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The Quantization of the Space-time Defects in the Early
Universe

By Yishi Duan, Guohong Yang and Ying Jiang
Institute of Theoretical Physics, Lanzhou University, Lanzhou, 730000, P.R.China

(21.VI.1996, revised 5.VIII.1996)

Abstract. In Riemann-Cartan manifold Uy, a new topological invariant is obtained by means
of the torsion tensor. In order to describe the space-time defects (which appear in the early
universe due to torsion) in an invariant form, the new topological invariant is introduced to
measure the size of defects and it is interpreted as the dislocation flux in internal space. Using
the so-called ¢-mapping method and the gauge potential decomposition, the dislocation flux
is quantized in units of the Planck length. The quantum numbers are determined by the

Hopf indices and the Brouwer degrees. Furthermore, the dynamic form of the dislocations
is also studied by defining an identically conserved current.

1. Introduction

As is well known, torsion is a slight modification of the Einstein theory of relativity (pro-
posed in the 1922-23 by Cartan!!l), but is a generalization that appears to be necessary when
one tries to conciliate general relativity with quantum theory. If we consider the quantum

theory in curved instead of flat Minkowsky space-time, we have some very important new
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effects (as, for instance, neutron interferometry?l). Moreover, when we go to a microphysical
level, that is when we are concerned with elementary-particle physics, we realize that the
role of gravitation becomes very important and necessary and this happens in the first place
when we consider the early universe or the Planck era. In fact, elementary particles are
characterized not only by mass but also by spin which occurs in units of A/2. A mass dis-
tribution in a space-time is described by the energy-momentum tensor and connected with
the curvature of space-time. The dynamical relation between the stress-energy-momentum
tensor and curvature is expressed in general relativity by Einstein equations. One feels here
the need for an analogous dynamical relation including spin density tensor. Since this is
impossible in the framework of the general relativity, we are forced to introduce this new
geometrical property that we call torsion. Thus, when we deal with a microphysical realm
we find that the torsion comes into play and then has to be considered as the source of a
gravitational field.

In recent years, a great deal of work on spin and torsion have been done by many
physicistsl®~®. Though it has been common to include intrinsic spin with gravitation("—*,
and to relate spin to the torsion tensor!!®-!3, the quantization of the gravitational field (that
is to quantize the Riemann-Cartan space-time itself) and the mechanism of production of
torsion in physics and geometry(®® are not very clear. In some recent papers, Ross'! and
Sabbatal!®] investigated these problems by the viewpoint of defects of space-time, which may
be important in the early universe because of spontaneous symmetry breaking'®l. However,
in their fra.mework, the description of the space-time defects is not invariant under coordi-
nate transformations and the quantization of space-time is only an assumption. In order to
overcome these shortages, we will restudy the problems in terms of vierbein theory in this

paper.

2. The formulation of the space-time defects in invariant form

Recently, some physicists studied the early universe by the viewpoint of defects of the
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Riemann-Cartan manifold Uy, in which there exists the non-zero torsion
T:ll:P[Ayyl’ By, A =1,2,3,4,

where I‘:, is an asymmetric affine connection. In the discussions of the importance of spin

and torsion in the early universe(!®!, Sabbata proposed an integral
P f T dz* A de” (1)

to represent the defects (dislocations) in space-time. By analogy with the well-known Bohr-
Sommerfeld relation § pdg = nh, the author assumed that the integral !* is quantized in
units of the Planck length L, i.e.

? = }( Thdz* Adz” =nL,, L, = (hG/c*)'?, (2)

and defined time in the quantum geometric level through the fourth component as

== % f TdA =nT,, T, = (hG/c*)', (3)

where n is an integer and c the velocity of light. We think that the hypothesis (2) is reasonable
because it is based on the fact that, being torsion linked to spin and being the spin quantized,
the Planck length L, enters through the minimal unit of spin, or action k. (In fact, we have
revealed that the quantization of spin can also be derived from that of torsion, and the
manuscript of which is in preparation.) However, to be an observable physical quantity, we
learn that it must be invariant under both coordinate and gauge transformations. But the
definition (1) does not has the property, that means [* is not invariant under coordinate
transformations and then, is dependent on the choice of coordinate system. Furthermore,
the quantization of [* in (2) is an assumption after all and the quantum number n is not
determined. In order to formulate the space-time defects in an invariant form and quantize
them naturally, let us investigate the problems in vierbein theory, in which the torsion can
be expressed by

T4 = Duef — Dyell, p,v,A=1,2,34 (4)

A

o is the vierbein field and

where e

1
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is the gauge covariant derivative, w;,‘B(z) stands for the spin-connection and I,p the gener-
ator of the Lorentz group.

As in Ref. [17], we can define a gauge parallel vector in internal space, whose existence
is closely related to the geodesic v(S)

a
dS

M
LU =0, Ur= %, (5)

which can be further written in the covariant derivative notation(®®
vV, U*=8,U* +T)U" =0, (6)
where dS is the element of length of v(S). Using
w:B = (V,,e:,‘)c"B,
(6) multiplied by e gives
D“UA=0, U4 = efU?,

which means U4(z) is a gauge parallel vector along the geodesic v(S). Though the vector
U?* is defined only at points of v(S), it can be extended to a vector field on a neighbor-
hood of any point of v(S), which leads to U4(z) also a gauge parallel vector field on this
neighborhood**2%, On the other hand, it is well-known that any integral curve of ordinary
differential equations (5) is determined by a point po(z},- -, z}) and a directicn at py®V. I,
at the same point pg, we give four linearly independent directions U(’}) (po) = (%_';;),o with

gva(':)(Pn)U(?)(Po) = 6(!]}1 'r] = 11213: 41

we obtain four geodesics and four corresponding linearly independent gauge parallel vectors
marked by the index (i) (i = 1,2, 3,4)

Uiy = e8U VUG = b

which are called the gauge parallel basis in internal space. The projection of the torsion
tensor (4) on the basis will be(!”]

T‘w(‘-) = T,ﬁ,U(:) = 3,,A,,(i) - BVA,,(‘), t1=1,23,4, (7)
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where

A,,(,-) = eﬁU(?)
is the U(1) gauge potential. This shows that T},(; can be expressed in terms of A, just
as the curvature on U(1) principal bundle with base manifold Uy (i.e. the U(1) gauge field
strength), which is invariant for the U(1)-like gauge transformation

Ay (2) = Ay () + 8y () (8)

where Ag;)(z) is an arbitrary function.

Now, let us investigate the total projection of the torsion on a surface, which will
be shown that, in topology, it is associated with the Chern class of the Riemann-Cartan
manifold, i.e.

o = /E o % ww(ydz* A de” = constant, (9)
where ¥(J,s) is the 2-dimensional surface determined by two parameters A and s in the
4-dimensional manifold U,. The intrinsic coordinates of £(A, s) are u = (u!,u?), that is, for
z € (A, 8),

¢ =z¢(ul,u?), pu=1,2,3,4.

It must be pointed out here that the integral l(;) in (9) is quite different from that of
Sabbata in (1). Since the index (¢) is neither the coordinate nor the group index, I is
invariant under general coordinate transformations as well as local Lorentz transformation
and, thus, is independent of the coordinate system, but {* is not. Furthermore, in l(s) there
is another U(1)-like gauge invariance for (8). In fact, I is a new topological invariant
and relates to the Winding Numbers, which will be seen later. So, we suggest to use the
projection T,,(;) and the new topological inveriant ;) to measure the size of defects of the
Riemann-Cartan manifold. It is obvious that [ has the dimension of length, which leads
us to call /;) the total projection of dislocation along the i-th gauge parallel base U(“) on the
surface (), 8). The invariant time t is defined in analogy with (3) as

t:= 1] l ,,,,(4)dw.“/\dz". (10)
E(Ae) 2

¢
Since on X(A, s) a U(1) gauge transformation is equivalent to a two-dimensional rota-
tion, Ay(;)(z) corresponds to the SO(2) gauge connection w:?,-) (z). This relationship can be
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expressed as follows:

27
w;?i)(z) = _L—Ap(i)eubi a, b=1,2, (11)
P

where L, = \/hG/c® is the Planck length that is introduced to make both sides of Eq.(11)

have the same dimension. The corresponding 2-dimensional gauge parallel vectors n{y on
X(A, 8) with respect to w:'(") can be derived from U(*:) by!??

2 2r
ab __ 7 ab _ 4" ab_AyrA
Wuy) = — A€ = — e Ug)
P 1 4

satisfying
niyduny =0, nlny=C

for fixed (¢), where C is an arbitrary constant and
nz‘) = n?‘)(z#(ul’ u’)’ A’ ‘) = n?‘)(ul)uz: A: 3):

in which A and s are the parameters to determine the surface while 4! and u? the intrinsic
coordinates of ¥(A, s). Let us consider C = 1, that is G (t =1,2,3,4) are unit vectors

which can, in general, be written in the form(3?

« _ %0 e
"(i)="_¢5:)_"x ud’(i)": ¢(¢)¢(g), (13)

where ¢:i) (e =1,2) is a vector field on X(), s}, i.e.
By = Pl (2 (6, 4), 2, 8) = ¢f;y(u', 1%, A, 8). (14)
In the opinion of the decomposition of U(1) and SO(2) gauge potentiall®*], from (12) we get
Wity = MyBunly — nfyBunfy,  Auw = fﬁ‘d"‘(’-‘) Buniy

for fixed (¢). (9) can be changed into
L

e b "
l(i) = . e.;,&,,nf,)ayn(f)dz“ Adz

or, in terms of the intrinsic coordinates u = (u!,u?) of £(A, s),

LP a b A B 1.2
=3, z:O"‘)Gaz»&A"'(i)‘9""'(4)“'h‘ AT = E(A'.)P(')d“ du’, (15)



Duan, Yang and Jiang 571

where

L
Py = g€ TeabaniyBengy A, B=1,2 (16)

is called the dislocation density projection. In the following, we will interpret the total pro-
jection l(;y as the dislocation flux through the surface ¥ (A, s) and quantize it naturally by
means of the so-called ¢-mapping method.

3. The topological quantization of the dislocation flux

At first, by the train of thought of Ref. [24], we can extend the dislocation density pro-

Jection p(;) to a topological current of dislocations

. L
Jé) = 2—;5‘4305.58311?,-)8(311&), A,B,C=0,1,2, (17)

in which €"? = 41, 8, = 8/8u’ with u® = X or s. (For convenience and without loss of
generality, we choose u? = )\.) They are instant conclusions from (17) that the component

j?‘) is just the dislocation density projection p(;) in (16), and j(’}) is identically conserved, i.e.

The relevant conserved quantity to j(’}) is in (15), which means that the total projection [
is independent of the surface (A, s) on the condition that its boundary 8% surrounds the
system of dislocations. We note that this property of ;) is quite similar to that of magnetic
flux in cosmical electrodynamics®l. In fact, j(}) just can take the same form as the current
density in electrodynamics or hydrodynamics, which will be shown later, and /;y can be
considered as the corresponding dislocation flux along the i-th direction in internal space.
Using (13) and

8A¢?§) ¢‘(‘g) Aalldwl 8 P
== y In =TL na?
ol ~ el en, 100l =jg0p

Bany =

j(’:) can be expressed by

L 8 &
.4=—£ABC¢ In - 8p@s. O b,
J(.) 2ﬂ_f €ab 8 ¢&) 8 45?1) “¢(i)" B¢(.) C¢(¢)
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By defining the Jacobian determinants D(:)(%ﬂ-) as
a ¢ a
€ bDi‘i)('fl) = e"5%85¢7)8cd(;), (18)

in which
(s b
Dfy() = Diy(2)
is the usual Jacobian determinant of @(;) with respect to u, and making use of Laplacian

relation in @;)-space

- 8
8.8.1n ol = 278d0), B = 5o
()
we obtain the é-like topological current of dislocations
i = L2280, (19)

The dislocation density projection p(;) and the flux I(;) are given by
5 ¢ e
Py = 3y = L,D(..)(—z(‘fl)s’(%)),

I(,) = Lp./ D(;)(?m)éz(g(‘))duldu’ (20)
Z(A0) b

It is obvious that jé‘), P() and lj;) are non-zero only when J(,) = 0.
Suppose that the vector fields ¢f;) in (14) for fixed (§) possess N zeroes, according to the
deduction of Ref. [26] and the implicit function theorem!®"], when the Jacobian determinant

é
Dy(=2) #9,
the solutions of 5(5)(u‘, u?, A, 8) = 0 can be expressed in terms of u = (u',u?) as
g a,,l(‘)()«, g), ul= af(,.)(A, ), I=1,--,N,

and
¢f,)(a,1(,)(/\, 8), a,z(‘)(z\, 8),A,8)=0, a=1,2, (21)

where the subscript (=1, -, N) represents the I-th zero of the (¢)-th vector field.

In the following, we will discuss the dynamic form of the dislocation current ji‘}) and
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study the topological quantization of the dislocation flux /(;) through the Winding Numbers!?!
W](‘) of J(i) at ai(1)

1 @
Wigy = — darctan|-{2],
27 Jory 20

where 8% is the boundary of a neighborhood Iy of a4 on the surface L(A,s) with
i) € iy, Ti) N Emgy = 0. It is well-known that the Winding Numbers® Wy, are
corresponding to the first homotopy group 7|S?] = Z (the set of integers). By making use
of (13), it can be precisely proved that

Wi = %r' s nly (eanfyydnfy), (22)
where nz,) is the pull back of map n;). This is another definition of Wy(,) by the Gauss map
ng : 85y — S'. In topology it means that, when the point u = (u!,u?) covers 8%y
once, the unit vector n;, will cover S Wy,) times, which is a topological invariant and is also
called the degree of Gauss map®*), Using the Stokes’ theorem in the exterior differential
form and (22), one can deduce that

A a g b 3B _ 1 afn b 7 Ar g B
Wi = o -/UE:(q €aan(y)Opnydu” = pym /2 » easBan(y 8pndu” A du”.

It is noticed that this formula differs from that of (15) only in the domain of integration and

the constant L,. Then, by duplicating the above process, we have
W,(,) = /E D(;)(%Q)G’(J(,))du‘du’. (23)
1(s)

Since .
5 (o) = 400, for d}_(.-)=0 ={ +00, for u=ayy,
(¢w) { 0, for du#0 0, for us ayy,

it can be supposed that (by analogy with the procedure of deducing 6(f(z)))

N
8 (Bw) = Y crpb(u' — aly (A, 8))6(u* — afy (M, 9)), (24)

I=1
where the coefficients c;;) must be positive, i.e. c;;) = |cy;)|- Substituting (24) into (23) and

calculating the integral, we get
Wi

1Dy (52 oy |

i) = (25)
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easily. Let [Wyy| = By;), then from (24) and (25) we have
N
FF0) =Y~ gul — aly (1, )8(u = afy(h,9)), (26)
=1 |D(i)( u )ﬂr(¢)|
where the positive integer [ is called the Hopf index?®? of map u — $)- Making use of

(26), the dislocation current ja) in (19) can be expressed as
4 : 2 Dy (%)
i) = Ly Z ﬁr(i)ﬂt(i)fs(ul - 4:1(1)(/\, 8))6(u® - a:(f)()‘a ’))mlc,(;),
I=1 Dy
in which A =0, 1, 2 and
mE) = “gn’D(i)( )Ill(l) = %1
is called the Brouwer degree!®” of map u —+ ¢(;). On the other hand, from the equations
(21) one can prove(®! that the generalized velocity of zero of ¢{; is given by
0 b)
du® D (%)

Vo
=1
where u’ = ) and D“ (!Ll) is defined in (18). Then

N
j(:) = LpZﬁI(i)m(i)5(“1 = 411(:')0: 8))5(u? — a?(i)(/\: ’))‘/(:"):

l=1

and

N
i) =ity = Lp Y Bromab(v* — ajy (X, £))6(x* — afy (2, 2)), (27)
=1

which give

iy =PVl A=012
That is the dislocation current j("“) of the Riemann-Cartan manifold exactly takes the same
form as the current density in classical electrodynamics or hydrodynamics. From (20), (10)
and (27), we get the dislocation flux /(;) and the invariant time ¢ in the topological quantum

level as

N N
l(') = 2 n'(i)LP’ t= z n’('l)TPv 1=1,2,3,4, (28)
=1 I=1
where ny;) = Byyym) for fixed ! and (i), T, = %l = -’f— So, with torsion, we have minimum

units of length and, e_,'ecially, time # 0! This in fact would give us the smallest definable
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unit of time as T, =~ 10"4*s. In the limit of h = 0 (classical geometry of general relativity)
or ¢ => oo (Newtonian case), we would recover the unphysical L,, T, == 0 of classical
cosmology or physics.

At the end of this section, it must be pointed out that the quantizations of length and
time are natural and rigorous results in our discussions. But what was dealt with in Ref. [15]
can only be looked upon as an assumption and the author can not tell us how to determine
the quantum numbers. On the contrary, from (28), we see that the quantum numbers are

given by the Hopf indices and the Brouwer degrees.

4. Conclusion

In this paper, we obtain a new topological invariant in Riemann-Cartan manifold U; in
terms of the torsion tensor. It is invariant under general coordinate transformations as well
as local Lorentz transformation and, thus, is independent of the coordinate system. In fact,
it only depends on the Winding Numbers of a smooth vector field at its zeroes, which are
also topological invariants. Meanwhile, there is another U(1)-like gauge invariance in it. In
order to describe the space-time defects in the early universe or the Planck era in invariant
form, we use the new topological invariant to measure the size of defects and interpret it as
the dislocation flux in internal space. Using the so-called ¢-mapping method and the de-
composition of U(1) and SO(2) gauge potential, the dislocation flux is quantized naturally
and rigorously, which is the quantizations of length and time in Riemann-Cartan manifold.
The quantum numbers are determined by the Hopf indices and the Brouwer degrees, i.e.
the Winding Numbers. The Planck length L, and T, = \/’Dc,E ~ 10~%%s play the roles of
the elementary length and the unit time respectively. As mentioned above, this result is
considered to be reasonable because of the fact that, being torsion linked to spin and being
the spin quantized, the Planck length L, enters through the minimal unit of spin, or action
k. Furthermore, by extending to an identically conserved current, the dynamic form of the
dislocations is also obtained and it takes the same form as the current density in classical

eletrodynamics or hydrodynamics, which may be important for the production and interac-
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tion of the space-time defects in the early universe and will be detailed in other papers.

References

[1] H.E.Cartan, C.R.Acad.Sci., (1922) 174, 437, §93; Ann.Ecole Normale., 41 (1924) 1;
[2] V.D.Sabbata, P.I.Pronin and C.Sivaram, Int. J. Theor. Phys., 30 (1991) 167,
[3] R.Jha, Int. J. Mod. Phys., A9(22) (1994) 3959,
[4] L.L.Smalley and J.P.Krisch, Class. Quantum Grav., 11 (1994) 2375;
[5] R.Hammond, Gen. Rel. Grav., 26(11) (1994) 1107;
[6] C.Sivaram and L.C.Garica De Andrade, Astro. Space Sci., 201 (1993) 131;
(7] M.Yu.Kalmykov and P.I.Pronin, Gen. Rel. Grav., 27(8) (1995) 873;
[8) R.Hammond, Class. Quantum Grav., 12 (1995) 279;
[9] J.Anandan, Phys. Lett., A195 (1994) 284,
[10] J.Kénnar, Gen. Rel. Grav., 27(1) (1995) 23;
[11) C.M.Zhang, Int. J. Mod. Phys., A8(28) (1993) 5095;
[12] V.DE.Sabbata and Y.Xin, Int. J. Mod. Phys., A10(25) (1995) 3683,
[13] S.Luo, Int. J. Theor. Phys., 34(10) (1995) 2009;
[14] D.K.Ross, Int. J. Theor. Phys., 28(11) (1989) 1333,
[15] V.DE.Sabbata, IL Nuovo Cimemto., A107 (1994) 363;
[16] Y.S.Duan, S.L.Zhang and S.S.Feng, J. Math. Phys., 35(9) (1994) 1,
[17] Y.S.Duan and S.L.Zhang, Int. J. Engng Sci., 28(7) (1990) 689;
[18] Arthur L. Besse, Manifolds all of whose Geodesics are Closed, Springer-Verlag Berlin
Heidelberg, 1978;
[19] Yvonne Choquet-Bruhat, Cecile Dewitt-Morette and Margaret Dillard-Bleick, Analysis,
Manifolds and Physics, North-Holland Publishing Company, 1977,
[20] Helgason.S, Differential Geometry and Symmetric Spaces, Academic Press, New York,
London, 1962;
[21) L.P.Eisenhart, Riemannian Geometry, Princeton University Press, 1949;
[22] Y.S.Duan and X.H.Meng, J. Math. Phys., 84(1) (1993) 1,
(23] Y.S.Duan, Gauge theories of gravitation. In Proc. Symp. on Yang-Mills Gauge Theo-
ries, Beijing, 1984;
[24] Y.S.Duan and S.L.Zhang, Int. J. Engng Sci., 29(12) (1991) 1593,
[25] H.Alfvén and C.G.Falthammar, Cosmical Electrodynamics (Fundamental Principles),
Oxford University Press, 1963,
[26] Y.S.Duan and J.C.Liu, Proceedings of the Johns Hopkins Workshop on Current Pro-
blems in Particle Theory, 11 (1987) 183;
[27] Edouard Goursat, A Course in Mathematical Analysis, vol.I (translated by Earle Ray-
mond Hedrick), 1804;
[28] Victor Guillemin and Alan Pollack, Differential Topology, Prentice-Hall, Inc., Engle-
wood Cliffs, New Jersey, 1974;
[29] Y.S.Duan and M.L.Ge, Sci. Sinica., 11 (1979) 1072; C.Gu, Phys. Rep., C80 (1981)



Duan, Yang and Jiang 577

251;
[30] J.W.Milnor, Topology, From the Differential Viewpoint, The University Press of Vir-
ginia Charlottesville, 1965;

[31] B.A.Dubrovin. et.al, Mordern Geometry-Methods and Application, Part II, Springer-
Verlag New York Inc., 1985;

[32] Y.S.Duan and S.L.Zhang, Int. J. Engng Sci., 20(2) (1991) 153;

33] Y.S.Duan, SLAC-PUB-3301 (1984).



	The quantization of the space-time defects in the early universe

