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Squeezed Variances of Smeared Boson Fields

By Reinhard Honegger and Alfred Rieckers

Institut fir Theoretische Physik, Universitat Tibingen,
D-72076 Tibingen, Germany

(27.111.1996, revised 11.VII.1996)

Abstract. Our previous investigations on squeezing Bogoliubov transformations in the smeared field
formalism are continued. After a short introduction into the usual form of squeezing operations in
quantum optics the rigorous version is formulated first in terms of certain quasifree automorphisms
on the C*-Weyl algebra over a testfunction space of arbitrary dimension, and then as their dual
transformations on the abstract state space. For selected classes of states the fluctuations are
determined before and after such a transformation, and a general definition of a squeezed state
is proposed. Especially for quasifree, classical, and coherent photon states detailed estimations
for their transformed fluctuations are elaborated using a spectral theory of the general squeezing
operator. Explicit criteria for non-classicality are specified and applied to squeezed white noise
and other Gaussian states. It is shown, that strong squeezing of one-mode Gaussian states leads
to mixed non-classical coherent states.

1 Introduction

There are various indicators to reveal a multi-photon state as a non-classical one, such
as the negative P-functions, anti-bunching for the correlation functions, or sub—Poissonian
counting distributions. Here we concentrate on the squeezed variances of the field operators,
for which there exists an extensive experimental material in terms of phase—sensitive noise
measurements (cf. e.g. [1] and references therein).

For the convenience of the reader let us recall that the theory of squeezing evolved
from rather simple canonical transformations for the one-mode field (with annihilation and
creation operator a resp. a* for this single mode) of the following form

b = pa + va', (1.1)
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determining the transformed annihilation operator b, [2]. That the transformation (1.1)
indeed is canonical, i.e., b and b* = Jia* + Ta satisfy the canonical commutation relations
(CCR), requires

2
|

= =1 (1.2)

for the complex numbers p and »v. This condition yields the decomposition
p = exp{—ip} cosh(s), v = exp{i(yx + ¥)} sinh(s) (1.3)

with a unique s > 0 and two unique phases ¢, ¥ € [0,27[. Other but equivalent forms of
one-mode squeezing have been given by [3] and [4].

A special importance was also given to two-mode transformations in the non-degenerate
(different frequencies for the idler and the signal field) and in the degenerate case (equal
frequencies) (cf. e.g. [5] and references therein). Since both forms can be transformed into
each other (as shown in the Appendix A.1; cf. also [6]), let us present a typical multi-mode
squeezing transformation in the degenerate version only, where its generator has the form

] nt -
Hoq = 5 (Gaa'(en)a’(en) + Cralen) alen)). (1.4)
n=1

Here a*(e,) is the creation and a(e,) the annihilation operator of the mode e,. For con-
venience let us consider finitely many orthonormalized photon modes {e;,...,ex}, which
span the one-photon testfunction space E with the scalar product (. |.). The squeezing
parameters (, are complex coefficients (with complex conjugates (,), which in experimental
realizations incorporate some classical, macroscopic pumping fields.

The squeezing Hamiltonian Hy, leads to the canonical transformation, which is given for
the n-th mode, more exactly, for the annihilation operator a(e,), by

exp{itHs,} a(e,) exp{—itHsq} = cosh(t|(,|)a(en) + o sinh(t|Gal) a®(en) . (1.5)

.A-’
which is a multi-mode version of (1.1). If f = ¥ (e, | f) e, decomposes the arbitrary
n=1

(non-monochromatic) mode f € E into the (possibly monochromatic) modes e,, then the
multi-mode squeezing in the smeared field formalism! takes the form

exp{itHi} a(f) exp{—itHw} = a(Tif) + a*(T.f). (1.6)

where here T; and T, are the (complex—) linear resp. (complex-) anti-linear operators?

N N
Tf = z_: cosh(t [Cal) (en | f) en, T.f = Z Tg:—, sinh(t|(al) (f | en)en.  (1.7)

'The creation and annihilation operators “smeared” by the testfunction f € E are given as a*(f) =
Zle(en | fya™(en) resp. a(f) = Zfﬁ(en | Halen), where f = EHNZI (en | f)en decomposes according
to the orthonormal basis {e),...,en} of E. a(f) and a*(f) are adjoint to each other. The mapping
E 3 f = a*(f) is complex-linear, E 3 f + a(f) is complex-anti-linear, and the CCR write as [a(f),a(g)] =
[a*(f),a*(g)] =0, and [a(f),a*(g)] = (f | g) 1 for all testfunctions f,g € E.

?The scalar product (. | .) is supposed to be right linear, i.e., the mapping E 3 f — (g | f) is (complex-)
linear and E 3 f— (f | g) is (complex-) anti-linear for each g € E.
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Introducing the positive selfadjoint operator S and the anti-linear involution J on E by

-
§ = ;'Cnuen)(enl, Jen = Sen Wne{l,...,N},
we arrive at the operator formulation of the equations (1.7): 7; = cosh(tS) and T, =

Jsinh(tS). Their addition gives the real-linear operator
T = exp{tJS} = cosh(tS) + Jsinh(tS), (1.8)
which turns out to be a symplectic transformation on E, since

Im(Tf|Tg) = Im(flg) VfgekE. (1.9)

Let us denote by ar the canonical transformation from (1.5) resp. (1.6), that is,
ar(A) = exp{itHs} A exp{—itHsq} for every field observable A. (1.10)

Then (1.6) rewrites, resp. ap acts on the field operator ®(f) = 2=Y2(a(f) + a*(f)), as

ar(a(f)) = a(Tif) + " (Tuf), or(®(f) = &(Tf), feE. (1L11)

It is well known that each (real-linear) symplectic transformation 7" on an arbitrary
(finite resp. infinite dimensional) one-photon testfunction space E, lifts to a canonical trans-
formation ap (also called Bogoliubov transformation) on the photon field algebra — the
CCR-algebra over E — satisfying (1.11). The remarkable fact derived in [7] is that every
symplectic transformation 7" has a unique (polar) decomposition of the form (1.8), more
exactly,

T = U(cosh(S) + Jsinh(S)) (1.12)
with a unitary U, and a selfadjoint positive S commuting with the anti-linear involution J.

Let us, for example, identify the symplectic transformation T" on the one-dimensional
one-photon space E = Ce; (spanned by the single photon mode e;) corresponding to the
canonical transformation (1.1) with a = a(e;). With (1.3) T is given by

T(ze)) = (hz+vZ)e = exp{ip} (cosh(s) z + exp{id} sinh(s)z)e;, Vze C, (1.13)

determining the decomposition (1.12). Condition (1.2) is equivalent to the symplectic rela-
tion (1.9).

If the canonical transformation ar is shifted from the field observables (Heisenberg pic-
ture), to the state space (Schrodinger picture; cf. Subsection 2.3), then it may be applied to
selected photon field states, as coherent or thermal states, and may then produce squeezed
states. For our above finite dimensional E, the photon field states are given by the density
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operators p on Fock space (in virtue of the Stone-von Neumann uniqueness theorem [8]).
Thus the canonical transformation (1.10) writes in the Schrédinger picture as

vr(p) = exp{—ilHs}pexp{itHsy} for every density operator p.

Squeezing operations ar resp. vr could in fact be realized since 1986 by various experi-
mental methods for situations, where some few modes dominate. For multi-mode squeezing
we refer to [5] and [9]. The hitherto presented material has been rigorously derived in [6], [7].
Having so far recalled the most basic features of squeezing (Bogoliubov) transformations, let
us now turn to the purpose of the present investigation.

Although there are rather simple theoretical models for states with squeezed fluctuations,
the experimental developments require more general and refined theoretical methods. In
general the prepared multi-photon states are non-pure and extend over (infinitely) many
modes. Their fluctuations before and after a squeezing procedure are a combination of
classical and quantum-mechanical variances. The effectiveness of a squeezing device can
then no longer be treated by means of explicit mode-dependent analytical calculations but
has to be estimated in a qualitative way. This is without doubt a challenge for mathematical
physics. And the aim of the present work is to contribute to a qualitative squeezing theory,
applicable to general classes of states, which are relevant in quantum optics.

In [10] we investigated under which squeezing transformations some frequently used op-
tical Boson states, namely the quasifree, the classical, and the coherent states, obtain a non-
classical generating function. With the present work we continue this analysis by calculating
and comparing the field fluctuations before and after a Bogoliubov-squeezing transformation.

Our investigation is presented in terms of a rigorous smeared Boson field theory, which
is based on an arbitrary one-Boson testfunction space E, a complex pre-Hilbert space.
The choice of E determines the specific Boson system and the number of modes taken into
account. In this way both finitely and infinitely many field modes are covered. For massive
Bosons with spin s, E is a subspace of L?(A) ® C**!, where A C IR? is the quantization
volume in position space. For photons the quantization procedure in the Coulomb gauge

leads to a testfunction space E consisting of square-integrable, divergence—free functions
f:A— €11, [12), [13].

For the description of the Boson field states the technique of generating functions is used
(cf. Subsection 2.1). These characteristic functions (in symmetric ordering) are independent
of any Hilbert space representation of the CCR, and are (for an finite dimensional E) closely
related to the W (or Wigner-), P—, and Q-representations of photon states w [12], [14],
[6], which is exhibited in the Appendix A.2. The characteristic function C,(f) = (W (f)).,
f € E, of the Boson field state w is the expectation of the smeared Weyl or displacement
operator W (f) = exp{i®(f)} and contains all statistical informations about the distribution
of the field observables ®(f) = 27'2(a(f) + a*(f)). Especially in QED the observables of
the magnetic and electric field are summarized into the smeared field expressions ®(f) with
(complex) testfunctions f € FE, and the expectation values of the products of the field
operator ®(f) for the photon state w are obtained by differentiating C,,(¢f) with respect to
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the real parameter ¢ in a similar way as in classical probability theory. Most importantly,
the field variances Var(w; f) := (A®(f)?), for each testfunction f € F are obtained as
Var(wi /) = (B(/))a — (8% = (4%40| )’ — L]

Bogoliubov transformations are in one-to—-one correspondence with the (real-linear) sym-
plectic transformations on the testfunction space E (cf. the considerations above and the
Subsections 2.2 and 2.3). Since for the symplectic T the associated Bogoliubov transforma-
tion in the Schrédinger picture is the affine bijection vy on the state space of the Bosonic
C*-Weyl algebra W(E), one has C,.()(f) = Cu(Tf) Vf € E for the characteristic func-
tion of every Boson state w and its Bogoliubov transform vr(w). This relation between the
characteristic functions allows for the calculation of the field variances of the Bogoliubov
transformed vp(w) from those of the original state w (cf. Subsection 2.4).

The squeezing concept in the smeared field formalism is introduced in Subsection 2.5. Let
us emphasize here that the smearing is not only indispensable for a mathematical definition
of the field operators, but provides us in this connection via the testfunctions also with those
notions, which express the relevant fluctuation aspects of a squeezing procedure. In physical
experiments and theoretical applications only a limited range of testmodes is taken into
account, which is assumed (without restriction of generality) to be a real- or complex-linear
subspace F of E. That is, every manifestation of the field fluctuations is realized through
an I -window, which is given by the experimental or theoretical possibilities. Thus, the
altered fluctuations by a squeezing device are also realized through this F-window, which in
general is wider than a one-mode test space and smaller than the entire mode space E. Our
general definition of squeezing is adapted to this F'~dependence and compares the minimal
fluctuations before and after a change v in the state preparation as they appear through
this F~window. In the definition of F'-squeezing nothing is said about the origin of a possible
diminishing of fluctuations, and the concept may of course be used also for purely classical
fluctuations. But also for genuine quantum fluctuations F-squeezing may come about by
a mere rotation in the testmode space FE (i.e., T is a unitary transformation on E), as will
be demonstrated by some examples and then has nothing to do with a typical squeezing
operation. Only a refined analysis is capable to identify those squeezed fluctuations which
characterize a non—classical state. A theoretically important special case is of course F' = E.
In this case, and quite generally if T(F) = F, the occurrence of F-squeezing implies always
a non-vanishing anti-linear part 7, # 0 of the real-linear symplectic T

With the polar decomposition (1.12), we split in Subsection 3.1 the symplectic T into a
direct sum T = U(e® @ e™") acting on two orthogonal real subspaces. Here the selfadjoint
positive operator S may unbounded with respect to the norm. This decomposition formula
enables a general and detailed investigation of the squeezing properties for the state w in
terms of (real) Hilbert space methods, whenever the above positive symmetric real-bilinear
form v, for the considered state w is known. Especially, in this way we obtain results
concerning the squeezing of states with bounded fluctuations (i.e., the form v, is bounded)
when we perform an unbounded squeezing transformation T, i.e., with unbounded S.

Classical states are the most easily prepared ones in experiments. For example, the
vacuum and the macroscopic coherent photon states of a maser or a laser are classical [15],
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[16). Also the thermal equilibrium states, the limiting Gibbs resp. KMS-states (with and
without Bose-Einstein condensation), are classical and in addition are quasifree ([17], [8], and
references therein). A classical state here is characterized by the positive definiteness of its

normally ordered characteristic function, which is equivalent to a positive P-representation
(see the Appendix A.2 and Subsection 3.4.2, also [18], [19], [20]).

The squeezing properties of the vacuum state are given in Subsection 3.2. In Subsec-
tion 3.4 we show that the fluctuations of the classical states are always larger than the
vacuum fluctuations. But those of the extremal (that are the pure) classical states agree
with the vacuum variances. Then some estimates concerning the fluctuations for squeezed
classical states are deduced. The squeezing of quasifree states is treated in Subsection 3.5.
Subsection 3.6 is devoted to the squeezing of optical coherent states, which in addition have
bounded fluctuations. Bounded fluctuations for coherent states are equivalent to the square-
integrability of Glauber’s factorizing coherence function [15], [16], [21], [22]. It is found that
the squeezing properties of the coherent states are directly connected with the spectrum
of the selfadjoint S occurring in the decomposition (1.12) of T. Optimal squeezing (here
over the window F' = E) would produce as minimal fluctuations those of the squeezed vac-
uum (subjected to the same squeezing procedure). Whether this optimum can be realized,
depends on the relation between the squeezing operator T' (with rotation U and strength—
spectrum ¢(S)) and the bounded factorizing coherent field function. In Subsection 3.6.2 it is
completely analyzed for which conditions optimal squeezing of a coherent state is achieved.
It is illustrated that these conditions are almost sharp since certain violations of them prevent
optimal squeezing (for certain coherent states).

Even more detailed relations are worked out for a one-parameter family of quasifree
coherent states. Here the original, classical fluctuations determine precisely the squeezing
strength, which is necessary to render the squeezed state non—classical. These results lead
to a refined analysis of squeezed white noise [23].

In the Conclusions (Section 4) some popular criteria for identifying a state as non—classical
are discussed and compared with those derived in the present work.

Let us make some notational remarks. Throughout the paper the one-photon testfunction
space E is a complex separable pre-Hilbert space with norm-completion X and the (right
linear) scalar product (. |.). F* means the orthogonal complement of the subset F' in H
with respect to (. |.). With the real scalar product (. | .) := Re(. | .), the complex Hilbert
space ‘H becomes a real Hilbert space, which in the sequel is denoted by H,. If F C E
is a complex subspace, then dimg(F) denotes its complex dimension, if F is real we write
dimp (F) for its real dimension, especially, dimg(F) = 2 dimg (F') for complex F.

On the one-particle level (on H resp. on H,), there occur complex—linear, complex-
anti-linear, and real-linear operators. “linear” resp. “anti-linear” always mean complex-—
linear resp. complex—anti-linear, and into the notations “operator” and “unitary” we include
complex-linearity on H. Real-linear mappings are always denoted “real-linear operators”
resp. “real-linear unitaries” with respect to (. | .) on H,. B|g is our notation for the
restriction of the real- or complex—(anti-)linear operator B to the subset K of its domain
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D(B), ker(B) means the kernel of B. On the level of the second quantization (C*-algebraic
level), however, we are concerned with complex-linear operators, only.

2 Squeezing Transformations

2.1 Preliminaries concerning the Weyl Algebra

For more details to the present Subsection we refer to 8, Section 5.2]. The C*-algebra of
the Boson system is the Weyl algebra W(E), also called the CCR-algebra over E. W(FE) is
generated by the unitary Weyl operators W(f), f € E, satisfying the Weyl relations

W()W(g) = exp{—% Im(f | @)} W(f+g), W(f) = W(-f), Vfg€eE.

S denotes the convex, weak*-compact state space of W(E). Each element of its ex-
treme boundary 0,S is denoted a pure states. Each w € S is uniquely determined by its
expectations of the Weyl operators, that is by its characteristic function [15)

Co:E—C, fr—Cu(f) = (w; W(f)). (2.1)

A state w € S is called regular, if for each f € E the map R 3 ¢t — C,(¢f) is continu-
ous. In the GNS-representation (IL,,#,,2,) [8, Theorem 2.3.16] of the regular w € S the
selfadjoint field operators ®,(f) := wif-il'lw(W(tf))Itzo, f € E, fulfill the CCR

(®.(f),u(g)] C Im(flg)1 Vi€ E. (2.2)

The map E > f — ®,(f) is real-linear. The annihilation and creation operators, a,(f) :=
V2 (@ (f) +i®,(if)) and a’,(f) := V27 (®u(f) — i®,(if)), associated with w are densely
defined, closed, it is a,(f)* = al(f), f — a,(f) is anti-linear and f — a*(f) is linear. The
CCR for the annihilation and creation operators [a,(f),a%(g)] C (f | g) 1 follow from (2.2).

Y Y w

w € Sissaid to be of class C™, or a C™-state, if R 3 t — C,(tf) is m~times differentiable
for every f € E, where m € INU{co}. If w is of class C*™, then the associated cyclic vector
), is contained in the domain of each polynomial of field operators with degree < m, in
which case one commonly defines

(UJ ; (I)w(fl) e '(Du(me)) = ((I)w(fm) T (I)w(fl)Qw | (Dw(fm+1) T (Dw(me)Qw) .

w is called analytic, if for each f € E the function R 3 t — C,(tf) is analytic in a
neigborhood of the origin. If for every f € E this neighborhood is IR, then w is entire-
analytic.
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2.2 Symplectic Transformations

A symplectic transformation on E is a real-linear, bijective mapping T : E — E satisfying
Im({Tf|Tg) = Im(f|g) Vf,g € E (cf. the Introduction). The group of all symplectic
transformations on E is denoted by T(E).

Since E is a complex vector space the real-linear T' € T(E) uniquely decomposes into
its linear part 7; and its anti-linear part T,,

T=T+T,, T =3}T-iT9), T,=23%(T+iTi.

1 1
2 2

$ om

Observe that the multiplication with the complex “¢” in general does not commute with
the real-linear T. In [7] we derived the polar decomposition (1.12) for T € T(E):

Theorem 2.1 Let T € T(E). Then on H there exist a unique positive selfadjoint operator
S, a unique unitary U, and an anti-linear involution J (that is, J = J* = J~!) unique on

ker(S)*, so that J commutes with S (especially, J(ker(S)) = ker(S)) and
T, = U cosh(S)|g, T, = U Jsinh(S)|k.
Moreover, E is a core for exp{S}, and the following assertions are equivalent:

”

(i) T commutes with the complex “i”, i.e., T is complez-linear,
(i1) the anti-linear part vanishes, T, = 0,
(i1t) T s unitary, T = U,

(iv) the selfadjoint S vanishes, S = 0.

2.3 Bogoliubov Transformations

For each T € T(FE) there exists a (unique)} *~automorphism ag on W(E) with
ar(W(f)) = W(Tf) VfgeE,

which is called the associated Bogoliubov or canonical transformation [8, Theorem 5.2.8].
Its dual mapping v := aF is an affine bijection on the state space S,

(vr(w); A) = (w; ar(A)) YweS VAe W(E).

Obviously, (vr)™! = vp-1, and Cypyy = C,0T forallw € S. Since a symplectic T € T(E) is
real-linear and bijective, the state w € S is regular, of class C™, analytic, or entire-analytic,
if and only if vy(w) is so, respectively.
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2.4 Fluctuations of the Field Expectation Values

For every C?-state w € S the variance (fluctuation) of the expectation value for the field
operator ®,(f), f € E, is calculated in terms of its characteristic function C,

Var(w; f) 1= (w3 ®u(f)?) = (w; Qu(f)? = (4540] ) - £Cn

dt? I':':O )

(2.3)

A C?-state w is called to have bounded fluctuations, if the associated quadratic form E >
f — Var(w; f) is bounded [24],

Var(w; f) < cl|lfI° Vf€E, forsome ¢ > 0. (2.4)

For Bogoliubov transformed states one obviously obtains the relation
Var(vr(w); f) = Var(w;Tf) VfeFE YT eT(E), (2.5)

which allows the calculation of the variances of the transformed state vp(w) from those of
the original C*-state w € S.

From the CCR (2.2) follows the Heisenberg uncertainty principle
Var(wi f) Var(wig) 2 §lm(f )" V¥fg€E. (2.6)

Here we only have to demand w € S to be of class C?, since the relations (2.2) are also valid
in the weak sense [25]. For each real or complex subspace F' C E let us define the infimum
of the variances with respect to F,

InfVar(w; F) := inf{Var(w;f)| f€F, ||fll=1},
and similarly the supremum SupVar(w; F) := sup{Var(w; f) | f € F, ||f|ll =1}. Then the

Heisenberg uncertainty relations (2.6) imply the

Observation 2.2 InfVar(w; F) = 0 implies SupVar(w; F) = oo. If InfVar(w; F) # 0, then we
have InfVar(w; F) SupVar(w; F) > 1 for each complex subspace F C E.

For shortness we adopt in the following the convention, that every state w € S is auto-
matically of class C?, if we investigate its fluctuations.

2.5 General Definition of Squeezing

For the qualification of noise reduction the variances of the field values in the transformed
state vp(w) are compared with those of a reference state ¢. The reference state ¢ usually is
chosen as w itself, or as the (Fock) vacuum state wy,c (cf. Subsection 3.2 below). One also
is interested how the set {Var(w;zf) | z € C, |z| = 1} becomes deformed by transforming
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w with vp. Especially the variances associated with conjugate pairs, ®,(f) and ®_(if)
(quadrature components), f € E, of the state w and those of the transformed state vp(w)
are considered.

We assume that before and after the squeezing procedure the field is observed by a
detector sensitive in the same testmodes. Or, spoken as in the Introduction, the detection of
w and vp(w) is realized by the same F~window. These observable modes are summarized into
theset {f € F | ||f]| = 1} with F a real or complex subspace of E. The normalization of the
testfunctions is necessary for comparison reasons (which is in analogy to the mathematical
definition of the norm of a bounded operator on a Banach space).

We propose the following definition of squeezing using the original state for itself as
reference state, respectively fixing an F'-window.

Definition 2.3 (Squeezing) Let T € T(E). For a (C?-) state w € S we say:

(a) The state w is squeezed by vr in the testmode f € E, if
Var(vr(w); f) < Var(w; f).

(b) w is effectively squeezed by vr in the subspace FF C E, or simply F-squeezed, if
InfVar(vr(w); F) < InfVar(w; F).

If the variance Var(vr(w); f) is smaller than Var(w; f), in many cases the conjugate variance
Var(vr(w); i f) becomes larger than Var(w;if) in virtue of the uncertainty relation (2.6).

Let us first demonstrate that the squeezing effect essentially arises from the anti-linear
part T, of the associated symplectic transformation 7.

Assume T € T(FE) with T, = 0. Then by Theorem 2.1 T acts unitarily on E. Con-
sequently, {Var(vr(w); f) | f € E, [If]l = 1} = {Var(w: f) | f € E, ||f]| = 1} for every
state w £ S, and one has no effect, if ore is interested in all testmodes simultaneously (i.e.,
E-squeezing). However, for T, = 0 one may obtain F-squeezing, when in the state w some
variances of the T-transformed testmodes T'(F') are smaller than the variances of the non-
transformed modes F' (see Example 3.12 below). For a real or complex subspace FF C F
with T'(F) = F, however, F-squeezing by v is impossibie for T, = 0.

Proposition 2.4 Let I be a real or complex subspace of E and T € T(E) with T(F) = F.
If w € § is F-squeezed by vy, then T,|p # 0, or equivalently F N ker(S)* # {0} for the
positive selfadjoint S occuring in the decomposition of T by Theorem 2.1.

PROOF: Assume T,|p = 0. Then by Theorem 2.1 F C ker(S), and thus ||Tf|| = ||f|| Vf € F.
Equation (2.5) now implies {Var(vr(w); f) | f € F,|Ifll = 1} = {Var(w; f) | f € F,||f]| = 1}, which
is a contradiction to the supposed F-squeezing of w. A

From the above Proposition it especially follows, that E-squeezing by vr is always a con-
sequence of a non-vanishing anti-linear part of 7. But, on the other hand, also for T, # 0
there exist some states on W(E) which are not E-squeezed by vr (see Example 3.13).
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3 Field Variances in Squeezed States

Throughout the present Section (up to Subsection 3.6.3) we suppose a fixed (but arbitrary)
symplectic T € T(FE) with the polar decomposition T = U(cosh(S) + J sinh(S)) from
Theorem 2.1. The spectrum of S # 0 is denoted by ¢(S), and if S is unbounded, we
put ||S]| := oo, writing then exp{—2]|S||} = 0 and exp{2||S]|} = oo.

3.1 Decomposition of Testfunctions

The involution J is a real-linear selfadjoint unitary on the real Hilbert space H, (recall, H,
is the completion H of E, equipped with the real scalar product (. |.) := Re(. | .)) with the
eigenvalues +1. The associated (real) eigenspaces H. are given by the

Lemma 3.1 The orthogonal eigenspaces Hy for J (with respect to (.| .)) are given by
Hy = {feH|Jf=%f} = {h+Jh|heH},

especially, H, = Hy @ H_. If P, are the orthogonal (with respect to (. | .)) real-linear
projections from H, onto Hy, the spectral projections for J, then Pif = 2(f + Jf) and
P _f= %(f — Jf) for all f € H,. Moreover, it is H_ =1H, and P_i = iP,.

Since S and J commute, it follows that the real-linear P. commute with the (complex-
linear) spectral projection Es(B) of S for every Borel subset B of IR. Especially exp{£S}
leave H, and H_ invariant.

The symplectic T € T(E) is a real-linear closable operator on the real Hilbert space H,,
[7]. Obviously, its closure T = U(cosh(S) + Jsinh(S)) decomposes according to the direct
sum H, = H. ® H_ as

T = U(exp{S}|u, ® exp{-S}|u_) = U (exp{S} P, + exp{-S} P_) , (3.1)
which implies | Tf||* = |lexp{S} P, f|I* + ||exp{—S} P_f]|* for all f € E.

From equation (3.1) it immediately follows that

T = (exp{=S}|u, ® exp{S}|u_) U’lp = (exp{—S} P + exp{S} P_) U"

g, (3.2)

which is in accordance with the relations (T!), = T
resp. anti-linear part of T~! € T(E) known from (7.

g and (T1), = —T;|g for the linear

Proposition 3.2 Let w € § have bounded fluctuations (cf. equation (2.4)). Then ||S|| = oo
implies InfVar(vr(w); E) = 0.
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PROOF: With the equation (2.5) we obtain 0 < Var(vr(w); f) = Var(w; Tf) < ¢||Tf||>. Since E
is a core for exp{S} (by Theorem 2.1) it follows from equation (3.1) that inf{||Tf|| | f € E, ||fl| =

1} = inf{|le SP_f|| | f € H, ||f]| = 1}, which gives the result. [ |

Corollary 3.3 Let ||S|| = oo. Suppose E to be a core for exp{(1 + 7)S} for some 0 < 7 < 1
and U*(E) C D(exp{rS}). Then for the C?-state w € S with Var(w; f) < c|lexp{rS}U* f||?
Vf e E for some ¢ > 0 we have InfVar(vr(w); E) = 0.

PROOF: Is analoguously to the proof of the foregoing Proposition. |

3.2 Squeezing of the Vacuum

The characteristic function Cy,. of the vacuum state wy,e € S is given by [8, Subsection 5.:2.:8]

Coclf) = (wac; W(f)) = exp{-}IfI’} Vf€E. (3.3)

The vacuum fluctuations are the variances of the field values for the vacuum state wy,.. With
formula (2.3) they are easily determined to be

Var(wee; f) = LIFI°, f€EE. (3.4)

Equation (2.5) gives the variances for the Bogoliubov transformed vacuum state vp(wyac)

Var(vr(wae): f) = 3ITfIP,  fEE.
For the E-squeezing properties of the vacuum we have the

Proposition 3.4 The minimal squeezing fluctuation is
InfVar(vr(wvac); E) = 5 exp{-2]|S||},

which is strictly smaller than the vacuum fluctuations InfVar(wyae; E) = %, if and only if
S # 0, or equivalently, if and only if T, # 0.

Furtheron, SupVar(vr(wvac); E) = 5 exp{2||S||}, which agrees with Observation 2.2.
PROOF: The spectral calculus for the positive selfadjoint operator S gives ||e5 f|| > || f]| = [le=° f]|.

But by equation (3.1) we have inf{|Tf|| | f € E, ||fll = 1} = infl|le"SP_f|| | f € H, ||f]l = 1},
and sup{||Tf||| f € E, ||f|| = 1} = sup{||le° P f|| | f € D(e®), ||f|| = 1}, which gives the result.
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3.3 Fluctuations and Normally Ordered Characteristic Function

The normally ordered characteristic function P, : E — € of a state w € § is defined by
P, 1= Cpflhse, 18, Plf) = exp{% [|f||2} C.(f) Vf € E. For an entire-analytic state w, the

function P, decomposes in terms of the normally ordered expectations <w; a;(f)"aw(f)’>,
o /i \ 1

Bl = — | = = {(w;a (a.(f)), 8.5

0 = T (%) @@ licwraw) 35)

which converges absolutely for every testfunction f € E [15]. For finite dimensional E, the
function P, is directly connected with the P-representation (see Appendix A.2, [12], [14]).

If w € Sisof class C?, then R 3 ¢ — P,(tf) is two times continuously differentiable, and
similarly to equation (2.3) one obtains

. dC, . dP,
(i o) = —i M| = B

and the variances may be expressed in terms of P, and the vacuum fluctuations (3.4)

Var(w; f) = Var(wyae; f) + Aw; f), Aw; f) := (@_é%m’tzoy_ d’Pu(t])

dt? It:O.

(3.6)

3.4 Squeezing of Classical States
3.4.1 The Generalized Glauber States

Let us denote by ap(f) and a}.(f), where f € #H, the usual annihilation and creation
operators acting on the (Bose-) Fock space F, () over the completion H of E. With the
Fock field operators, ®r(f) = 27Y%(ap(f) + a}(f)), the Fock-Weyl operators Wg(f) =
exp{i®p(f)} are constructed for each f € H. The (abstract) Weyl operators W(f) €
WI(E), however, are defined for the testfunctions from F, only. Thus the Fock representation
[Ip of W(E) on F(H) fulfills [Ieg(W(f)) = Wg(f) only for f € E. The (normalized)
vacuum vector Qu,e € F, (H) satisfies ap(f)Qac =0 Vf € H (e.g. [8, Subsection 5.2.1], [26,
Section X.7], [6], and also [27, Section 8.1)).

The Glauber vector G(h) € F,(H) (in quantum optics called a coherent state vector),
h € H, is given by the displacement of the vacuum vector, G(h) = Wr(—iv/2h) Quac, [18),
[14]. Especially, G(0) = Qa for h = 0. The associated Glauber state wf on the Weyl
algebra, (wf; A) = (G(h) | l1p(A) G(h)), A € W(E), has the characteristic function [28]

CP(f) = Cuclf)exp{ivV2 Re(h| f)}  Vfe€E. (3.7)

For h = 0 the vacuum state wy,. = wé; from Subsection 3.2 is obtained.
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The mapping £ 3 f — exp{iﬁ Re(h | f)} appearing in the Glauber characteristic
function Cf is a character® on E. This observation gives rise to the following generalization
of the Glauber states: If x is an element of the character group E of the additive group E,
then the characteristic function

Cy(f) = Caclf)x(f) Vf€eE (3.8)

generalizes (3.7) and determines the unique states ¢, on W(E). Indeed, it is ¢, = wyac © Yy
with the *-automorphism v, on W(FE) satisfying v (W (f)) = x(f)W(f) Vf € E (gauge
transformation of the second kind). Since the vacuum w.,. is a pure state, this relation
reveals each generalized Glauber state ¢, to be pure, too, that is, ¢, € 8.S.

3.4.2 Classical States: the Mixtures of the Generalized Glauber States

For dim¢(E) < oo the classical states from the usual quantum optics literature are described
in the Appendix A.2. Here we deal with the infinite dimensional generalization.

Let the additive group E be topologyzed with the discrete topology, then its character
group F is compact in the A-topology (the topology of pointwise convergence: lim; x; = X
in E, if and only if lim, y:(f) = x(f) Vf € E, [29]). For each (positive) probability measures
1 on E the mixture (weak*-topology) of the generalized Glauber states ¢,

w = [oexdu(x), (39)
E

defines a state w € S. Its characteristic function C,, = Cy, i incorporates the “Fourier”
transform f(f) = [z x(f)du(x), f € E, which by Subsection 3.3 agrees with the normally
ordered characteristic function, P, = [i. Because of its positivity, u resp. P, = [ may
be regarded as a statistical state of a classical field with phase space E. By Bochner’s
theorem [29] the positive-definite functions on the additive group E agree with the Fourier
transformed positive measures on E.

Definition 3.5 (Classical States) A statew € S is called classical, if its normally ordered
characteristic function P, = C,/Cyac 1S a positive-definite function on the additive group E.
The set of all classical states on W(E) is denoted by S,.

Moreover, if P : E — C is a positive-definite function with the normalization P(0) = 1,
then there exists a unique w € Sy with C, = Cy, P, t.e., with P =PF,,.

An immediate consequence of the integral representation (3.9) is the unique decomposition
of each w € &, into the extreme ones ¢, € 0.8y, which is a typical property of the state
spaces in classical statistical mechanics: S is a Bauer simplex (in the weak*-topology).
The extreme boundary 9,8, consists just of the pure, classical states ¢y, x € E, especially
1 = Wyac € 0.8 for x = 1, [20], [10].

A character is a function x : E = {z € €| |z| = 1} satisfying x(f + g) = x(f) x(9) Vf,g9 € E.
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3.4.3 The Classical Field Fluctuations

The support of an arbitrary probability measure g on E in general contains also non-
continuous characters x. Thus it is not possible to specify the smoothness properties of the
resulting w € S, as regularity, class C™, or analyticity, if only the measure p is known.
However, if the normally ordered characteristic function P, is continuous with respect to a
nuclear topology 7 on E, which is stronger than the norm topology, then F, decomposes
according to the Bochner-Minlos theorem in terms of 7—continuous characters, which arise
from 7—continuous linear forms L : £ — C,

Pf) = [ exp{ivE Re(L()}du¥(L), (3.10)

where E’ is the complex-linear dual space of E with respect to 7. To avoid the delicate math-
ematics of the Bochner-Minlos probability measure uBM we restrict the classical regular state
w € 8 to a finite dimensional complex subspace D of E, that is, to the CCR-subalgebra
W(D) C W(E). The regularity of the restricted state w|wpy on W(D) implies its Fock nor-
mality by the Stone-von Neumann uniqueness theorem [8]. Consequently, the restrictions of
the characteristic functions C,, and P, to D are norm-continuous. The Bochner (—~Minlos)
decomposition P, (f) = [p exp{z'\/i Re(f | h)} dul(h) for all f € D (cf. [26, Theorem 1X.9]
and the Appendix A.2), of the continuous restricted positive-definite P,|p may be viewed
as the marginal measure u” obtained by restricting u2M to D C E’.

Proposition 3.6 Let w € S;; (of class C*). Then for each non-vanishing testmode f € E
there is a unique probability measure py on R with P,(tf) = [g exp{itz} dps(z), and thus

s @u(f) = [ @dpsla) = (a)y, Awif) = [ (=) dpsa) 2 0.

Consequently, the variances for each w € S are larger than the vacuum fluctuations,
Var(w; f) = 3 IFI° + Awi f) 2 JIFI° = Var(wai f)  VfEE.

Furthermore, for the classical state w € Sy we have the following equivalences:

(i) Var(w; f) = L|IfII® = Var(we f) YfEE,

(i) w is a pure state, that is, w = ¢, € 9,8 for some character x € E.

PROOF: Let 0 # g € E. Because of P,(0) = 1 and by Bochner’s theorem there exists a probability
measure p on IR with P, (tg) = [ exp{itz}dp(z) V¢ € R. On the Hilbert space L?(IR, p) of p—square
integrable functions we now define the selfadjoint multiplication operator (Bn)(z) := z n(z) for p-
almost all z € IR, where 7 is an element of its domain D(B) = {£ € L(R,p) | [g z? |§(m)|2 do(z) <
oo}. Obviously, 1(z) =1 € L%(IR, p). Since w € S is of class C? the mapping IR 3 t — P,(tg) =
(1] exp{itB}1) is two-times continuously differentable, which implies 1 € D(B). Differentiating
as in Subsection 3.3 gives A(w;g) = ||B1 — (1| B1) 1|2 > 0.
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Now let w € 3,8, i.e., P, is a character on E, respectively IR 3t — P,(tg) is a continuous
character on IR, which implies p to be the point measure at some g € IR. Thus 1 is an eigenvector
for B with eigenvalue zg, which gives ||B1 — (1 | B1)1]| = 0.

Conversely, let w & 3.S;), then P, = ji,, for some probability measure pu, on E, which is not a
point measure. Then there exist some g € F with |P,(g)| < 1. Consequently, the measure p from
above cannot be a point measure, too, or equivalently the unit function 1 is not an eigenvector for
B. Thus A(w; g) = |B1 - (1| B1)1]]® > 0. ]

As mentioned above, for the classical state w € S the normally ordered characteristic
function P, = [, — with probability measure p, according to (3.9) — represents the
statistical distribution of a classical field over the phase space E. Thus the above result
exhibits that indeed the field variances of w € S; decompose additively into the vacuum
fluctuations (3.4) plus the classical fluctuations A(w; f) > 0 form (3.6),

Var(w; f) = Var(wyae; f) + Aw; f), feE. (3.11)

3.4.4 Estimates of the Squeezed Field Fluctuations

The transformation of the classial state w € S from equation (3.9) with vr gives

v() = [rrle) du,

that is the decomposition of the squeezed classical state vr(w) into the pure states vr(py),
x € E. Using equation (2.5) one obtains from Proposition 3.6 some estimates for the
fluctuations of squeezed classical states.

Proposition 3.7 Forw € S, it holds
Var(vp(w); f) > SITFI° = Var(vp(wiae); f) VfEE.
For w € 0,5, we have the same squeezing properties as for the vacuum wy,e.

Var(vr(w); f) = $ITFI® = Var(vr(wee); f) VfeE.
Combining the Propositions 3.2 and 3.6 one easily gets the following result.

Proposition 3.8 Suppose w € S to have bounded fluctuations. Then ||S|| = oo implies

0 = InfVar(vp(wyac); E) = InfVar(vp(w); E) < 2 = InfVar(wyae; E) < InfVar(w; E) .

1
2
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3.4.5 Optimal and Non-Optimal Squeezing of Classical Sates

By Proposition 3.7 it is for each real or complex subspace F' C F,
InfVar(vr(w); F) > InfVar(vp(wyac); F) , Yw € 8.

Thus a squeezed classical state may reach at the best the squeezed vacuum fluctuations,
provided the same squeezing Bogoliubov transformation vr is applied. It is clear that the
smallest fluctuations are obtained when taking F' = E, which with Proposition 3.4 leads to
the following definition of a qualitative degree of squeezing by vr: A (C?-) state w € S is
called optimally squeezed by vr, if

InfVar(vr(w); E) = InfVar(vr(wvac); E) = 5 exp{-2]|S||},
whereas w € & is called non-optimally squeezed by vr, if

InfVar(vr(w); E) > InfVar(vr(wyae); E) = 5 exp{—2]|S||} .

Obviously, by Proposition 3.7 the pure classical states w € 0,5 are optimally squeezed.
Optimal squeezing also occurs in the situaton of Proposition 3.8. The white noise states wy
from Subsection 3.5.3 below (they are classical and quasifree) are non-optimally squeezed
by vr for each b > 0 (cf. Proposition 3.14). The description of optimal and non-optimal
squeezing for classical coherent states is the content of Theorem 3.16. Especially one-mode
squeezing of coherent states is often non-optimal as is illustrated in Subsection 3.6.3 below.

3.5 Squeezing of Quasifree States
3.5.1 Quasifree States and their Field Fluctuations

Quasifree states — also called Gaussian states — play an important role in statistical physics,
since, e.g., the thermodynamic equilibrium states (limiting Gibbs and KMS states) for pho-
tons resp. the free Boson gas (with and without Bose-Einstein condensation) are quasifree
and classical states [17], [8].

The characteristic function of a quasifree state w € S is given by

Culf) = explitu(f) ~ §sull.N)}  VI€E, (312)

where £, : £ — IR is a real-linear form and s, : £ x F — IR is a positive symmetric
real-bilinear form satisfying

Im(f|g)|* < su(f.f)sulg,9) Vfg€E (3.13)

(cf. [8], [30], and [10]). Conversely, for each real-linear form £ and positive symmetric form
s fulfilling (3.13) there exists a unique (quasifree) state w € § with £, = £ and s, = s. The
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set of all quasifree states on W(E) is denoted by Sgr. Each w € Sy is entire-analytic, and
has the field fluctuations (recall, A(w; f) = Var(w; f) — Var(wyac: f) by (3.6))

Var(wi f) = Ssu(ff),  Awif) = L(sulf ) = IFIF), VFeE, (3.19)
which follow from the differentiation of the mapping R 3 ¢t — C,(tf) as in (2.3).

By Proposition 3.6 the classicality of an arbitrary w € S implies for the field fluctuations
Var(w; f) > Var(wyac; f). Here for the quasifree states this implication has a converse.

Proposition 3.9 Let w € Sy with assoctated bilinear form s, according to (3.12). The
normally ordered characteristic function P, defined in Subsection 3.3 s given by P,(f) =

exp{iéw(f) -2 (su(f,f) - |1f||2)} Vf € E. The subsequent conditions are equivalent:

(i) w 1is classical, or by definition, P, is positive-definite,

(ii) s.(f,f) > |f|I” for all f € E,
(1) A(w;f) > 0 forall f € E,
(w) InfVar(w; E) > 1 = InfVar(wyac; E).

PRrROOF: Consequence of Proposition 3.6 and equation (3.14), cf. also [10]. [

3.5.2 Bogoliubov Transformations of Quasifree States

Proposition 3.10 [t holds: vy (Ser) = Sgr, for all T € T(E).

PROOF: From (3.12) it follows C,,, () (f) = exp{z'{,’w(Tf) - gsw(Tf,Tj)}. But () = fuoT is
a real-linear form on E. (1.9) and (3.13) valid for w imply for s, (f,9) = su(Tf, Tg),

I (f { g)|* = [Im(Tf | Tg)* < 5u(Tf,Tf) 5u(T9,7'9) = $upu)(fs f) Suriy(f- f) VFig€E.

Consequently. vr(w) € S¢r, and thus vr(Sgr) € S¢r. The same argumentation for T-!€ T(E) and
(vr)~! = vpo1 yields the result. |

Since vr(w) € Sy for each w € Sg4r, Proposition 3.9 also applies to the transformed v (w).

Corollary 3.11 Let w € Sy with bilinear form s, according to (3.12). Then vr(w) is
classical, if and only if 1s,(Tf,Tf) = Var(vr(w); f) > Var(wee; f) = 1 || fII* Vf € E.

2

Let us now present the examples mentioned in Subsection 2.5. They are of structural
interest for more insight into the Definition 2.3 of squeezing.
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Example 3.12 Let T, = 0, or equivalently, T = U 1is unitary by Theorem 2.1.

(a) Assume Th # +h for an h € E. Define the real-linear form p on E by p(f) :=
Re(h| f) = (h | f) and the state w € Sqr N Sep with the characteristic function C,(f)

C’vac(f)exp{ p(f)? } f € E. Then we have Var(vr(w); h) < Var(w; h), that is, w
squeezed by vy in the testmode h € E.

I

.

S

(b) Assume F to be a compler subspace of E with U(F)NF* # 0. Let Qr be the or-
thogonal projection onto the closure F of F. Then the state w € S with C,(f) =

Chrac(f) exp{—— Qe f]l } f € E, is quasifree, classical, and F-squeezed by vr.

PROOF: (a): From (3.14) it follows Var(w,: f) = %llfli2 + p(f)?. Since Th # +h we have
|Re(h | Th)| < ||h||* (e.g. [24] Theorem 1.4). Consequently, using (2.5) we obtain Var(vp(w); h) =
Var(w; Th) < Var(w; h). (b) From (3.14) it follows Var(w; f) = 1 111> + IQFfII>. There exists a
normalized g € F with Ug € F*. It follows

0 = [IQrUgll = inf{|[QeTfII | f e F, IIfll=1} < inf{||QefI| f€F, |Ifll=1}

which by the use of (2.5) proves the stated squeezing property. [ |

Example 3.13 Let w € Sy N Sa with Cu(f) = Cuae(f) exp{ =1 IT"'fI'}, f € E. Then it
holds InfVar(vr(w); E) = InfVar(w; E).

PRrROOF: (3.1) and (3.2) imply inf{||Tf||| f € E, |fll =1} = inf{||T7'f|| | f € E, ||f]| =1}
Now the assertion follows from (3.14) and (2.5). |

3.5.3 Squeezing of the White Noise States

In the quantum stochastic calculus the white noise or temperature states are the classical,
quasifree states wy, € S given for each real parameter b > 0 by the characteristic function

Co(f) = Caclf)exp{-21fI’}, f€E

(b =e? —1 for the inverse temperature 3; for dimg(FE) = 1 see [27], [11]). With the canonical
transformation v they turn into the squeezed white noise states [23]. For b = 0 we obtain
the vacuum state wy = wyae, and for different parameters b the states w, are not quasi-
equivalent (E' infinite dimensional, [31]), especially for b > 0 the white noise state w, is not
given by a density operator on Fock space. It is w, € 0,S (a pure state), if and only if b = 0.
With (3.14) we have the bounded fluctuations

Var(wb; f) = bjL_q Hf”2 = Var(wyac; f) + % ”f”2 ) feE,
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and thus A(wy; f) = g 1 /11? for the classical field fluctuations (3.11). With equation (2.5) it
follows for the Bogoliubov transformed states vp(wy), b > 0,

Var(”’[‘(wb); f) == ITM HTf[Iz = Var(UT(anc); f) + % ”-FfH2 y f g .. (315)

It is vp(wy) = wy, if and only if 7, = 0, or equivalently, if and only if S = 0. Since
vr(Sqr) = Sgr, the transformed states vy (w,) are quasifree, too. Let us use Corollary 3.11 to
determine for which parameters b > 0 the squeezed white noise states vp(wy) are classical.

Proposition 3.14 It holds InfVar(vp(wy); ) = L exp{=2||S||} Vb > 0, ie, if S # 0,
then wy 1s E-squeezed by vp. Furthermore, we have the following equivalences:

(i) vr(ws) € S,
(i1) InfVar(vp(wy); £) > % = InfVar(wyac; E) ,
(17) b > exp{2||S]||} - 1.

Especially, for ||S|| = oo we have vr(wy) & Sq for all b > 0.

PROOF: InfVar(vp(wy); E) is obtained with (3.15) analoguously to the proof of Proposition 3.4.
Now apply Corollary 3.11 resp. Proposition 3.9. ]

Summary: Here the squeezing strength of our squeezing transformation vy is given by [|S]|.
Only if the classical fluctuations A(wy; f) = % I £1I* for the white noise state w, are large
enough compared with the squeezing strength, b > exp{2||S||} — 1, then the tendency of
v to diminish some fluctuations is counterbalanced by their wide range and v (wy) remains
classical. For white noise states w, below the critical value, b < exp{2||S||} — 1, the squeezing
operation vy is strong enough to render them non-classical, vr(wy) € S

3.6 Squeezing of Classical Coherent States

A smearing procedure of Glauber’s original factorization condition [18] leads to the algebraic
formulation of quantum optical coherence [15], [28], where Glauber’s complex factorizing
coherence function is replaced by a (complex-) linear form G : E — €. An analytic state
w € § is called G-coherent in n—-th order, if the normally ordered expectations factorize up
to degree n, where n € IN U {co},

(Wi ag(h)---al(fi) avlgr) - -awles)) = G(H)---G(f;) Glg1)--- Glg;) (3.16)

for all fr,g; € E and each 1 < j < n. Let us denote by Sig,ﬂ(G) the set of all n-th order
coherent states on W(FE) factorizing with G, and by S0 (G) those n—-th order coherent

coh,cl

states which in addition are classical, Swny (G) = Stet(G) N Sar.
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Starting from the factorization condition the characteristic functions of all (classical and
non-classical) quantum optical coherent states on W(E) have been determined in [15], [16],

[21], [22]. Especially, it is ST ,(G) = ST)(G), if and only if the linear form G is unbounded,

coh,cl coh

and w € 8£2,),(G) is Fock normal, if and only if G is bounded.

3.6.1 Classical Coherent States as Mixtures of Generalized Glauber States

For every linear form L : E — C let us denote by S the set of those classical states w € S,
which are the mixtures of the generalized Glauber states ¢, := ¢,,, corresponding to the

characters x,.(f) = exp{i\/i Re(zL(f))}, f € E, where z ranges over the complex plane C.

That is, the states w € S& are in one~to—one correspondence with the probability measures
pl on €, so that according to (3.9),

@ = /C%L dpk(z), w e SL. (3.17)
The states w € S5 are regular with the characteristic functions
Culf) = Cuclf) [ exp{iV2 Re(zL(f)} dul(z) Vf € E. (3.18)

The trivial case L = 0 implies 8 = {wyac}; thus let us suppose L # 0. The associated
moments c-(k,l) have the form (if they exist)

ekl = /(;zkil dul(z), 0 < kI < o0, (3.19)

and determine for arbitrary testfunctions f;, g; € £ the normally ordered expectations

(wial(h)-ag(fi) aulon) -+ aulg)) = cg(k,0) L(A) -+ L(fi) L(gr) -+ Llg) - (3.20)

Lemma 3.15 Let w € 8. Then for the classical fluctuations it holds

Aw; f) = Relal L(f)*) + b5 IL(A)I%,

where the coefficients are given in terms of the centered moments

at = c£(2,0) - c&(1,0)?, bl = cb(1,1) = |cE(1,0)]2.

w

Moreover, bh > |ak|. It holds bX = al = 0, if and only if w is pure, or equivalently, if and
only if pt is a point measure.

PROOF: The variances are obtained by differentiating (3.18) as in equation (2.3) resp. (3.6). The
rest easily follows from A(w; f) > 0, and the fact that A(w; f) = 0, if and only if w is pure, by
Proposition 3.6.
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The classical coherent states of n-th order turn out to constitute certain subsets of SA.
Comparing (3.16) with equation (3.20) it follows that for w € S% the factorization takes
place, if and only if the moments (3.19) satisfy c2(7,7) = |A|¥ for every 1 < j < n for
some non-zero A € C, which yields the factorization (3.16) with respect to the linear form
G(f) = AL(f), f € E. Indeed, by (16] the set Smh o(AL) consists of those states w € 8%, for

which the associated measure % is analytic and satisfies cL(5,j) = |A|* for all 1 < j < n.

There is some redundancy in the condition for the moments: If ck(j,7) = |A[% for
j=1,2, then c¢&(7,7) = |A|¥ for every j € IN, or equivalently, the probablhty measure gL i
concentrated on {z € C | |z| = |A|}. This implies that a classical coherent w of order two
automatically is all order (fully) coherent. Thus we have the proper inclusions

Scohcl( ) = coh c!(’\L) = Scobcl()‘L) & Scohc)( ) C Scli VTL2 2! (321)

for each 0 # A € €. Observe, that for all n € IN U {00} it is ST (A L) = Smh a(A2L) for

coh,cl

|A1] = |A|, whereas it holds SCO,, a(AL) ﬂSég,),,C,(/\gL) = ( for |A\| # |Az], but in both cases
one has 85 = St = §)2%,

3.6.2 Estimates of the Squeezed Field Fluctuations for Bounded Linear Form

From Lemma 3.15 it is immediately seen that the non-pure w € 84 has bounded fluctuations
(2.4), if and only if the linear form L is bounded. Throughout the present Subsection let
us suppose a bounded non-zero L, which then is given with a unique 0 # h € H by
L(f)=(h| f) Vf € E according to the Riesz Lemma [26, Theorem II. 4] i.e., here the mode

Ah agrees with Glauber’s factorizing function for the coherent states Scoh(/\L)

For bounded L not all coherent states are classical (cf. Subsection 3.6.3 for an example
of a non-classical coherent state) However, we are interested in the squeezing properties of

the classical coherent states SU il C,()\L) resp. of 8%, only. Since L(f) = (h | f) Vf € E each
state w € S5 decomposes into the Glauber states ¢, = ¢,,, = w$, according to (3.17),

w = J{j:hg‘ duk(z), we 8. (3.22)

The boundedness of L implies optimal squeezing for ||S|| = oo, i.e., InfVar(vr(w); E) = 0
for all w € 8%, by Proposition 3.2. Thus we suppose S to be bounded, too, for a refined
discussion.

With (2.5) and Lemma 3.15 it is for w € S5,
Var(vr(w); f) = $IITFI* + Re(al (b | Tf)?) + 85 [(h | THE, (3.23)

Since our symplectic transformation T = U(exp{S} P, + exp{—S} P_) in general is only
real-linear, we have to be very carefully, when shifting T from the right to the left side in
the scalar product (h |Tf) = (U*h | (exp{S} P+ + exp{—S} P_)f), so that exp{£S} act
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on U*h. Such a detailed analysis leads to the subsequent Theorem about the squeezing
properties of w € SL by v, which depend on the relation between the spectral properties of
S and the vector U*h.

Before formulating the results let us collect some spectral notions: Since S is a positive
selfadjoint operator on H it follows that ||S|| € o(S) C [0,]|S]|]]. Recall, an isolated point
of the spectrum ¢(S) always is an eigenvalue for S (e.g. [24]), but there may exist non-
isolated eigenvalues in o(S). By Subsection 3.1 the real-linear spectral projections Py of J
commute with the complex-linear spectral projections Es(B) of S. Let Ps := Es({||S]|})
be the spectral projection onto the spectral value ||S||; it is Pg # 0, if and only if ||S]|
is an eigenvalue of S, in which case the associated eigenspace PsH = P,PsH + P_PsH
decomposes, where dimg(PsH) = dimg (P PsH) (since Py commute with Ps).

Theorem 3.16 With the notions of optimal and non-optimal degrees of squeezing from
Subsection 3.4.5 the following assertions hold:

(1) If one of the following spectral conditions for S is fulfilled,

(a) PsU*h =0,

(b) ||S|| is not an isolated point of the spectrum of S,

(c) the dimension of the eigenspace PsH corresponding to the eigenvalue ||S|| is larger
than or equal to three, dimg(PsH) > 3,

then all states w € S5 are optimally squeezed by vr.

(II) Consider the remaining case, where PsU*h # 0, and ||S|| is an isolated point of o(S),
and dimg(PsH) =1 or = 2. Let w € S and put o, := exp{-ué arg(ai)}.

(a) Let bE # ok (actually, bt > |al| by Lemma 3.15) and suppose:
dimg(PsH) = 2, then w is optimally squeezed by vr, if and only if P_a,PsU*h
and P_ia, PsU*h are real-linearly dependent;
dimg(PsH) = 1, then w is non-optimally squeezed by vr.

(b) Let b: =|al| # 0 and suppose:
dim¢(PsH) = 2, then w is optimally squeezed by vr;
dime(PsH) = 1, then w is optimally squeezed by v, if and only if P_a,PsU*h =
0.

(c) Let bk =ak =0. Then w € 8,5, NS5 is pure and optimally squeezed by vy

Non-optimal squeezing especially occurs for one-mode squeezing transformations, that is,
S = s|eg)(eq| for the normalized mode ey € E and s > 0. This case is treated for physically
relevant Gaussian coherent states with factorizing coherence function h = ey in the next
Subsection.

The remainder of the present Subsection is devoted to the proof of the foregoing Theorem.
First let us give a Lemma, which allows an approximation of InfVar(vp(w); E).
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Lemma 3.17 Let w € 85 and again o, = exp{—% arg(ai‘,)} .

(a) For each Borel set B C [0, |S||] with BNa(S) # O it holds

InfVar(vr(wyac); E) = 5 exp{—2]S||} <
< InfVar(vp(w); E) < (% + 2bE ||E5(B)U*h||2) exp{—2 infiB)} .

(b) Suppose ||S|| to be an eigenvalue of S, then we have for every f € P_PsH,

Var(vr(w); f) = exp{=2|SII} [ IfII" +
+ (b5 + lak]) (P-cuPsU*h | £)? + (b5 — lab|) (Poic, PsU*h | )?].

PROOF: w is a classical state, and the first inequality sign in (a) follows from the Propositions 3.7
and 3.4. Observe Im (a,h | g) = Re(tayh | g) = (iayh | g) for all g € E. Then (3.23) rewrites as

Var(r(w); f) = 3ITfI* + laf| Re((awh | Tf)?) + b [(awh | TH)I®
LTI + (b5 + lak]) [Refauh | THP + (85 = lak]) [Im (auh | /)]
= 3 [le®Pusl? + e~ *P_f|1?]

+ (8k +1ak) [(PranUth | €5) + (PoauU*h [ ™5 1]
+ (65 — o)) [(PricwU*h | €55) + (PoiauU*h | e51)] |
which leads to (b). Now let Eg(B) # 0. With P_i = iP, by Lemma 3.1 we obtain for each
feP_Es(BYH
Var(vr (); /) <
< |3+ (5 + 16bl) 1P-aBs (B + (b5 ~ labi) | P+ aBs(B)U"AI?] fie  f1*
<[5+ 205 IEsBU R e 1112
Now observe InfVar(vp(w); E) < InfVar(vp(w); P-Es(B)H). If Es(B) = 0, then we choose a se-

quence of Borel sets By, n € IN, with lim, Es(B,) = Eg(B) in the strong operator topology and
lim, inf(B,) = inf|B). |

PROOF OF THEOREM 3.16: (I)(a) is an immediate consequence of Lemma 3.17 (a).

(I)(b): Since ||S|| € o(S) is not isolated, there exists a sequence {s, | n € IN} C o(S) with
Sm # sn # ||S|| for all m # n, which converges to ||S||. Then ¥, Es({sn})U"h converges with
respect to the norm of H, which implies lim, ||Es({s,})U*h| = 0. By Lemma 3.17 (a) one has for
alln € IN

Sexp(=2[|SI} < InfVar(r(w):E) < (4 + 265 11Es({sa})U"hI%) exp{-2 5.} .

The limit n — oo gives the result.
(I)(c): Because of dimig (P- PsH) > 3 we may choose a normalized f € P_PsH, which is orthogonal
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to P_a, PsU*h and P_ia, PsU*h with respect to (. | .). Then Lemma 3.17 (b) gives Var(vr(w); f) =
5 exp{—2|S[|}, optimal squeezing.

(IT): ||S]| is an isolated spectral value, thus there exists and 0 < s < ||S|| with o(S)\||S]| C [0, s].
Then the proof of Lemma 3.17 implies Var(vp(w); f) > % exp{—2s} for all normalized f € (1—Ps)H.
Thus optimal squeezing is only obtainable with f € PsH. Using Lemma 3.17 (b) the remaining
results follow by an analysis similarly to (I)(c). Part (II)(c) also follows from Lemma 3.15 and the
Propositions 3.6 and 3.7. |

3.6.3 One-Mode Squeezing of Quasifree Classical Coherent States

As in equation (1.13) of the Introduction or in [10, Section 6] we specify here the symplectic
T € T(FE) to be a one-mode transformation, where E = H for convenience.

Let ¢y € E be the single, normalized photon mode under consideration. Then T is
given with S = seg)(eg| for the isolated eigenvalue s = ||S|| > 0, the anti-linear involution
J satisfying Jeg = ey, and arbitrary unitary U. If 1""}0 denotes the projection onto the
orthogonal complement of eg with respect to (. | .), then the one-mode symplectic T = T)+7,
decomposes according to Theorem 2.1 as

T, = cosh(s){ey | YUey + UPy, T, = sinh(s) (.

eo

(30) UEO s

Thus, by Theorem 3.16 (II) in this situation one may obtain non-optimal squeezing by vr
for some states w € 8%, when the linear form is chosen as L(f) := (Ueq | f) Vf € E.

ch

For each A > 0 there exists by [16] a (unique) classical, first order coherent, quasifree state
wy € Sﬁ;},,c,(/\L) N Syr with the (positive-definite) normally ordered characteristic function

Po(f) = exp{-%|L(f)I’} VfeE. (3.24)

[ts moments are given by cL‘f;A (k,1) = &, ! A**! and the factorization for first order coherence
(cf. the equations (3.19), (3.20), and (3.16)) has the form

(or; al, (f) au(9)) = AL(H)XL(g)  Vf g€ E.

With the Fourier transformation formula for a > 0,

1 2
exp{—a?kiz} = \/ﬂa'/'lﬂ exp{:tiﬂxk} exp{—gai}dx Vke R, (3.25)

one immediately calculates the decomposition (3.22) of the state wy into the Glauber states,

exp{— |z|* /32
Wy = A_ngeo d#’tﬁ)\(z)’ d'u‘{;,\(z) = { TT/\?' }d2z‘

where d?2 = dRe(z) dIm(z). Since this incoherent superposition of the pure coherent states

we,, 2 € C, is performed in terms of a (positive) Gaussian P-representation dpf (2)

depending on |z| only, one has an equipartition of the phases arg(z).
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Equation (3.14) yields Var(wy; f) = 3 17117 4+ A2|(Ueo | f)|?, which gives for the complex
subspace FFC E

InfVar(wy; F) = (3 , for F = CUey, (3.26)

% = InfVar(wyac, F'), for dimg(F) > 2,
+ A2
L+ M2 | (Ue | e0)|?, for F = Cey.

Let us turn to the transformed states vp(wy), A > 0, which by Proposition 3.10 are
quasifree, too. With (2.5) one easily finds Var(vr(w,); f) = Var(wyac; f) + A(vr(wy); f) for
all f € E (cf. the equations (3.6) and (3.14)), where

Alwr(wh)if) = ([5+ 4] exp{2s} — 1) (Releo | f))? (3.27)
- ([% - /\2} exp{—2s} — 1) (Im(eg | f))° .

Proposition 3.18 For each A > 0 the normally ordered characteristic function of the trans-
formed vr(w,y) is given by

Porwy(f) = exp{—% A(V'r(wf\);f)} VfeE. (3.28)

vr(wy) ts a first order coherent state, exactly, vr(wy) € Sﬁ;}l(n(,\)Q)ﬂSq{, where Q(f) =
(eo | f) Vf € E and k() := \/‘sinh(s)2 + sinh(2s)A2%, implying the factorization

(v0(@2); @ oy (F) Auron) (9)) = KNQN) RIVQ(Y)  Yig€E.  (3.29)

Moreover, for vr(wy) being classical we have the following equivalent conditions:
(i) vr(wy) € Sa,

(11) A > Ac(s) with the critical value A .(s)* := 5 (exp{2s} — 1),

(i) Alvr(wy); f) > 0 Vf € E.

For A > A.(s) we have the decomposition vr(wy) = / w;io duST(wx)(z) into Glauber states
C
with the probability measure

2 (Re(2))’ 2 (Im(2))” }dgz

Q - N _ =
A ) (2) N(A,s) exp{ [1+ 202 exp{2s} — 1 [1+ 22?] exp{—25} — 1

with the normalization N (X, s) := 2 {([1 + 2A?] exp{2s} — 1) ([L + 2A?) exp{-2s} — 1)} 712,

PROOF: (3.28) is a consequence of the results obtained for quasifree states in Section 3.5. Define
for each f € E the entire-analytic mapping €? 3 (u,v) = N(u,v; f),

N(u,vi f) = exp{a(s)[(eo | )P uv + BN s) ((eo | /)? w2+ (f | o) v?)},
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a(X, )= —3([1+ 2)\2] [cosh(s)? + sinh(s)?] — 1) and B(), s) := — [1 4+ 2A?] cosh(s) sinh(s), then
it follows N(z,z, f) = P,p(u,)(2f) Yz € C. Now [15] (cf. also equatlon (3.5)) leads to
Cat (A alf)) = (L) O*IN(, i f)
(rlensa(falf)) = (F)7 RI =505 o VhkieDo,

which gives the factorization (3.29), when taking £ = [ = 1 and the polarization identity. The
equivalences (i) to (iii) immediately follow from equation (3.27) and Proposition 3.9. For A > A.(s)
the decomposition of vr(wy) into the Glauber states follows from (3.28) and the Fourier formula
(3.25) by observing that the integral decomposition from (3.18) here writes as

CUT(w,\)(f) = Cvac(f) PUT(wA)(f)
= / Crac(f) exP{i v2 Re(Zey | f))} d#,?,‘,,(w)\)(z)
C

and ranges over the characteristic functions Czeo of the Glauber states w— fromeq. (3.7), z€ C. R
Especially below the critical value, A < A.(s), the transformed vr(w,) is a non—classical, first
order coherent state with a non—positive P-representation. From the proof it is seen that
for deriving the P-representation in this case one needs the Fourier transform of R 3 z —
exp{az®} with a > 0, which according to [32] is a highly singular distribution in 2’ — the
space of analytical functionals — and not a signed measure or an element of §'.

Let us turn now to the squeezing properties. If f is orthogonal to ey with respect to
(.].), then A(vr(wy); f) = 0 and the variances (3.27) reduce to the vacuum fluctuations,
Var(vp(wy); f) = Var(wwa); f). If 0 # z € C, then

exp{2s} , forze R,

Var(vr(wy); zeg) = (% + /\2) ‘le {exp{—QS} for z € 1R

Thus we obtain for the complex subspace F C E

(1 =InfVar(wye; F) , for F Leg,
(% + )\2) exp{—2s} < i, for A < A(s), e € F
InfVar(vp(wy); F) = ¢ 3 , for A=A (s), e (3.30)
(% + /\2) exp{—2s} > 3, for A > A(s), F eo,
| = , for A > M.(s), e , dimg¢(F) > 2.

Observe that for A = 0 it iS wy = wyac. This demonstrates that w, is non-optimally
squeezed by v for 0 < A < A.(s), or for each A > 0 whenever dim¢(E) = 1, in both cases it
holds: InfVar(vr(wy); E) = (% + /\2) exp{—2s} > 3 exp{—2s} = InfVar(vp(wyac); E).

Let us turn to some squeezing properties according to Definition 2.3 by comparing (3.26)
with (3.30). If dim¢(F) > 2, and ey € F, and A < A.(s), then it follows that wy is F-
squeezed by v, more precisely, InfVar(vr(w,); F) = (% + )\2) exp{—2s} < 5 = InfVar(wy; F).
And for F = Cey we have InfVar(wy; Ceg) = 5 + A2 [(Uey | eo)|* and InfVar(vp(wy); Cep) =
(% + /\2) exp{—2s}, which implies Cey-sqeezing also for suitable parameters A > A.(s).
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4 Conclusions on the Non—Classicality of States

In the foregoing investigations a main point has been to identify the non-classical character
of a state on the (photon) field algebra W(FE) by means of its field fluctuations. In Sub-
section 3.4 the general definition of a classical state w is given, which requires the normally
ordered characteristic function P,(f) to be (normalized and) positive-definite. The field
variances (3.11) of w for the testmode f contain the vacuum fluctuations plus the classical
fluctuations and demonstrates a simple but important fact: if for a state w € S one has

Var(w; f) < 3 IfII" = Var(wac; f) (4.1)

for a single (non-vanishing) testmode f € F, then w is necessarily non-classical by Propo-
sition 3.6.

Let us compare this with other criteria used in the literature. We consider only the
one-mode testfunction space E = Cf, ||f|| = 1, and set a,(f) =: a. There are the following
notions:

(1) Two point correlations (with zero-time delay)

@) (w; a*a’aa) (w; a*aa*a) — (w; a*a)
4, (0) = g = 2
(w; a*a) (w; a*a)

with non-classical regime g!?(0) < 1 (anti-bunching) [11].
(2) Fano-factor

P (w; A%a’a)  (w;a’aa’a) — (w; a*a)’
“ 7 (w;ata) {w; a*a)

which expresses sub-Poissonian counting distributions for F, < 1 [33].
(3) Mandel’s Q-factor

wi Ala¥a) — dws a%a
0. o ! )~ (wiaa)

(w; a*a)

which for @), < 0 should determine non-classicality [34], [35].

Observation 4.1 [t holds for each state w on W(E) and every testmode f € E, ||f|| = 1,

Qu=F,-1 = (wiaa)(¢?P(0)-1) . (4.2)
Therefore
Qu<0 & F, <1 & g¢%0) <1. (4.3)

The validity of (one relation of ) (4.3) is sufficient for w to be non-classical.
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Observation 4.2 For every second order coherent state w one has for all f € E, ||f|| =1,
Qu=10, &ad K= 1=g2(0,

Since there are non-classical coherent states in any order [36], [19], [21], [22], the inequalities
(4.3) are not necessary for w to be non-classical.

The surprising fact is, that it is much harder to calculate the quadratic field variances for
non-classical coherent states than the fourth order quantities in (4.2) for these states. Up to
now we did not find a non-classical coherent state, which violates (4.1). In some sense the
quadratic field variances seem to contain more information than the mentioned fourth order
quantities g'2'(0), F,, and Q.. This point of view is supported by Proposition 3.9 stating

that (4.1) is for quasifree states necessary and sufficient (i.e., equivalent) to be non-classical.

Since classical states are much easier to prepare experimentally than non-classical ones,
they are the natural starting point for discussing the efficiency of a squeezing device. If the
squeezing strength ||S|| is finite (where as before T = U(e® @ e%)) then the investigations
in Subsection 3.6 reveal that it is possible only under certain conditions to reach the optimal
degree of squeezing (cf. Theorem 3.16)

InfVar(vp(w); E) = InfVar(vp(wyac); E)
which is given by the minimal variances of the squeezed vacuum.

Let us use related considerations for a simple criterion for non-classicality.

Observation 4.3 If for a state w on W(FE) there is any squeezing transformation vy, T €
T(E), and any testmode f € E with

Var(vr(w); f) < Var(vp(wyae): f) (4.4)

that is, w s better squeezed in f than the vacuum wy,., then w ts non-classical.

The reason is of course, that by the inverse squeezing transformation (4.4) would lead to
(4.1) for the mode T'f.
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Appendix

A.1 Degenerate and Non-Degenerate Squeezing Hamiltonians

For the theoretical descriptions of squeezing there are used mainly quadratic Hamiltonians
of the photon field [1]-[7]. The Hamiltonians are meant to describe essential features of the
dynamics which takes place in the non-linear optical medium. As in the Introduction let the
finite dimensional testfunction space E be spanned by the orthonormalized photon modes
{e1,...,en}. Usually two types of quadratic expressions are distinguished:

e The degenerate squeezing Hamiltonian from equation (1.4)

Z( *(en) 2 + Z:a(en)z) (A.1)

n=1

B | =

with the squeezing parameters ¢, € C.

e The non-degenerate squeezing Hamiltonian

1 N
5 2 (maa”(ex)a’(er) + Teialer) aler)) (A.2)
k=1
with 7y, € C. Here in general the modes {e;,...,ex} are subdivided into the signal

and the idler modes. Obviously, the terms with k = [ give the degenerate parts of H 4.
Thus the Hamiltonian H,4 is strictly non—-degenerate, only if n, = 0.

These two cases of squeezing quadratic Hamiltonians are formally not so different as they
seem to be: By superposing the modes in the smeared field formalism, we now transform
the non—degenerate squeezing Hamiltonian H, 4 into the form (A.1).

Since the creation operators a*(ex) and a"(e;) commute (and also the annihilation op-
erators), we may assume without restriction of generality that n.;, = n, for all indices

k,l e {1,...,N}. From H,q we extract the anti-linear operator D on E,
N
Df = Y mu(flex)e VfeFE, (A.3)
k=1

and construct a new orthonormal basis for £, which diagonalizes D. n,; = nx implies the
selfadjointness of the anti-linear D, i.e., (f | Dg) = (g | Df) Vf,g € E.

Let D = V' |D| be the polar decomposition of D with unique anti-linear partial isometry
V and linear absolut value |D| = v/D? (observe that D> = D*D > 0 is linear). The
selfadjointness of D yields ker(|D|) = ker(D) = ker(D*). Hence the initial space and final
space of V are both ker(D)*. The selfadjointness of D also ensures V = V* to commute
with |D|. Hence V' is an anti-linear involution on ker(D)*. The diagonalization of |D| gives
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a new orthonormal basis {u,,...,un} for E and eigenvalues d,, > 0 with |D|u, = dyu,. V
commutes with |D|, thus the u, may be chosen such that Vu, = u,, which implies

N
> dn (f | un) un VieE. (A.4)

Calculating the matrix elements (u, | Du,,) with (A.4) and (A.3) yields dpémn =

=

Nkt (Um | €x) (un | &) (6mn is the common Kronecker symbol: 6, = 1 for m = n
k=1

N
and 8, , = 0 for m # n). Insert this and the decomposition ex = ¥ (un, | ex) un into (A.2).

n=1
Then the linearity of £ 3 f — a*(f) and the anti-linearity of £ 3 f +— a(f) implies

= —Zd( +a(un)),

which has the form of a degenerate quadratic Hamiltonian.

A.2 Optical States with a Positive P-Representation

In quantum optics the description of states often is given in terms of the phase space
formalism, however, for finite dimensional one-photon testfunction spaces F, only. Since
dimg(E) = N < oo, by the Stone-von Neumann uniqueness theorem [8, Corollary 5.2.15]
the regular photon field states w on W(E) are given by the density operators p on the Fock
space F,(E) by means of (w; A) = tr[pIlp(A)] for all A € W(E).

The Phase Space Description of States in Quantum Optics

Taking an orthonormal basis {e;,...,eny} for E each f € E decomposes according to f =
f) Bpe, with 3, = (e, | f), defining a unitary representation of the testfunction space E as
t,}:e phase space C" 2 IR?¥ with phase space points 8 = (3,,...,8n) € CV.

Decomposing the characteristic function C,, from equation (2.1) as

Co(=iV2EN, Bnen) = CS(8) = exp{-3 18} CY(8) = exp{} 18’} C4(8),

where |3)* = Z 18,]%, leads to the characteristic functions C3, CN, and C# in resp. sym-

metric (or W e»l) normal, and antinormal ordering. Especially, (3.3) implies for the vacuum

Wvac
CocB) = exp{-3187} . CL(B) =1, CL(B) = exp{- |6} .

Fourier transformation of C7, : €% — €, where j € {S, N, A}, finally gives the W~ (or
Wigner-), P-, and Q-representation of our photon state w, respectively, [12], [14]. Fourier
transforms, however, may lead to completely singular distributions. This restricts the use-
fulness of the W—-, P—, resp. @-representation for a photon state w € S.
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The P—Representation: Decomposition into Glauber States

The P-representation determines the decomposition of the state w € S into the Glauber
states w<, h € E, from Subsection 3.4.1. Here we renounce on mathematical rigorousity.
Suppose the P-representation of the state w to be given by the (possibly non-positive)
measure p on E = CV. The Fourier (back-) transform fa(f) = [, exp{i\/@ Re(h | f)} du(h)
agrees (up to some factor in the argument) with the normally ordered characteristic function
of w, that is, C, = Cyac fi- With formula (3.7) we arrive at the decomposition

iy = /wf dp(h) (A.5)
E

for our state w € S. Obviously, the associated density operator p, on Fock space is given by
the (possibly non—positive) “mixture” p, = [ |G(h)){(G(h)|du(h) (cf. [27, Section 8.2]).

If 11 is a (positive) probability measure on E, then (A.5) indeed defines a regular state
w € &, which is a genuine (convex) mixture of the Glauber states. In this case of a positive
P-representation, the state w commonly is denoted to be classical. Thus classical photon
field states on W(E) are in one—to-one correspondence with the probability measures p on
E — the statistical states of the “classical meachanical system” with phase space £ —, or
by Bochner’s theorem [26, Theorem IX.9] with the continuous, normalized positive-definite
functions fi : E — C on the additive group E (Fourier transform of pu).
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