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A New Kinematical Derivation of the Lorentz
Transformation and the Particle Description of Light

By J.H. Field

Département de Physique Nucléaire et Corpusculaire Université de Geneve . 24, quai Ernest-
Ansermet CH-1211 Geneve 4.

(20.VI.1996, revised 1.X.1996)

Abstract. The Lorentz Transformation is derived from only three simple postulates: (i) a weak
kinematical form of the Special Relativity Principle that requires the equivalence of reciprocal
space-time measurements by two different inertial observers; (ii) Uniqueness, that is the condition
that the Lorentz Transformation should be a single valued function of its arguments; (iii) Spatial
Isotropy. It is also shown that to derive the Lorentz Transformation for space-time points lying
along a common axis, parallel to the relative velocity direction, of two inertial frames, postulates
(i) and (ii) are sufficient. The kinematics of the Lorentz Transformation is then developed to
demenstrate that, for consistency with Classical Clectrodynamics, light musi consist of massless
(or almost massless) particles: photons.

1 Introduction

In his seminal paper of 1905 on Special Relativity [1] Einstein derived the Lorentz Trans-
formation from two main [2] postulates:

1. The laws of physics are the same in all inertial frames (the Special Relativity Principle).

2. In any given inertial frame, the velocity of light is a constant, ¢, independant of the
velocity of the source (Einstein’s second postulate).

The first postulate was stated by Galileo [3] and was well known, before the advent of
Special Relativity, to be respected by the laws of Classical Mechanics. It is clear that
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Einstein regarded the second postulate as a ‘law of physics’ and so, in fact, a special case of
the first postulate. Whether this is necessarily the case will be discussed below in Section 3

A study of Einstein’s derivation of the Lorentz Transformation shows that the only ‘law
of physics’ that is involved is that which is implicit in the very definition of an inertial
frame: Newton’s First Law. It will be demonstrated from purely kinematical arguments
in Section 3. below that Einstein’s ‘light signals’ may be identified with particles moving
in straight lines with fixed momentum and energy according to Newton’s First Law. That
no other laws of physics are involved is crucial for the significance of Einstein’s derivation
of the Lorentz Transformation, and for the meaning of Special Relativity. What separates
clearly Einstein’s achievement from the related work of Lorentz [4], Larmor [5] and Poincaré
(6] is his realisation that the Lorentz Transformation gives the relation between the space-
time geometries (or, in momentum space, the kinematics) of different inertial frames. These
are aspects of physics which underlie, but are quite distinct from, the actual dynamical
laws. It turns out that these laws are indeed covariant under the Lorentz Transformation
[7] and so respect the Special Relativity Principle as stated in Einstein’s first postulate.
However, as will be shown below, a much weaker statement of the Relativity Principle than
Einstein’s first postulate is sufficient to derive the Lorentz Transformation. More concretely
it may be stated that the Lorentz Transformation describes only how space-time points
or energy-momentum 4-vectors appear to different inertial observers, while the dynamical
laws of physics, for example Newton’s Second Law, the Lorentz Equation and Maxwell’s
Equations with sources, describe rather how future measurements of space-time points or,
other 4-vectors, may be predicted from a knowledge of past or present ones [8]. In the works
of Lorentz, Larmor and Poincaré on electrodynamics, these two different aspects, the one
kinematical the other dynamical, are inextricably interwoven.

Because of this clear cut distinction in Special Relativity between kinematics and dy-
namics, it was recognised at an early date by Ignatowsky and Frank and Rothe [9] that
Einstein’s second postulate was not necessary to derive the Lorentz Transformation. The
questions then arise: what are the weakest postulates which are sufficient to derive it and
what 1s their minimum number? The first part of this paper attempts to give an answer to
these questions. As in other work on the subject, a purely kinematical approach is adopted
without any reference, in the derivation, to Classical Electrodynamics or any other dynam-
ical law of physics. The kinematical consequences of the Lorentz Transformation are then
compared to results of Classical Electrodynamics to establish the identity of the velocity
parameter that necessarily appears in the Lorentz Transformation and the velocity of light.
A consistent interpretation then requires light to consist of massless (or almost massless)
particles [10].

The plan of the paper is as follows: In the following Section the three postulates on
which the derivation of the Lorentz Transformation is based are introduced. Then sepa-
rate derivations of the Lorentz Transformation and the Parallel Velocity Addition Relation
(PVAR) are given. In Section 3 the kinematical consequences of the Lorentz Transformation
are developed and it is shown that any physical object whose mass equivalent is much less
than its energy will be observed to have a constant velocity V in any inertial frame. Special
cases are photons (V = ¢) and massless or very light neutrinos. In the final Section the
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derivation of the Lorentz Transformation given here is compared with other similar work in
the literature and conclusions are given.

2 Derivation of the Lorentz Transformation and the
Parallel Velocity Addition Relation

The first postulate used (Postulate A) is a kinematical version of the Special Relativity
Principle:

A. Reciprocal Space-Time Measurements (STM) of similar measuring rods and
clocks in two different inertial frames S and S’, by observers at rest in these
frames, give identical results.

The frame S may be identified with Einstein’s ‘stationary system’ [1], while, without loss of
generality, S’ may be assumed to move along the common x-axis of S and S’ with velocity v.
The y, z axes of S, S’ are also taken to be parallel. Two examples of ‘reciprocal measurements’
[11], [12] are given below. As discussed in Section 4, some recent derivations of the Lorentz
Transformation based upon sophisticated gedankenexperimente have, implicitly or explicitly,
used Postulate A. Unlike in Einstein’s first postulate there is no mention in Postulate A of
the ‘laws of physics’. Newton’s First Law is however implicit in the term ‘inertial’, which
means that the frames ‘remain in the same state of uniform rectilinear motion” [13]. It
may be objected that the ‘laws of physics’ are implicit in the physical processes underlying
the operation of the clocks. A mechanical clock relies on the dynamical laws of Classical
Mechanics, an atomic clock on those of Quantum Mechanics. By assuming spatial isotropy
(see below) it can however be guaranteed that the clocks in, say, S and S’, are identical

the operation of the clocks in some unknown way. For example, suppose that the clocks of
identical construction in S and S’ are originally at rest in a third inertial frame S where they
are synchronised by any convenient procedure. If the relative velocity beween S and S’ is
now produced by giving the frames S, S’ (and their associated clocks) equal and opposite
uniform accelerations for a suitably chosen time in S, it is clear, from the spatial symmetry
required by the spatial isotropy postulate, that the clocks, originally identical in S, must
remain so in S and S’.

The second postulate (Postulate B) is that of Uniqueness. This has been previously used
[14] in the derivation of the PVAR. To the best of the writer’s knowledge, it is here applied
for the first time in the derivation of the Lorentz Transformation itself. This postulate
is based on the hypothesis that if an observer in S performs a number N of STM then
another, similarly equipped, observer at rest in S’ can also make N STM in one-to-one
correspondence with those made by the observer in S [15]. This will be so provided that
the Lorentz Transformation is a single-valued function of its arguments. In the contrary
case that the Lorentz Transformation is not single-valued then one STM measurement in
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S may correspond to several in S’ of vice-versa. Such an asymmetrical situation between
two inertial frames is clearly at variance with the Principle of Relativity. The Uniqueness
postulate will also be used to derive, separately, the PVAR, without assuming, as was done
in Ref.[14], Einstein’s second postulate. The statement of the Uniqueness postulate is:

B. If f(x,€,(,..) = 0 represents either a Lorentz Transformation equation or the
PVAR, then x must be a real single-valued function of ¢, (,... ; £ must be

a real single-valued function of y, (,... and so on for each of the arguments
of f.

For the PVAR, which has just 3 arguments, a sufficient [16] condition is that f should be
trilinear in the relative velocities v4p, vgc, voa of three inertial frames A, B, C:

0 = P+ Qvap + Qrvpc + Qavea
+Ri1vapvpe + Ravapvca + R3vpcvea + SvaBvBcvca (2.1)

The coefficients P, @Q);, R;, S are constants. If any two of v4p, vpe, vep are fixed then
Eqn.(2.1) is linear in the remaining variable, and so has a unique solution [17].

The third postulate (Postulate C), spatial isotropy, requires no special comment:

C. The Lorentz Transformation equations must be independent of the direc-
tions of the spatial axes used to specify a STM.

These three postulates are now used to derive the Lorentz Transformation. In a first
step it is assumed that the STM lie on the common x-axis of the frames S and S’. The
generalisation to y # 0, z # 0 will be made subsequently. When y = y' = z = 2’ = 0 the
Lorentz Transformation has the form:

7= fw i) (2:2)
Postulate B is satisfied provided that Eqn.(2.2) can be written as:
'+ a1z + ast + bz’ + boxt + bsx't + cxz’t =0 (2:3)

where a;, b;, c are independent of z, z', t. The velocity of S’ relative to S is:
v=E — (2.4)

where y’ may take any constant value. Differentiating Eqn.(2.3) with respect to t and using
Eqn.(2.4) gives:
_ax+ bz + b3y’ + ex'z

a, + bl}(' + bzt + CX"t
Since Eqn.(2.5) must hold for all values of z, x’, t it follows that:

b1=b2=b3=c=0 (26)

V=

(2.5)
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so that: "
v=—— (2.7)

aq

Using Eqns.(2.6),(2.7) Eqn(2.3) may be written as:
2 = y(zx — vt) (2.8)
where
v = —a (2.9)
The Lorentz Transformation inverse to Eqn(2.2) is of the form:
z = f'(z',1') (2.10)

The velocity of S relative to S’, v, is defined as:

" da’
dt'| _
=

o
Il

(2.11)

X

where y may take any constant value. In many derivations of the Lorentz Transformation
(including Einstein’s in Ref.[1] ) it is assumed that:

i = (2.12)

This hypothesis is called the Reciprocity Postulate. It has been proved by Berzi and Gorini
(18] to be a consequence of the Special Relativity Principle and the usual postulates of
space-time homogeneity and spatial isotropy. Since, in the present derivation, space-time
homogeneity is not assumed, Eqn.(2.12) cannot be assumed to be correct. It will now be
shown however, that the Reciprocity Postulate is a necessary consequence of Postulate A
and Postulate B alone. That is, it is independant of the assumed properties of space-time
in the case that Postulate B is true. Repeating the line of argument leading from Eqn.(2.2)
to Eqn.(2.8), but starting instead with Eqn.(2.10), gives:

z=7'(z + 't (2.13)

Suppose now that a measuring rod of unit length, lying along the Ox’ axis, and at rest in 5’
1s observed, at fixed S time ¢, by S. It follows from Eqn.(2.8) that S will observe the length
of the rod to be [ where:

Fas o (2.14)
e

If S now makes a reciprocal measurement of a similar rod at rest in S the length will be
observed to be [', where, from Eqn.(2.13):

V=— (2.15)

Using Postulate A:
=l (2.16)
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so that
y=49 (2.17)
Hence, using Eqns.(2.8), (2.13), (2.17) the Lorentz Transformation may be written as:
' = q(z —ot) (2.18)
o Wy 2
¥ = " (t . ) (2.19)
where (47 )
]
6= 2.20
= (2.20)
The inverse transformations are:
z = vz’ +0't) (2.21)
t = ﬂ%y+i§ (2.22)
v v

Consider now a clock at rest in S’ located at '’ = 0. As seen from S, the position of the
clock, after the time ¢ = 7y, is given by:

T = 1%, (2.23)

From Eqns.(2.19) and (2.23) the elapsed time 7’ indicated by the clock, as observed from S,

during the interval 79 of S frame time, is:

= Lro(1 - 6) (2.24)
v

If an observer in S’ makes now a reciprocal observation of a similar clock at rest in S, then
the position of the clock, after the time t' = 7g, is given by:

!

' = —v'T, (2.25)

Combining Eqns.(2.22) and (2.25):

vf
=001 = 6) (2.26)
v
where 7 is the elapsed time, indicated by the clock at rest in S, as observed from S’ during
the period 79 of S’ time. Because the two measurements of the elapsed time indicated by
the similar clocks are reciprocal:

T i (2.27)
It then follows from Eqns.(2.24) and (2.26) that:
v=v

The alternative solution with v = —v may be rejected since it corresponds to the case
where the clock in S’ runs backwards in time ( ' — —t' ). In the case of two inertial
frames equipped with identical clocks At must have the same sign in both frames. Thus
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the Reciprocity Postulate Eqn.(2.12) is a consequence of Postulate A and Postulate B only.
Using now Eqn.(2.12) the Lorentz Transformation in Eqns.(2.18) and (2.19) becomes:

' = y(z—ot) (2.28)
o 7(t—%§) (2.29)

Since the Lorentz Transformation is completely defined by the relative velocity v between
the frames S and S’ it follows that the unknown parameter ~, (and hence, from Eqn.(2.20)
6 ) must be a function of v.

Suppose now that a physical object moves with velocity u in the direction of the positive
x’ axis in S’. Its velocity w in the direction of the positive x axis, as observed in S, can be
derived by differentiating Eqns.(2.28),(2.29) with respect to ¢ and using the definitions:

— (2.30)
— dt .t
dx’

The ratio of Eqn.(2.28) to Eqn.(2.29) after differentiation, use of Eqns.(2.30), (2.31) and

some rearrangement, gives:
U+ v

w= 1+ u5!v!

(2.32)

This is the Parallel Velocity Addition Relation (PVAR). By making use of the Reciprocity
Postulate and Postulate C (Spatial Isotropy) it has been demonstrated [19] that the PVAR
is symmetric under the exchange u <« v. As will be now shown, this symmetry is in fact a
consequence of the Reciprocity Postulate alone. Introducing the notation:

VAB =V UVUBc =U UVyuc =W

Eqn.(2.32) gives:

VaCc = i% (:f?) (2.33)
Exchanging the labels A and C in Eqn.(2.33) : v
vca = lvf—g{—— gjﬂ (2.34)
Using the Reciprocity Postulate, vea = —vac etc, Eqn.(2.34) may be written as :
vac = :_AEA:%)(:—;;) (2.35)
Comparing Eqns. (2.33) and (3.35) gives the relation:
v Wy (2.36)

§(v)  b(—u)
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Since v, u are independant variables the first two members of Eqn.(2.36) must each be equal
to the universal constant V2. By inspection, V has the dimensions of velocity. Setting
u = —u in Eqn.(2.36) it follows that :

O(—u) = 6(u) (2.37)

and hence, from Eqn.(2.36) that:
%6@0::56@0 (2.38)

The PVAR, Eqn.(2.32), is thus a symmetric function of u and v. Two distinct possiblities
now exist on combining Eqns.(2.20), (2.32) and (2.36) [21]:

a) plus sign in Eqn.(2.36):

1) = —— (2.39)
=Gy
u+v
= 2.40
w 1+ "j_';. ( )
b) minus sign in Eqn.(2.36):
1
1) = —F—= (2.41)
T+ (3
W= el (2.42)
2

Case b) gives no restriction on the possible values of v and v. However, in this case, the
PVAR Eqn.(2.42) is not a single valued function of its arguments. It is thus excluded by
Postulate B (Uniqueness). To show this, it may be noted that, for any value of v , a value
of u, u,, may be chosen such that w is infinite:

Yes, = = (2.43)
defining
A=uy, —u (2.44)
Eqgn.(2.42) may be written as:

(v 4 Uoo + AU
== 2.45
w A ( )
Since w — —oo as A — 0 when A > 0, whereas w — +o0o as A — 0 when A < 0, Eqn.(2.45)

does not give a unique solution for w when u = u,,.

In case a) the requirement that « should be a real quantity (Postulate B) shows that, in
this case, V plays the role of a limiting velocity:

u?, vt < V2 (2.46)
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With the definition: "
gy 5 (2.47)

v
the restrictions on u, v given by Eqn.(2.46) imply either that no value, or a unique value, of

uim exists. A consequence of Eqn.(2.47) is:

|u1iml V
VTl (2.48)
If |v] < V, then |uym| > V, in contradiction with Eqn.(2.46). For the case v = V = —win,
Eqn.(2.40) gives the result: w = —uy,, = V. Hence, for all values of u, v consistent with
Eqn.(2.46), the PVAR Eqn.(2.40) gives a unique value of w, and so verifies Postulate B. Thus
when v = V, w takes also the value V', independently of the value of u. From the symmetry
of Eqn.(40) this statement remains true when u and v are interchanged. A consequence is
that if a physical object has velocity V in any inertial frame (say S’, when u = V') then it has
the velocity V in any other inertial frame (say S , when w = V). The physical interpretation
of V is then the limiting velocity (independent of the choice of inertial frame) which any
physical object may attain. It can already be seen that V has the same property as that
ascribed to the velocity of light ¢ in Einstein’s second postulate. In Section 3. below the
limiting velocity V' will be related to the mass, energy and momentum of any physical object.

The Lorentz Transformation for STM lying along the common x axis of S, S’ has now
been completely determined by postulates A and B only. It corresponds to case a) above
(plus sign in Eqn.(2.36)) and is given by the equations:

g = (z—2vt) (2.49)

= - ;’/_ﬁ) (2.50)
1

= — 251

2] g (2.51)

This result is now generalised to include STM lying outside the common x-axis of S and
S’. In this case Postulate C is also required. Considering first STM with y 5 0,z = 0, then
Postulate B implies that Eqn.(2.49) should be modified to:

2 = y(z —vt) + yf(e', 7, 1) (2.52)

where the function f is trilinear in 2’, z, t. Postulate C requires that Eqn.(2.52) should be
invariant under the operation y — —y giving:

' =y(z —vt) —yf(z',z,t) (2.53)
Subtracting Eqn.(2.53) from Eqn.(2.52):
yf(z',z,t) =0 (2.54)
Since this equation must hold for all values of 2’| z, y, t it follows that:

fle'sa.0) =10
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Thus Eqn.(2.49) 1s valid also for STM with y # 0. Using Postulate C it must also hold for
STM with z # 0.

Consider now the transformation equations for STM along the y-axis (z = 2’ = 0) at
=l
fy',y,2,8) =0
Postulate B is verified provided that f is quadrilinear in ¢, y, z, t i.e.

y' 4+ A+ A+ Ast+ Byy'y + Bay'z + Bsy't
+ Byyz + Bsyt + Bext + Ciy'yz + Coy'yt
+ Cay'zt + Cyyat + Dy'yat =0 (2.55)

Invariance under r — —z (Postulate C) implies that the coefficients of all terms containing
z must vanish. Similarly, invariance under the combined transformation: y — —y, vy’ — —y/,
gives the further conditions:

As= B, = Cy = 0
so that Eqn.(2.55) reduces to

y' 4+ Ay + Bsy't + Bsyt = 0 (2.56)
Fixing y’ to be equal to ¢ and differentiating Eqn.(2.56) with respect to t gives:

d d
V' 1B+ By( Y

Al E It dt l—gt + y) N O (2.57)
y'=¢ y'=¢
But, because the velocity of S’ is perpendicular to y:
d
y'=¢
so that Eqn.(2.57) becomes:
B3¢ + Bsy =0
As this equation must be true for arbitary £, y then:
B3 = Bs - 0
giving, with Eqn.(2.56):
y'= —Ayy (2.58)

The proof that A; = —1 was given in Ref.[1]. Denote by A;(v) the coefficient in Eqn.(2.58)
corresponding to the Lorentz Transformation of Eqn.(2.49). The corresponding coefficient for
the Lorentz Transformation inverse to Eqn.(2.49) is then A;(—v). Applying, in succession,
the Lorentz Transformation of Eqn.(2.49) and its inverse then Eqn.(2.58) gives:

Al(—’())Al(’U) =] (259)
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As the direction of the relative velocity of S and S’ is perpendicular to the y, y’ axes A,(v)
cannot depend on the spatial orientation of the relative velocity (Postulate C). Hence:

Al(’U) = Al(—v) (260)

Eqns.(2.59) and (2.60) give
Ai(v) = £1 (2.61)

Since, evidently, Eqn(2.57) reduces to y = 3’ in the limit v = 0, the minus sign must be
taken in Eqn.(2.61) so that, for arbitary v, Eqn.(2.58) becomes:

¥y=Y
Application of Postulate C then implies that:
g F

The final result for the Lorentz Transformation of STM at an arbitary spatial position in S
is then:

r = A(x —vt) (2.62)
f = (2.63)
. (2.64)
t = 7(t—%§~) (2.65)

where v is defined in Eqn.(2.51). The derivation has used Postulates A, B and C. However,
as mentioned above, for the case y = y' = 2 = 2’ = 0 Eqns.(2.62),(2.65) may be derived
from Postulates A and B only.

Finally, in this Section, an alternative derivation of the PVAR is given using only Postu-
late B, and the Reciprocity Postulate. As already noted, Postulate B is verified if the PVAR
lias the trilinear form of Eqn.(2.1).The argument given above to show that the PVAR is
symmetric under the exchange u «» v is easily extended to prove that it is symmetric under

the exchange of any two of u,v,w (see also Ref.[19]). This has the consequence that, in
Eqn.(2.1):

h=0Q2=Q:s=¢ (2.66)
Ri=R,=R;,=R (2.67)
Imposing now the condition that vcs = 0 when vqg = vep (the Reciprocity Postulate) gives:
P—-vigR=10 (2.68)
Since Eqn.(2.68) must hold for all values of v4p then
P=R=0 (2.69)
Using Eqns.(2.66), (2.67), (2.69) the PVAR may be written:

vag +vBc +vea + =vapvpevca =0 (2.70)

Q
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From dimensional analysis of Eqn.(2.70) it follows that:

Q 2
ki (2.71)
where V' is a universal constant with the dimensions of velocity. From the definitions of u, v,
w given above, and using again the Reciprocity Postulate, Eqn.(2.70) becomes identical to
Eqn.(2.40) or (2.42) according as the plus or minus sign respectively is chosen in Eqn.(2.71).
The argument given above, using the Uniqueness postulate (Postulate B) then eliminates the
solution with the minus sign. Finally it may be remarked that if the Reciprocity Postulate
is regarded, as is often the case in the literature, as ‘obvious’ it would follow that the
PVAR has been derived here purely from Postulate B, i.e. without recourse to the Special
Relativity Principle itself. In fact, as shown here and in Ref.[18], the Reciprocity Postulate
is actually a necessary consequence of the Relativity Principle and other postulates (space-
time homogeneity and spatial isotropy in Ref.[18], the Relativity Principle and Uniqueness
in the present paper).

3 Kinematical Consequences of the Lorentz Transfor-
mation

Introducing the notation s = Vt, the Lorentz Transformation in Eqns.(2.62) to (2.65) may
be written in the form:

e = Az Bs) (3.1)
F (3.2)
2 = 3 (3.3)
S = (s~ Ba) (3.4)

where

v |

v SR

The four component quantity X = (s;z,y,2) is a 4-vector [22] whose ‘length’ rx is defined
by the relation:

B

rd = Vit =% — 2% —y? - 2P (3.5)

As may be shown directly, using Eqns.(3.1)-(3.4), Eqn.(3.5) is invariant under the Lorentz
Transformation S — S’ corresponding to the replacement [23]:

(s;z,y,2) — (8529, 2)

The quantities rx, 7, with dimensions of length and time respectively, defined in Eqn.(3.5)
thus have the same value in all inertial frames, i.e. they are Lorentz invariant.

Consider now a physical object of Newtonian inertial mass (referred to subsequently
simply as ‘mass’) situated at the space-time point X in S and moving with an arbitary
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uniform velocity @ in that frame. Suppose that the object is at rest at the origin of the
inertial frame S”. Using Eqn.(3.5) in the frame S”, it follows that if ¢” is the time at the
object as observed in S” then:

o=t (3.6)

That i1s the Lorentz invariant time 7 is the proper time (the time in its own rest frame) of
the physical object. A new 4-vector p may now be defined as:
dX
=m— 3:7
p e (3.7)
Because 7 is Lorentz invariant p transforms in the same way under the Lorentz Transfor-
mation as X [24]. Indeed this is the property which defines, in general, a 4-vector. Thus p’
observed in S’ is related to p observed in S by :

Py = v(pz — Bps) (3.8)
Py = Py (3.9)
p. = p: (3.10)
Py = v(ps — Bp:) (3.11)

By considering the Lorentz Transformation parallel to 4, the infinitesimal time increments
ot and 67 are related by the expression:

ot = 4,67 (3.12)

where
1

Using Eqns.(3.7), (3.12) and taking the limits as ét, é7, 6z, — 0O:

Bu

I

<|=

dx dx ol
pr = ma; — mq*ua = Tt (3.13)
Py = MYUy (3.14)
pP: = Mul, (3.15)

dt
ps = mV—=myV (3.16)

dr

Analagously to ry, the length of p, r,, is defined as:

re = p) - pr —py — p; = mPVi(l = B) = m?V? (3.17)

The mass m is then proportional to the length r, of the energy momentum 4-vector p and
U = (7.V; Ytz Yully, Yuliz) 1s also a 4-vector, the relativistic generalisation of the velocity
vector of classical mechanics. Introducing the definitions:

2 —

P = pi+p,+p (3.18)
E = Vp, (3.19)
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then Eqns.(3.13)-(3.17) lead to the relations

1%
B = & (3.20)
E
T = (3.21)
E? = p*V? 4+ m?Vv? (3.22)

To see the connection between p, E and the physical quantities of Classical Mechanics,
consider the limit where u < V ie. 3, < I:

L
=My = mu(1-+——2-ﬂi+...) (3.23)
~ mu = pM) (3.24)
2
5 27,2 27v/4 % . ) P
E=pV +m*Vh2 = mV*1+ s +...) (3.25)
2
~ mVie By ™) (3.26)
2m

Here p™), T(V) denote the Newtonian momentum and kinetic energy respectively. The
success of Newtonian mechanics in the everyday world then indicates that V must be very
large as compared to the typical velocities encountered on the surface of the earth. The
physical meaning of the relativistic energy E is given by setting p = 0 in Eqn.(3.22):

Eo=E(p=0) = mV? (3.27)

This equation states the equivalence of mass and energy. The mass m of a physical object ts
equivalent to its relativistic energy in its own rest frame Eq .

As a consequence of the conservation of relativistic momentum p = (p;, py, p.) the rel-
ativistic energy E, defined in Eqn.(3.19) is also a conserved quantity. Suppose that an
ensemble of N physical objects with energy-momentum 4-vectors p*'V , ( = 1,2,..N) in-
teract in an inelastic way so as to produce a different ensemble of M physical objects with
energy-momentum 4-vectors p#°UT | (j =1,2,..M). Define 4-vectors P, P, AP as:

P = ip‘?”" (3.28)
i;fl
P = Yy pot (3.29)
=1
AP = JP—P (3.30)
Momentum conservation gives:
APy = AP, =AF, = (3.31)

Applying the Lorentz Transformation Eqn.(3.8) to AP, :
AP, =~v(AP, — BAP;) (3.32)
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In order that AP, is zero for arbitary v,  (i.e. that momentum is always conserved in the
frame S’) it follows that AP; = 0. Use of Eqns.(3.28-3.30) and (3.19) gives:

N M

S ENN = ¥ pioUT (3.33)

1=1 1=1

so that conservation of relativistic energy, E, is a consequence of the conservation of rela-
tivistic momentum.

Another, related, conserved quantity is the Lorentz invariant common ‘effective mass’ of
the N incoming or M outgoing physical objects, defined by the relation:
MY Vi=Pl—pPP—pPl—pP}=P!— P} Pl P} (3.34)

In a way analagous to Eqn(3.27) for a single physical object, M,y is equivalent to the total
energy in the overall centre-of-mass system, where:

Z P:,IN — Z PJ.OUT =0
1=1 1=1

so that:
N Mo '
Y Eg™ = > EFOUT = M, V? (3.35)
=1

i=1

By using the Lorentz Transformation for energy-momentum 4-vectors Eqns.(3.8)-(3.11),
and the conservation laws of relativistic energy and momentum, it is not difficult to de-
vise simple particle physics experiments to determine the velocity parameter V. Two such
examples follow:

(1) A proton with measured velocity vy collides with a proton at rest. The recoil and
scattered particles are required to have momentum vectors making equal angles 8 with
the direction of the incoming proton. V' is then given by the relation:

_ vyn[cos® 8 + cos 20]
2 cos 0/ cos 20

For example, with v;xy = 0.5V | (proton momentum of 541 MeV/c, assuming that
V = c¢) then 0 = 43.93°.

(3.36)

(i) An annihilation photon from a para-positronium atom at rest Compton scatters on a
free electron. The recoil electron and the scattered photon have momentum vectors
making equal angles with the incoming photon direction. If Bour = vour/V where
vouT 18 the velocity of the recoil electron, then:

1+ Bour
V1= Bbur

Solving Eqn.(3.37), 1t is found that:

=2 (3.37)

¥ o= 1.41'21)()(11 (3.38)
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For any physical object whose relativistic momentum is much larger than the equivalent
of its mass:

p>»mV (3.39)
it follows from Eqns.(3.20),(3.22) that:

u~V (3.40)

all highly relativistic objects, in the sense of Eqn.(3.39) then have a velocity slightly
smaller than, but very close to, V. This has been demonstrated here for such objects
in observed from the frame S. It was shown in the previous Section however, by use of the
PVAR, that the sameis true in all inertial frames. A special case of Eqn.(3.40), corresponding
to exact equality, 1s a massless particle, such as a photon or a neutrino, when:

be=Veae (3.41)

If photons are massless particles then Einstein’s second postulate has indeed been shown
to be a necessary consequence of Postulates A, B and C. However, as previously pointed
out [25], the actual value of the photon mass is an experimentally determined parameter
(26], like the mass of any other particle. If it is admitted that the photon may have a
non-zero mass, smaller than the experimental upper limit, then, for sufficiently low energy
photons, Einstein’s second postulate would no longer hold, and so his derivation of the
Lorentz transformation would not, in this case, be valid. No such restrictions apply to
purely kinematical derivations, such as those originally reported in Ref.[9], or that presented
in the present paper.

It may be objected that the 4-vector definition in Eqn.(3.7) makes no sense if m = 0,
as in this case the rest frame S” of the particle cannot be defined. Actually, however the
quantity 4,m which occurs as a factor in all the components of p (see Eqns.(3.13) -(3.16))
has a finite limit as m — 0, 7, — oo. Using Eqns.(3.20),(3.22) one obtains:

Yullt = m[l_,@ﬁ]_%

72 .2 -
I PR 4 S
V2p2+m2v4

LS

(ST

p2
= [W + m2] (3.42)
The right hand side of Eqn.(3.42) is finite as m — 0. It is crucial in discussing the massless
limit of Eqn.(3.42) that m is identified with the Lorentz invariant Newtonian inertial mass.
As emphasised by Okun [27] many texts and popular books on Special Relativity still
introduce a velocity dependent mass [28] that is, in fact defined as the quantity on the left
hand side of Eqn.(3.42). One then arrives at the somewhat paradoxical conclusion that the
relativistic mass of an object whose Newtonian mass is zero, is not zero. In fact, for highly
relativistic objects, the ‘relativistic mass’ is simply equal to p/V, an already well defined
kinematical quantity, so that the use of the term ‘relativistic mass’ becomes redundant. In
all cases, (and, suprisingly, in contradiction with what is claimed in Ref.[28]), the physical
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meaning of the equations of relativistic kinematics is much more transparent when only the
Newtonian inertial mass is used in them [27].

A simple conclusion on the nature of light, and its relation to all other physical objects
existing in nature can now drawn. If photons are indeed massless ( or effectively massless in
the sense of Eqn.(3.39) ) objects moving with constant momentum according to Newton’s
First Law, then:

(1) The ‘aether’ becomes completely redundant. Since light is not (any more than any
other physical object in motion) a wave phenomenon in the classical sense, then no
wave-carrying medium is required. The Wave Theory of Light in the 19th Century,
and the confusion over ‘wave particle duality’ in the early part of the 20th, arose
because the mathematical description of large ensembles of photons, each of which is
individually described by the laws of Quantum Mechanics, has a structure very similar
to that of transverse waves in a classical medium. The mathematical descriptions are
isomorphic even though the physical systems are quite distinct. This point is further
elaborated elsewhere [29].

(2) The counter-intuitive nature of the PVAR, which, as Einstein realised, (see for example
the popular book referred to in Ref.[12]) is a major stumbling block for the understand-
ing of Special Relativity, is not due to some specific and mysterious property of light,
as seems to be the case when it embodied in Einstein’s second postulate, but a prop-
erty of the geometry of space-time that relates observations of all physical objects with
p > mV. This fact may appear just as mysterious. It is, however, an inevitable logical
consequence of simple, apparently self-evident, postulates such as those used above or
in other purely kinematical derivations of the Lorentz Transformation.

4 Comparison with Previous Werk and Conclusions

The literature on the derivation of the Lorentz Transformation is vast (see Ref.[2] of Ref[18§]
for a partial list of work published before 1968). Here only a brief survey of some more recent
work is presented to put in perspective the derivation given in the present paper. Firstly, a
list of the different postulates that have been used in the literature is given. The postulates
used in several different derivations are then presented in Table I. For reference, Einstein’s
derivation of 1905 is included as the first entry. The other derivations in Table I do not make
use of Einstein’s second postulate.

The postulates, and the abbreviation by which they are referred to in Table I are:

e The Special Relativity Principle (SRP)
e The Reciprocity Postulate (RP)

e Space-Time Homogeneity (STH)
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e Spatial Isotropy (SI)

e Relativistic Transverse Momentum Conservation (TMC)
e The Group Property (GP)

e Relativistic Mass Increase (RMI)

e The Constancy of the Velocity of Light (CVL)

e The Sign of the Limiting Velocity Squared (SLV2)

e The Causality Postulate (CP)

e The Uniqueness Postulate (UP)

It can be seen from Table I that all authors cited require the Relativity Principle. Simi-
larly, all authors, prior to the present paper, require Space-Time Homogeneity. It has been
shown [25, 30, 34] that this requires the Lorentz Transformation to be linear. Since Einstein
assumed linearity, without proof, Space-Time Homogeneity is included among Einstein’s
necessary postulates in Table I. In the present paper it is shown that the linearity of the
Lorentz Transformation (Eqns.(2.8),(2.13)) follows from the Uniqueness postulate and the
definitions (Eqns.(2.4),(2.11) of relative velocity alone, i.e. no explicit postulates on space-
time geometry are required. All the derivations in Table I require, however, Spatial Isotropy
to derive the Lorentz Transformation for space time points lying outside the z, z’ axis. Since
the Reciprocity Postulate has been shown [18] to be a consequence of the Special Relativity
Principle, Space-Time Homogeneity and Spatial Isotropy, it is not included in Table I as
these three postulates are included in all the derivations cited, except that of the present

paper.

The postulates of Constancy of the Velocity of Light, and Conservation of Relativistic
Momentum used in Refs.[1,31] respectively are ‘strong’ consequences of the Lorentz Trans-
formation that must be guessed or derived directly from experiment. If the Group Prop-
erty [35] of the transformation is used, as in Refs.[9,25,30,32] then such strong postulates are
not necessary. The present paper gives however a counter example to show that the Lorentz
Transformation may be derived, in the absence of strong postulates, without assuming the
Group Property. The remaining postulates cited in Table I ( Relativistic Mass Increase, Sign
of the Limiting Velocity Squared, and the Causality Postulate) are introduced to circumvent
a problem which arises in all derivations that do not use Einstein’s second postulate. For
dimensional reasons, a constant with the dimensions of velocity squared must occur in the
equations (Eqn.(2.36) in the present paper), but its sign is not specified. One choice leads
to the Lorentz Transformation, when the constant is identified with ¢2, the other to another
transformation (Eqns.(2.41),(2.42)) which, apparently, has unphysical properties. For exam-
ple, there is no limiting velocity and the sum of two finite velocities may yield an infinite
result. There are then two possible approaches to select the solution corresponding to the
Lorentz Transformation:
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I Author | Ref. || SRP | STH [ SI | TMC | GP | RMI | CVL | SLV2 | CP [ UP |
Einstein (1] Y Y |Y| N N N Y N N | N
Terletski BIl Y | Y |[Y| N |[Y| Y | N | N [ N[N
Weinstock (31] Y Y |Y Y N Y N N N | N

Lee and Kalotas || [32] || Y ¥ | X N Y N N Y N [N
LévyLeblond | (]| Y | Y |[Y| N | Y| N | N | N [Y [N
Sen B3] | Y Y |[Y| N N N N Y N | N

This paper ~ Y | N|Y| N ([N| N | N N [N]JY

Table 1: Postulates required for different derivations of the Lorentz Transformation. Y =
‘YES’ (postulate used) , N = ‘NO’ (postulate not used). See the text for the definitions of
the postulates. All derivations except that of this paper and Lévy-Leblond also assumed the
Reciprocity Postulate. Since however the latter has been shown (18] to be a consequence of
SRP, STH and SI which are assumed in every case in these derivations it is omitted from
the list of required postulates in the Table.

(i) Reject the undesirable solution on the grounds that it is ‘unphysical’. This is denoted
by SLV2 in Table L.

(i1) Introduce another postulate that has the effect of rejecting the ‘unphysical’ solution.

This is the case for ‘Relativistic Mass Increase’ in Refs.[30,31] and the ‘Causality Postulate’
in Ref.[25]. In fact the ‘unphysical’ solution is not a single valued function of its arguments,
so it is rejected, in the present paper, by the Uniqueness Postulate.

The recent derivation of Sen [33], based on an ingenious gedankenexperiment involving
three parallel-moving inertial frames is remarkable in that it uses neither strong postulates
nor the Greup Property. However both the Reciprocity aud SLV2 Posiulates were used. in
fact if the derivation of the PVAR by Mermin [19] (also based on a sophisticated gedanken-
experiment ) and the subsequent derivation of the Lorentz Transformation from the PVAR
by Singh [20] are combined, the same set of postulates as used by Sen (the Special Relativity
Principle, the Reciprocity Postulate, Space-Time Homogeneity, Spatial Isotropy, and the
Sign of the Limiting Velocity Squared) are invoked.

It is clear that the Uniqueness Postulate replaces the STH postulate of previous deriva-
tions, that requires the transformation equations to be linear. Indeed in the direct derivation
of the Lorentz Transformation above the UP in the form of the trilinear equation (2.3) yields
immediately, on applying the condition of constant relative velocity, Eqn.(2.4), linear trans-
formation equations. Uniqueness does not however imply linearity of the PVAR. The final
equation (2.70) here retains the trilinear form of the initial anstaz Eqn.(2.1). Writing the
relative velocities as derivatives of the form éz/ét it can be seen that the PVAR js in fact
the ratio of two linear space-time transformation equations for ér and 6t.

The argument used in this paper to reject the solution with —V? in Eqn.(2.35), the
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non single-valued nature of Eqn.(2.42) for particular choices of u and v, replaces the SLV2
assumption of say Sen [33], which rejects the solution rather because a singular result is
obtained for the same choices of u and v. The economy of postulates obtained in the
derivation presented in this paper is a consequence of the fact that the UP replaces the
space-time postulate STH and also requires rejection the —V? solution.

The Uniqueness postulate is actually implemented by assuming a multilinear form of the
equations (trilinear in Eqns.(2.1),(2.3); quadrilinear in Eqn.(2.55) ). This is however not
even a sufficient condition that the PVAR is single valued [17]. Indeed Eqn.(2.42) is trilinear
but does not, in all cases, give a unique solution for w. All that has been shown is that a
single valued multilinear solution can be found that is completely determined by consistency
with the remaining postulates ( effectively RP only, equivalent, as shown in Section 2 above,
to SRP and UP). The interesting but unaswered question that remains is whether a single-
valued solution can be found that does not have a multilinear form, i.e. are the Lorentz
Transformations and the PVAR of Special Relativity the only solutions consistent with the
inital postulates.

Inspection of Table I shows that the minimum number of postulates necessary to derive
the Lorentz Transformation before the present paper is four, actually the same number that
Einstein required for his original derivation. The new derivation presented here requires, in
general, only three postulates and for the limited class of space-time points lying along the
common z, x' axis of the frames S, S’ only two postulates the Special Relativity Postulate
and the Uniqueness Postulate are sufficient.

By developing the kinematical consequences of the Lorentz Transformation it has been
shown that, for consistency with Classical Electrodynamics, light must be described by par-
ticles whose mass-equivalent is much smaller than their energy. That this conclusion follows
from the Lorentz Transformation alone was pointed out, though not explicitly demonstrated,
in Ref.[25]. Finally a remark on Pauli’s discussion of kinematical derivations of the Lorentz
Transformation [36]. Pauli pointed out that the Lorentz Transformation may be derived
from the Group Property, the Reciprocity Postulate and the Special Relativity Postulate in
the form of Postulate A used here, but applied only to length measurements [37]. He also
states that ‘From the group theoretical assumption it is only possible to derive the transfor-
mation formula but not its physical content’. In fact it has been demonstrated above that
the physical content of the Lorentz Transformation actually does becomes transparent when
its kinematical consequences are developed in detail, as in Section 3 above. In particular, the
interpretation of V' as the universal limiting velocity of any physical object is quite general,
while the identification ¢ = V for light leads naturally to the particle description of the
latter.
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