave functions will be related by
the operator U defined by

~

A o0 o
fey = ["dp Utk F () (5.7)
whose kernel U(k,p) is given by
_ i o —ikz(y) ipy
Ulk,p) = 5 -/_oo dy e g, (5.8)

For any transformations z = z(y), this satisfies the property
U0.p) = ().  VpeR,. (5.9)
which implies j/'\((]) = f(0) = 0 under our assumptions.

The positive and negative momentum components of the outgoing and incoming test

functions f (p) and fA(k) are defined as

~

fep) = 0(p)f (p), fulp) = 6(p) f(-p), -
fop) = 6(k)f (k). fo) = 0(k) f(—k). |

The operators A and B will be defined respectively as the positive and negative incoming
momentum contributions of U

(Af) k) = (US),(k), (Bf)(k) = (Uf)y(k), (5.11)

and the bilinear operator GG by

+00 +00 —x(y'
Gl i) =~ [ [T o | T=ED | i s
T J-co —00 y—y
The logarithm in the integrand of this double integral is well defined since z(y) is aiways
an increasing function. The scalar product of incoming functions such as (5.11) may be
expressed in terms of the bilinear operator GG evaluated for the corresponding outgoing
functions, as shown in the following theorem.
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Theorem 1 If fi, f; € Lz( ,R4) are two wave functions such that their inverse Fourier
transforms exist and are mtegrablﬁ, then

(AL AR = G(Axf) + (fnh), (5.13)
(Bf2, BIi) = G (fi x f3), (5.14)
(A", Bf) = G (fi x fa), (5.15)
(B 2 ARy = G (fix f), (5.16)
and hence®
A'A = B'B+E, (5.17)
ATB = BTA, (5.18)

where E is the identity.
Equation (5.14) is proved in appendix A.l and the others results of this theorem are proved
in a similar way.

We recall that the incoming and outgoing fields are related by (see eq. (4.11))

A

o(y) = o(z(y)), Vy e R. (5.19)

The Wightman function for the incoming fields is given by the equation (see eq. (3.19))

o dk . &
(Qo, B[h1] B[R2] Q) 2% ha(k)™ ha(k), (5.20)
from which their commutator is deduced?®
+oo dk . 5
[ olmal, olhalt | = [ 5% Ralh) Fah), (5.21)

if Ay, hy € So(R). We have a similar result for the outgoing fields. The equality

[ S Ay = [ Rer ). (5.22)

proved in appendix A.2, implies that the field commutator is invariant under any transfor-
mation of coordinates r = z(y)

o1, 81| = [elal olal'], (523)

where fi, f; € So(R). The Wightman function (5.20) is, however, not invariant under any
non-trivial transformation of coordinates.

8Equations (5.17) and (5.18) were first obtained by R. M. Wald [13]. _
9Equation (5.21) may also be obtained from the commutator (3.24) using L+ [*% dk PTIE e kT —sgnaz.
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In the real scalar fields, the incoming and outgoing field operators a;, .., and a}n’out are

defined by splitting the positive and negative momentum contributions of the incoming and
outgoing fields:

¢[h] = ain[Ep] + a!n[ENL (524)

O] = aoulfs] + abulfi], (5.25)

and they are annihilation and creation operators respectively. By applying the incoming
and outgoing creation operators respectively on the vacuums 2, and ¥, (see def. (4.21) and
(4.22)), the Hilbert spaces H,, and H,,, are constructed. The incoming and outgoing field
operators are related by

awlf] = B = olf) = aulUF),] + allWI),), (5.26)
if £ € So(R), and the Bogoliubov transformations are thus given by
aout[f] - ain[Af'] + azn[Bf]?

. (5.27)
al [f] = awn[Bf] + dal[A°f).

Since ¢[h] = ai[k] if B € S(R,), we deduce from eq. (5.21) that the field operator

commutators are

[amlfi), ainlBa]t | = (B2ihy), (5.28)

[ ailfa), ainlfa] | = [amlfi)t, amlfa)t] = 0, (5.29)

where A, hy € S(R,). From the invariance of the field commutator (5.23), it is clear that
the field operator commutators are also invariant:

LainlFa], ainlfa]' | = | aoulRi], doulBa]' |, (5.30)

[ainlhi), ainlBa] | = [ @oulka], aoulfa] |, (5.31)

where hq, h, € S(R,). Note that egs (5.28) to (5.31) also imply the fundamental relations
(5.17) and (5.18).
The field operator modes a,,;(p) and a;,(k) are defined by

% dp i  dk

= — k] = — ain(k) A(k ,
aout[f] 2 acut(p) f(P), ain[h] o 2k ain(k) h(k), (5.32)
where h, f € S(R,). Expansions (5.24) and (5.25) are rewritten as
1 > dk —ikz |t ikz
é(z) = 7= ) 5 ain(k) e + al, (k) €], (5.33)
iy 1 < dp - 1 i
ow) = =/, 3 [Gou(p) €7 + alu(p) €] (5.34)



Vendrell 613

These are representations of the fields ¢(z) and q/S\(y) in the Hilbert spaces H;, and Hyu:

respectively. The representation of the outgoing field $(y) in the incoming Hilbert space
H,;, is deduced from eqs (5.19) and (5.33):

N

o1 PREE T o cdkelyl o F g kel
)= 7= [ g7 [an(®) 0 4 al (k) H 0] (5.35)

The operator V is defined by the kernel
1 o
Vikp) = 5 f[ dz e~ ¢PUe) (5.36)

where I = {z(y) | y € R}. The operators U and V satisfy the properties

Vikp) = LUGkp),  VEpeR (5.37)
viu = E, (5.38)
UVi=E < I=R, (5.39)

where E is the identity operator. Thus U is non-singular if and only if / = IR, and if [ = IR,
we have U~! = V1,

Using the kernel (5.36), the Bogoliubov transformations (5.27) may be rewritten in the

form
aout(p) ) /00 dk ( V(k,p) —V(—k,p) ) ( am(k) )
= : 5.40
( azut(P) 0 —V(k’ —P) V(-k, _P) azn(k) ( )
Equation (5.39) implies that the Bogoliubov transformations (5.27) and (5.40) are invertible
if and only if I = RR.

Assuming now that I = IR, we split the outgoing positive and negative momentum
contributions of V1, defining the operators C' and D by
(CR)(p) = (V'h).(p), (DR)(p) = (V'R),(p)- (5.41)

The inverse of the Bogoliubov transformation (5.27) is then given by
ain[ﬁ ] = aout[CE ] T alut[ Dh ]a
allR] = aoul D'R] + afu[CR],

in

(5.42)
if o € S(Ry), or by

an(k) Y _ [, ((Ul=ki=p) =U(=k,p) | ( aou(p)
(a’ (‘f)) = f (—U(k,—p) U(k,p) ) (a;w(p))' (5.43)

tn
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The previous results are easily generalized to the compler scalar field, for which the field
operators a;, ., and bfn‘out are defined by

o] = awlk,] + B[R, (5.44)
61N = aoulfs] + Blulf), (5.45)

if b, f € So(R). The representation of the complex scalar field qg(y) in the Hilbert space
H. is given by

A

o(y) = 72,—;/0 (k) e™ =W 1 bl (k) eimy)]* (5.46)

and the relations

~

aout[f] = ain[Af] + bT [Bf']a
bhull] = aw[B[] + bl[A°T],

where [ € S(R,), are the associated Bogoliubov transformations.

(5.47)

The outgoing test functions f,, of mode p, are defined formally as

foo(p) = 2p8(p— po). (5.48)

This definition is correct only if p, > 0. The null mode f, —, is defined as the limit n — oo
of the series [9]

p) = ( ) (5.49)

where A (p) = ¢77* and h.(p) = X(np) h(p), with the function ¥ defined by

. . 0, if p<O,
0 < x(p) £ 1, VpeR, and x(p) = . (5.50)
I, if p>1.
The series (5.49) satisfies
Lm (f,".F) = fo), if f e S(R), (5.51)
im | 7™ = o. (5.52)

n—oo

The generalized functions f,, (p, = 0) are not normalizable and thus they are not asso-
ciated to a state in the Hilbert space Hoy-

Let {f} ', C S(Ry) be a set of normalized particle test functions. The n-particle test
function f(") is defined as

f = CAXfax..xf, (5.53)
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where x is the tensor product and ' a constant. A product of fields is also defined,

SU™M] = CoHlA] SLfa) - SLL: (5.54)

and the state denoted W is given in terms of this product by

Vim = 6f™MMD, (5.55)

The state ¥ ;n) is normalized by imposing the equation

(W, Upm) = (Lo, SLS] SN E,) = 1, (5.56)

which fixes the constant C.

6 Observables in the outgoing coordinates

In this section mean values of observables, built into the outgoing coordinates, are computed
in the incoming vacuum. These quantities describe the properties of the outgoing particles
created by the space-time curvature. The two-point function, energy-momentum tensor,
current for the complex scalar field and the mean number of spontaneously created particles
for a given outgoing test function are considered. The total mean number of particles is
computed and the implementability of U 1s also considered.

The outgoing two-point function Wo(y,y’) is defined as the mean value of outgoing fields
in the incoming vacuum:

Waly,y') = (D o(y) o) Q). (6.1)
This is given from eq. (3.17) by
Woly,y') = Wolz(y),2(y) = —7 log[z(y) — z(y) +i0%]. (6.2)

The energy-momentum observables in the incoming and outgoing coordinates are given
by the products of derivatives of the field at the same point:

O(z) = 8.6(z) Bpo(), (6.3)
Oy) = 0,6(y)0,6(v). (6.4)

Their mean value in a given state must thus be regularized. This regularization may be
carried out in a covariant way along a geodesic by subtracting the mean value in Minkowski
space-time [14], or by ordering the fields normally following a covariant procedure [15]. These
two methods must give identical results and their application is made simpler in (asymptoti-
cally) flat space-time regions'®. The regularized mean value of (:)(y) in the incoming vacuum

10The normal order regularization was applied for the Dirac field in asymptotically flat space-time regions
by Th. Gallay and G. Wanders [16].
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will be computed here in the outgoing (asymptotically) flat space-time region Mp. This is
called the energy-momentum tensor and will be denoted by T,(y).

The observables O,(z) and @E(y) are defined by

0.(2) = 5 [0:6(2)! 0up(x +) + 0.0z +)1 D.(a)] (6.5)

o= |

0.0) = 5|00W 03 +e)+ 8,0+ 0,50, (6.6)

The energy-momentum tensor 'fo(y) regularized by subtraction is given by the limit
T(y) = lim (2, [8.(y) - O.(2(y))] ), (6.7)

which is well defined. It is computed using the representation (5.35) or (5.46) of the outgoing
field in the incoming Hilbert space H,, and is given by (see appendix A.3)

T.(y) = —=—S,lz(y)], (6.8)

where S,[z(y)] is the Schwartzian derivative of z(y) with respect to y '*:

o ! 1 [ 2" 2
Sylz] = (?) ) (?) : (6.9)

The energy-momentum tensor may also be regularized normally as follows

~

To(y) = (Q’oa: é(y) out Qo)’ (610)

where the outgoing normal ordering has to be carried out before computing the incom-
ing vacuum mean value. This definition also implies the result (6.8) but in this case the
computation is laborious (see appendix A.4).

From eq. (6.8) the transformation law for the energy-momentum tensor is deduced under
the change of coordinates y = y(z)

—_
-~ ~

T(y) — To(z) = y'(:)" To((2)) = 5= S:[u(2)); (6.11)

where T,(y) and T,(z) are the regularized mean values of the energy-momentum observables
in the incoming vacuum in the coordinates y and z respectively.

For the complex scalar field the incoming and outgoing current observables are given by

T(z) = id(z) B: 4(z), (6.12)
T(y) = id(y)' 3, 6y, (6.13)

2

U We have also S,[] = £7 - § (%) = —2V7 3371;7 = 2 logz’ — & (8, log z')?.
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and the observables Y,(z) and T.(y) are defined as
T(z) = i [d(z+e) 0d(z) - 0(2) gz +¢) |, (6.14)
L) = i [S+9)9,00) - 0,60) S +e) | (6.15)

The outgoing current jo(y) 1s defined in the subtraction regularization scheme as

-~

Jo(y) = lim (R, [ Tely) - Te(z(®))] Q). (6.16)
This limit is well defined and is computed in appendix A.5'%:
Jo(y) = 0. (6.17)

The outgoing current vanishes for any transformation of coordinates z = z(y), i.e. particles
and antiparticles are always created locally in pairs.

The outgoing current J,(y) in the normal order regularization scheme is defined by the
equation

jO(y) = (Qm: T(y) ‘out Qo)a (618)
which also implies the result (6.17) (see appendix A.6).

In the real scalar fields, the mean number of spontaneously created particles for a normal-
ized particle test function f € S(R,) is defined by

NUSf] = (s aouel F1 ol f] ), (6.19)
and using the Bogoliubov transformations (5.27) this implies
Nolf] = (Qo,ai[B" [ ala[BF] Q). (6.20)

This quantity is thus expressed in terms of the Fourier transform f (p) by

Nif) = IBFI, (6.21)

showing that the mean number N,[f] depends only on the negative momentum contributions

A —
of the incoming test function f(z). N,[f] is also expressed directly in terms of the outgoing
test function f(y) using eq. (5.14)

' L e o 2(y) — <y’ )
S = =g [ [Tt o | O=ED ] gy (o)
T J-oo —00 y—vu
[t may be checked that the lL.h.s. of eq. (6.22) is always positive if f(y) is a particle test
function. The results (6.21) and (6.22) are extended to any wave function f € LQ(%, R, ) if
f(y) exists a.e. and is integrable.

12The same result was obtained for the Dirac field [16].



618 Vendrell

The mean number of spontaneously created particles in the mode f,, given by eqs (5.48)
and (5.49), 1s defined formally as

N(f)] = 4p? f & Blk,p) |, (6.23)

in agreement with eq. (6.21). The total mean number N'°t of spontaneously created particles
is defined as the sum of the contributions (6.23) for each mode f,,

Nt = [T = [T [T BRI, (6:24)

which can also be expressed as (see appendix A.7)'?

\7tot s +°° ‘T( ) 1
N9 = ¢ — : .2
° 47? / U/ y—y [w(y) a(y) y—y (6.25)

The operator U is said to be unitarily implementable if there exists a unitary operator

U : H;n — Houe which satisfies
olf) = Ut gllU,  VF eSoR). (6.26)

A
If the operator U exists, the fields ¢ and ¢ are equivalent representations of the commutator
(5.21), in the Hilbert spaces H,, and H,,; respectively, and the incoming and outgoing
vacuums are related by

v, = U, (6.27)

It has been proved that the operator U is unitarily implementable if and only if N!* is
finite [17].

The definition (6.19) of the mean number of spontancously created particles is generalized
to an n-particle normalized test function f(® by the equation

Nro[f(n)] = (Qo’ jvou![ (n)] Qo)» (628)
where
(n) o1 ptant A7 pn)
Assuming that the one-particle test functions f; are orthonormalized
(s i) = 8 (6.30)
eq. (6.28) gives
NOut[f(n)] = Nout[fl]Nout[f?]---Nout[fn]s (631)

I3Note that the kernel in the double integral (6.25) is not symmetric as in the case of the Dirac field [16].
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where the set of operators N,,[fi] satisfies

[ Nowt [fi]s Nowe [f;]] = 0, g = 1,8l (6.32)

and where f(") is defined by eqs (5.53) and (5.56). Under the assumption (6.30) it is possible
to give a compact formula for the mean number N,[f(")] using the definitions

C2
Z fl(yf(l))---fn(yT(n))fl(yT(n+l))‘"-fn(yT(Zn))' (633)

(S x fOY (1, ey Yon) =
)S ] : (271)' T€P2n

n times

and G" = G x G x ... x G, where (i is defined by eq. (5.12). This formula is displayed in
the following theorem, proved in appendix A.8.

Theorem 2 If {f{}, C L2(g§,lR+) is an orthonormal set of functions such that f; exists
and is integrable (1 = 1,2,...,n), then

(2n)!
2" n!

where f(V) is defined by eqs (5.53) and (5.56). Equation (6.34) contains at most % distinct

N [f™] = C? G™[(f™ % f07),], (6.34)

terms.

7 Scalar field theory in a thermal bath

In this section the one-dimensional massless scalar field is considered in a thermal bath of
temperature 3! for null chemical potential. I will restrict the scalar field to the finite interval
[~ L, L] and impose periodic boundary conditions before taking the “thermodynamic” limit
L — oo. This procedure is necessary to define thermal mean values correctly. The space-time
and energy-momentum variables will be denoted here by 7 and w.

The real scalar field ¢, (7) in the interval [—L, L] is given by

I == 1 : ; a
_ —iwnT t lwnT o
eulr) = gop Lgg (w4 =

where 7 € [—L, L], w, = n7v/L, a, € R and a, € Cif n € IN. It is quantized by imposing the
field operator commutators

lam al| = 2wnbnm, (o5, Bs] = 0 (7.2)

where n,m > 1. These act on a Hilbert space H, whose vacuum will be denoted by ®,.
Equations (7.1) and (7.2) show that the field commutator is given by

)] = o= (1=, (1.3

14Using the formula $", % sin(an) = sgn (a) T——Qlil (la| < 27), with a = = (7' — 7)/L [18].
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where 7,7' € [—-L, L].
The correspondence between field theories for finite and infinite intervals is given by

RL’ HL’ ¢, +— Re, H, p,

wn, n€N «— weRy,
(7.4)
Lby — wé(w—-u'),

VTa, — VLa(w).

In the thermodynamic limit the null momentum mode a, disappears ir eq. (7.1) and the
commutator (7.3) is then formally equal to eq. (3.24).

The thermal mean value of a given observable A is defined by the limit

(A" = lim T, (o727 4]

8 ) R TI'L [e—ﬁHL] ’ (75)

where Tr, is the trace on the Hilbert space H, and H, is the free Hamiltonian given by
H, = anai s (7.6)
n=1

2y ] is IR divergent in the thermodynamic limit. Note

The partition function Z, = Tr, [e‘ﬁ
that the thermal mean value (7.5) is generally well defined although this limit will not

necessarily converge to a finite value for any observable A.

From def. (7.5), thermal mean values of field operators are given by

(alw)a(@)f* = o B~ ), (1.7)
(a(w)a*(w')):h = %6(@—&), (7.8)
(a(w)a(w) )" = (a'(w)a'(W))* = 0, (7.9)

where w,w’ > 0. Equation (7.7) is proved in appendix A.9. We also have

(a'(wn) ... a'(wr) a(w)) ... a(w)) )I*

2w 2w / ’
.W-L—_l L WH_—l Z (5((.4.)] —wo,(l)) ¥ (5(wn _wa(n)),

Uepn

where w;,w; > 0,2 = 1,2,...,n (see appendix A.10). More generally, the Wick theorem is

1
satisfied for thermal mean values of field operators.

The thermal two-point function is defined by

Wit (r, ) = (8(r) (=) )" (7.11)

B8 )
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and satisfies the properties

Wik (r, ') = Wit(r,r' +inB), VneZ, (7.12)
+00
Re Wi"(r,7") = 3. Re WIt(r +inp, 1), (7.13)

V7,7 € R (see appendix A.11). Using the formula [18, (89.10.4)]

, = (7' =71 +inf)(r — 1 —inf)? ¥ T,
(1 —1')2};[1 Gt = 3 sinh? E(T -7)|, (7.14)
we obtain from eqs (3.17) and (7.13)
Re W (r,7") = —*ﬁ log [gsinh (% |7 — ‘r[” +C, (7.15)

where C' is an infinite constant, hence the thermal mean value (7.11) is infinite.

The thermal two-point function W]"(r,7’) will thus be redefined as the kernel of a

distribution on Sy(IR) x Sp(IR) by
Witlhiox f31 = (elhlelf) )" (7.16)
From eqs (7.1) and (7.7) to (7.9) we obtain

. oo dw fo(w)" fi(w)
Witlhx 5] = [ 5 AR (717
where f, fi € So(R). The following theorem, proved in appendix A.12, gives the correct

expression for the kernel W] (r,7').

Theorem 3 Between kernels of distributions on Sy(IR) x Sp(IR),

(T'—T+i0+)} } (7.18)

Wgh(T,T') = —ilog{ésmh[

4 T

=

The periodicity property (7.12) is satisfied by (7.18) up to an irrelevant constant.

The thermal energy-momentum tensor Tg"‘(r) is defined by the limit

TiMr) = lim [(©.(r) )" = (2,,0.(7) @,)], (7.19)

=0 B

where the observable O.(7) is given by

0.r) = 5 [0:0(7) Dol +€) + Bup(r +)! Brp(r)]. (7.20)
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Using eq. (7.18) we obtain

Th _ _ T 1 _ 1
(OE(T));; - 4ﬁ2 sinh2 (775/6) 4 2 2 + 62 +O( ) (721)
from which we deduce that Tﬁ“(r) depends only on f:

Tg‘h(T) - Tg‘h . 1271-ﬂ . VreR. (7.22)

The thermal current JI*(7) associated with the complex scalar field is defined by

JPRr) = dim [ (Cu(r) " = (@0, To(7) B,) | (7.23)

e—0

where the observable Y.(7) is given by
T.(r) = i[o(r+e)t06(r) — O,0(r) ot +6)]. (7.24)
The limit (7.23) is well defined and is given by
Jir) = B (7.25)
so there is no net local current.

In the real scalar fields, the thermal mean value of the number of particles for a normalized
particle test function f € S(IR;) is defined by

NI = (alf)al )R, (7.26)
and from eq. (7.7) we obtain

_ > dw

T I et A (7.27)

This result is extended to any wave function [ € Lz(;“’,lR+) if f(7) exists a.e. and is
integrable.

We define furthermore the distribution G%* on Lz(d“’ R;) x L2( ,IR4) by

> dw f:z fn

o?we—l

GIM(fy % f;) (7.28)

The following theorem gives an expression for the thermal mean value of the number of
particles for an n-particle normalized test function f)

NTAF™) = (SLFN S, (7.29)

[t is easily proved using eq. (7.10).
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Theorem 4 If {fi}7, C L% (% R,) is an orthonormal set of functions such that f; exists
and is integrable (i = 1,2,...,n), then

NEMF™) = CP Y GRMA % fly) GEMfa X Fly) o+ GE*(fa X fimy)s  (7.30)
c€Pp

where f(™ is defined as in eqs (5.53) and (5.56).
A state ® € H is said to be a thermal state of temperature 37! if it satisfies the equa-
tion [10]
(¢, A, B®) = (®,BA,;i59), (7.31)
where A and B are two operators and where we have defined
A, = ¢H gemiH (7.32)
where H is the free Hamiltonian. Equation (7.31) is known as the KMS condition. It can

also be written in the equivalent form [12]

(B, AB®) = 1/+°°dw]_+°°dT1€L(q>,[AT,B]¢). (7.33)

E —00 —6_ﬁw

In the particular case where A = ¢(7) and B = ¢(7'), we obtain

(7.34)

-, 1 7+ dw ew(7'-7)
(@,0(r)p()®) = o [

2_77' —-00 Q_wl—e‘ﬁ“’

from the commutator (7.3). The integral in the r.h.s. is IR divergent and is formally equal
to the kernel of W1 fi x f5] (see eq. (7.17)). The KMS condition is thus restated as an
equality between kernels of distributions on Sp(IR) x So(IR) in the form

(®,0(1) (1) @) = Wi'(r,7), (7.35)

where Wgh(r, ') is given by eq. (7.18). If this last equation is satisfied on a interval I for a
given state ® V7, 7" € I, we shall say that ® is a thermal state on this interval.

8 Spontaneous creation of particles

So far the massless scalar field has been studied in 2D curved space-times. In this section
the results obtained previously are applied to the relativistic black hole model, for which the
transformation of coordinates z = x(y) is given by (2.14)

z(y) = A—e My Vy e R. (8.1)
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The kernel U(k,p), defined by eq. (5.8), can be explicitly computed for this model and
is given by (see appendix A.13)

e—ika =i ) iy log k]

. 0(k) 0(—k)
Uk,p) = +
- Yo {\/pa Y AT Ty

Vk,p+#0, where Q(p) = Arg[['(ip)]. Note that this kernel satisfies the property

} . (8.2)

\U(k,p)| = =& | (= p)]. (8.3)

The Bogoliubov transformation (5.40) is obtained from eq. (8.2) and is given by

— Mp ik *m(%)/"" dk i progk @in (k) a:'rn(k)
aou(p) = o € € . B € m*’m , (8.4)

where p > 0. The kernel (8.2) and the Bogoliubov transformation (8.4) are not invertible
(see discussion following eq. (5.39)).

Equations (6.23) and (8.2) show that the mean number of spontaneously created particles
for the mode f, (5.48) is IR and UV divergent in the incoming momentum &:

_ o dk
Flfd = Sr 52— [ 5 = = (8.5)

emP —1Jo
if p > 0. This result is also true for p = 0 in which case f, is given by def. (5.49). The total
mean number of spontaneously created particles is moreover IR divergent in the outgoing
momentum p (see eq. (6.24))

Nt = g, (8.6)
and the operator U is therefore not implementable (see discussion after eq. (6.27)).

In the following, the mean values of outgoing observables in the incoming vacuum are
compared with their corresponding thermal mean values in the Hilbert space H,.:, given by
(see eq. (7.5))

(A = lim okt [e7PHue 4]
B,out L—oo Ty . {e—ﬁHL,out ]

out

(8.7)

This enables us to establish the thermal properties of the radiation emitted, and in particular
to determine its temperature.

The outgoing two-point function (6.1) is given for the transformation (8.1) by

s 1 _ A gk
W, (y,y) = —Elog(e My __ g~My +10+). (8.8)
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Writing the thermal two-point function (7.18) in the form

Wieuw(:y) = ——=(y+y) - "10& [ 4 (8~ 78 4 i0+)} ;o (89)

2w

we deduce that the two-point functions (8.8) and (8.9) are equivalent everywhere as kernels

of distributions on Sy(IR) x Sp(R), if and only if 3 = <%

W,(y,y) = WE  (y,4), Vy,y' € R. (8.10)

— yout

We conclude from this last equation that the incoming vacuum (2, is a thermal state of

temperature 2% in the outgoing coordinates on RR.

The energy-momentum tensor is computed from eq. (6.8) and is given by

. M?
¢ = — \ IR; 8.11
() T y€ (8.11)
hence we deduce from eq. (7.22) that it is thermal
T(y) = TH.. VyeR (8.12)

and that the associated temperature is also given by % for all y € R.

We consider now the mean number of spontaneously created particles for a given normal-
ized particle function f. If f is a Schwartz function, eq. (6.22) shows that N,[f] is always
finite for the transformation (8.1):

N,[f] < oo, Vf eS(Ry). (8.13)
The mean number of particles N,[f] may be explicitly computed from eq. (6.21) and (8.2)
and is given by (see appendix A.14)

- _=dp [f()*
Nlf] = | % o ] (8.14)

This result shows that N,[f] may also be infinite. For example, defining the test functions
fo € L*($2,Ry) by

falp) = Cab(p)p®e™,  a>0, (8.15)
where C,, is a normalization constant, we have the equivalence
Ny(fa] = 00 <= a<1/2. (8.16)

If a <1/2, N,[fs] is IR divergent in the outgoing momentum p.

Comparing eq. (8.14) with the thermal expression (7.27), we deduce that the mean num-
ber of spontaneously created particles is thermal

Nlf) = N2 ) (8.17)



626 Vendrell

Figure 2: The relativistic black hole and its thermal radiation.

and that the associated temperature is also given by % This last result is also true for a
normalized n-particle test function f(*). This can easily be proved (see appendix A.15) in
the special case for which the functions f; are orthonormalized, as stated in the following
theorem.

Theorem 5 If {f:}:’ C Lz(%‘g, IR,) ts a set of normalized test functions such that f; erists

=1

and 1is integrable (i =1,2,....,n), then

No[f(n)] = N;f_ﬂhomlf(")]‘ (

M

los)
.
e
il

where f") is defined by eqs (5.53) and (5.56).

9 Conclusions

This new space-time model, based on the “R = T relativistic theory, describes the formation
of a black hole whose semi-classical approach is straightforward. This black hole emits an
infinity of massless particles in each outgoing momentum mode. The emission is thermal
in the sense that mean values in the incoming vacuum of observables constructed in the
outgoing coordinates are equal to their thermal averages:

(R0, AQ) = (AJ2 . (9-1)
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Immediately after the formation of the black hole this result is valid everywhere, and not only
near the horizon (see figure 2). Equation (9.1) shows that the temperature of the radiation
is given by

Tradiation = ﬁ? (92)
2T

and it is proportional to the relative amplitude of the localized curvature (2.8). The radi-
ation emitted by the black hole is thus described by an outgoing density matrix which is
thermal.
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A Appendices

If f is an integrable function, the primitives F'(y) and FA(:::) are defined as

Flw) = [ dy 1), Pay = [ @' (A1)
They are related by
Faly) = Fly), VYyeR, (A2)
and satisfy
Pp) = inf () Pky = k] (k), (A3)
F(-o0) = F(4o0) = F(z(=0)) = F(z(+o0) = 0, (A4)

A.1 Proof of eq. (5.14)

Definitions (A.1) show that

(Bf2,BR) = —i[”dkf(_kyﬁ"(_k — & [dehia) ]d’ (A5)
2o 2 Jo . ! 21_ 'c—x+10+’
where I = {z(y) | y € R}. Integrating by parts we obtain
A
1 Fi(z") 1 [+ ’ L -
wh T e T 1 —2(y)| -~ Fi(z). (A6
L e = L [ ) g el — 2 | 3 Eie). ()
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The transformations (5.6) and (A.2) imply

_%/[d:cfz(x)'FAl(x) = ,%[;wdyfz(y)=Fl(y) = —{,/0 %fz( p)" filp), (A7)

and from eqs (A.5) to (A.7)

(BInBRi) = 4= [ @/ dy [(y") log |2(y") - =(y) | fa(y)

(A.8)
-3 [T L Rer fiw).
Restricting eq. (A.8) to the identity transformation z(y) = y, we obtain
e dp . +E
LT R0 = = [Ty [T nw) gty -l Ry, (A9)

and hence the result (5.14) from eq. (A.8).

A.2 Proof of eq. (5.22)

The definitions (A.1) and transformations (5.6) and (A.2) show that
+co dk A A . +00 e ® . - - A
/—oo ﬁfg(k)*fl(k) = %/_oo dkﬁ(k)‘F‘(k) - %[_ dz fy(z)" F(z)
1 e +o00
S [Cawnw e = [ L6y k).

A.3 First proof of eq. (6.8)

The energy-momentum tensor is computed here from definition (6.7). From the field repre-
A
sentation (5.35) or (5.46) of the field ¢ (y) in the Hilbert space H;, we deduce

(Qo,ang(y)Taycg(y +e)Q,) = z (y)z,(ry + 5) /:0 dk k ek [zlvte)—z(v)] (A.10)
The formula
00 . 1
'.k ikx N R A.
/0 dkk e rrEET (A.11)

and eq. (A.10) show that

Lo [ dydarw) 1
L = 1*0{[$(y+6)—r(y)]2 52}' (A12)

This limit is well defined and by expanding at ¢ = 0 we obtain (6.8).
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A.4 Second proof of eq. (6.8)

The energy-momentum tensor is computed here from definition (6.10) and for the real scalar
field. Ordering normally the field operators and using the equations

/ / e dk '
(Qoaaout(P)aout(p)Qo) = 4PP[ Q_kA(k$p)B(k9p)a (AIB)

(s toulp)! i) ) = 4ppf [ 52 Blkp)" Bk, ), (A14)

deduced from the Bogoliubov transformations (5.27), and then integrating on the momentum
variables, we obtain

5 (:) QO 1 +°°d ' +°Od " 1 A.15
(8 1 Oy} touy s} = T /_OO y/_co Y [$(y1)_$(yn)_i0+]2 X (A.15)

1 ] 2
. o . — — . :
(y—y +i0F)(y —y" +i0%) * (y—y —i0%)(y — " —10%)  (y—y +i0%)(y — y" —107)

Using!®

_1__. — l 1 1 — 1 . ]
S E0F = Py F imb(y), Zxr) P—y £ iné'(z), (A.16)

we deduce the result

A - 1 +oo”’ T — ' VBl — u { Il(y’)xl(y”) _ 1 }
L) = ~ge [ [ " sw=)8u -y on o one ~ ey (A

which again gives the limit (A.12).

A.5 First proof of eq. (6.17)

The outgoing current is computed from def. (6.16). From the field representation (5.46)
A
of the field ¢(y) in the Hilbert space H;, we deduce

and
(0, To(y) W) = (R, Telz(y)) QW) = 0, (A.19)

from which eq. (6.17) follows.

_pym-1 .. d™
15We have defined PE%" = (:,(2_1)1 lm}) T log(z? + €?).
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A.6 Second proof of eq. (6.17)

The outgoing current is computed from def. (6.18). Using analogous relations to (A.13)
and (A.14) for the complex scalar field, and the equality

too dk 1
[ FUERURPY = 8=, (A.20)

deduced from eq. (5.22), we obtain again eq. (6.17).

A.7 Proof of eq. (6.25)

We follow here ref. [16]. Equations (6.21) and (6.22) imply

o dk +00 00 z(y) — z(y’
S Blk,p) Bk,p') = --_/ 9/+ ¢iPY iy’ 1ogl—(—yy)—_—y,(ﬁ}- (A.21)

Integrating by parts, we deduce from eqs (6.24) and (A.21)

B 1 40 +00 1 z'(y) 1
Net = —/ d/ dy’ _ [ _ } A.22
Bl y—y' +i0t |z(y)—x(y) y-—yu ( )

lim | —2) __ ! ] = 9,log\/z'(y) - (A.23)

fﬂ[ﬂw—$W) y—y

The double-integral (A.22) contains the imaginary contribution iw é(y —y’) whose regularized
integral vanishes,

4
i log \/2'(y) e <l i

where ¢ > 0. Equation (A.22) then implies the result (6.25).

= 0, (A.24)

A.8 Proof of eq. (6.34)
By definition

Nf™) = (%, 6lfult . SLLIT LA SLA] GLF2) - S 1fa] Q)- (A.25)
Defining

g fi) ’l: 1,2,...,77-,
Ji = . (A.26)
fr., i=n+ln+2,..,2n,
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and assuming ( fi, f;) = é;, we deduce from theorem 1 and for the real scalar field:

(L. olf16lf1%) = G(fixf),  ij=1,2..2. (A.27)
Using Wick’s theorem, we obtain from eqs (A.25) and (A.27) the result

o c? e . o )
No[f( )] - J Z G (f"“) X fr('Z)) G(ff(?n—!) X fr(?n))' (AQS)

1 on
n!?2 o0

which 1s equivalent to eq. (6.34).

A.9 Proof of eq. (7.7)

I follow here ref. [10]. The physical system is restricted to the interval [—L, L]. The partition
function Z, is given by

ZL = Z exp [—ﬂanwk] H —ﬁwk (A29)
njy,ng,...=0 k=1 k=1
and is IR divergent in the limit L. — co. We have furthermore
Tr, [ e~PHL ol a; ] = Z exp [—ﬁz nkwk} 2 wi O; 5
ny,n2,...=0 k=1 (ASD)
— - W. _Gnlwl ez 7 2(—0 .
- 4 (1 — € P m nz_:o )6! ] — JL W 61__].

Equations (A.29) and (A.30) imply the result (7.7) in the thermodynamic limit.

A.10 Proof of eq. (7.10)

We assume for simplicity that n = 2. Similar computations to those of appendix A.9 lead
to the result

4(.0,' Wy
(P = 1) (P = 1)

Z;l Ir; [e 8Hy, aTaTaka,]

( 6,',1 (5]";: + 5i,k (SJ'J ), (A3I)

which is also valid in the particular case : = 3 = k = [. In the thermodynamic limit,
eq. (7.10) is then deduced for n = 2. Note that a hypothetical supplementary term like é; ; x,
in eq. (A.31) could not survive in the thermodynamic limit.

A.11 Proof of eqgs (7.12) and (7.13)

Equation (7.12) is deduced from def. (7.5) using the cyclic property of the trace. To prove



632 Vendrell

eq. (7.13) the physical system is restricted to the interval [—L, L], for which the thermal
two-point function (7.11) will be denoted by W% (t,t'). Equations (7.1) and (7.2) show that

Wlt(r,r') = iéi [ Z;w(:; + f 'j(;__;‘ ] ; (A.32)
where we have used the discretized version of eqs (7.7) to (7.9). Noting that
j = ge'“ﬁ“", (A.33)
we obtain
WTh(r, 7)) = %i % {iew. (r=r'+inB) | ie—iw.(r—r'—inﬁ)] : (A.34)
from which we deduce _ _ ”
Re WS} (r,7') = Jio Re WIM (r +ing,1"). (A.35)

We obtain the result (7.13) by taking the thermodynamic limit of this last equation.

A .12 Proof of eq. (7.18)

We define the primitives of f; € So(R) as Fi(t) = [*_ dt’ fi(t'), 1 = 1,2. Integrating eq. (7.17)
twice by parts we obtain

w

1 oo teo 1y oo w (7' =7
Wgh[fl Xf;] = 4_77'/—00 dT/_oo dr F](T)Fz(‘l‘) j_oo dwe ( )W' (A36)

We interpret 7’ as 7' + 107 to regularize this integral. Using the formulae [19]

a , w _ 1 7\ 1
2./0 dwcos[w(‘r-—T)]eﬁw -1 -(_T'_—-T—)?—(E) sinhz[ﬂ(r'—'r)/w]’ 7]

/+°°dwsin[w(7"—7')]—ﬁ—w - /Ooodwsin[w(r’—r)]w, (A.38)

—-00 1 s 6_6

we deduce from eq. (A.36)

Wy x f; e / dT/ dr' Fy(1) Fy(r f dw €<= (A.39)

1 +o0 +oo
—/ dT/ dr' Fi\(1) F3(r")" 0, 0 { log(r" — 7) — log sinh [ﬂ (7' - 'r)] }
T J-0 —00
Performing again a double integration by parts we obtain
. 1 +oo +o0 i o
Wg*h[f] % Bl = —~4—7;_-/_00 dr/_oo dr’ fi(7) fa(7")* logsinh [ﬁ(r —‘r)]. (A.40)

The kernel W] *(7,7') is contained in this double integral. The arbitrary constant is chosen
so as to obtain the expression (3.17) for the two-point function in the limit 3 — oo.
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A.13 Proof of eq. (8.2)

Definition (5.36) and eq. (8.1) imply that the kernel of V' is given by

Vikp) = e* v, (kL) .
(k,p) € "M (A.41)
where we have defined
X b ke i
V(k,p) = 5 /0 dz ¥ &P, (A.42)
Changing to the variable s = |k| 2 we obtain
1 1 :
Vilkip) = 5= e (000 (=) + 0(=) J2)" 1. (A43)
where we have defined
Jp) = [ dses?. (A.44)
0
This integral is computed by deforming the contour along IR} to the imaginary positive axis:
J(p) = —pe ¥ I(ip). (A.45)
Since
. 2 ™
we obtain
- 2r
J — _pele) =7 A 4T
(p) pe S 1)’ (A.47)
where we have defined Q(p) = Arg[['(ip)]. Equations (A.43) and (A.47) show that
—iQ(p) ciplog k| (k) 6(—k)
p e e
Vilk.p) = — , (A.48)
(F.2) Ver | k| [\/p(l—e‘z’”’) \Vp(e*™ —1)
from which eq. (8.2) is deduced using eqs (5.37) and (A.41).
A.14 Proof of eq. (8.14)
Equation (6.21) is rewritten in the form
\) > h o IO Iy % o dk 1y *
Nl = [dpf @) [ T [ ST UG-Rp) U=kp). (A49)
0 0 o 2k
Using the expression (8.2) for the kernel of U and the formula
o dk  .(p=p'
] % ST sk — or g o(p—1p'), (A.50)
0

eq. (8.14) is easily obtained from eq. (A.49).



634 Vendrell

A.15 Proof of eq. (8.18)
Using theorem 1 and eq. (8.2) we obtain
G(fix f)) = (Af,Bfi) =0, (A.51)

= dp [i(p)" fi(p)

0 2;0 ezﬁﬂp—ul

G(fix[;) = (Bf,Bf:) , (A.52)
where 2,5 = 1,2,...,n. Expression (A.51) vanishes because of the presence in its kernel of
the term é6(p + p’). Theorem 2 then implies that

No[f™M) = C* 3 Glfi x f1)) Glfa X f2) - GUfu X fimy)- (A.53)

d€Pn

Noting that G'(fi x f7) = Gt (fi x I7) (see eq. (7.28)), eq. (8.18) is deduced from

ﬁ,out

theorem 4.
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