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Classical Representations for Quantum-like Systems through
an Axiomatics for Context Dependence

By Bob Coecke

TENA, Free University of Brussels, Pleinlaan 2,
B-1050 Brussels, Belgium

(24.VI.1996, revised 14.VIII.1996)

Abstract.  We introduce a definition for a ’hidden measurement system’, i.e., a physical entity
for which there exist: (i) ’a set of non-contextual states of the entity under study’ and (ii) ’a
set of states of the measurement context’, and which are such that all uncertainties are due to a
lack of knowledge on the actual state of the measurement context. First we identify an explicit
criterion that enables us to verify whether a given hidden measurement system is a representation
of a given couple X, £ consisting of a set of states ¥ and a set of measurements £ (= measurement
system). Then we prove for every measurement system that there exists at least one representation
as a hidden measurement system with [0, 1] as set of states of the measurement context. Thus,
we can apply this definition of a hidden measurement system to impose an axiomatics for contexi
dependence. We show that in this way we always find classical representations (hidden measurement

representations) for general non-classical entities (e.g. quantum entities).

1 Introduction

In [1], Aerts introduced the 'hidden measurement approach’ to quantum mechanics. He
considered the quantum state as a complete representation of the entity under study, but he
allowed a lack of knowledge on the interaction of the entity with its measurement context
during the measurement. This idea can also be put forward as follows: with every quan-
tum measurement corresponds a collection of classical measurements (called hidden mea-
surements), and there exvists a lack of knowledge concerning which measurement is actually
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performed'. Explicit "hidden measurement models’ have been introduced for some ’typical’
quantum systems (see [1], [2], [4], [5], [6], [8], [10] and [12]).

In this paper, we apply these idea’s within a much more general framework. In stead of
only supposing the existence of a set of states for the physical entity (denoted by ¥), we also
suppose the existence of a set of states of the measurement context (denoted by A) which
corresponds with the collection of hidden measurements. For an as general as possible class
of systems defined by a set ¥ of states and a set £ of measurements (called 'measurement
systems’ and abbreviated as m.s.) we will prove that there exists an equivalent representation
as a 'hidden measurement system’ (abbreviated as h.m.s.) such that the probabilities that
occur are due to a lack of knowledge on the actual state of the measurement context. In this

way we find for every m.s., and thus also for quantum mechanics, a classical representation
as a h.m.s.

In section 3.3 we illustrate how an additional structure on the m.s. (for example, the
geometric structure of quantum mechanics) can be induced on the h.m.s. in a natural way.
Thus, the classical representations that we consider respect the symmetries of the given
entity. We also identify the criterion that enables us to verify whether a given h.m.s. is a
representation of a given m.s. (see section 4.2). Such a criterion is an essential tool for any
further study that uses this '’hidden measurement axiomatics’ for context dependence. In
[10] and [11] we have build a complete classification of all possible h.m.s.-representations for
a given quantum m.s., starting from this criterion.

For a general definition of the basic mathematical objects that are used in this paper
(o-fields, o-morphisms, probability measures, measurable functions etc...) we refer to [7]
and [24]. We mention that from a mathematical point of view, the representation that
we introduce in this paper coincides sometimes with Gudder’s proof on the existence for
contextual hidden variable representations® of systems described by orthomodular lattices
(see [17]). A first theorem on the existence of a hidden measurement representation for
finite dimensional quantum mechanics was contained in [1]. A generalization of this theorem
to more general finite dimensional entities can be found in [3]. The specific case of mixed
states was considered in [9], and the general proof for the existence of a hidden measurement
representation for infinite dimensional entities can be found in [13]. Finally, we remark that
the results presented in this paper (except for section 3.3) where made known in [10].

2 Assumptions of the approach

In this section we consider a situation when there is a lack of knowledge concerning the
interaction of the entity under study with its measurement context, i.e., when the state®

'For a general physical and philosophical background of the idea of hidden measurements we refer to [1],
(3], [5] and [10].

For the debate on this kind of representations we refer to [16], [19] and [26].

3We exclude the situation of a lack of knowledge concerning the state, i.e., if we write 'state’, we mean
‘pure state’. For a well-founded definition of state we refer to [21].
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of the entity does not determine the outcome anymore. In such a case, when we perform
a measurement e on an entity in a state p, we might even be lucky if we manage to find
a formalizable statistical regime in the occurring outcomes. As a consequence, a general
theoretical treatment of these measurements is a priori not possible. Nevertheless, after
stating a few reasonable assumptions, it is possible to construct a framework to study these
situations:

Assumption 1 There exists® a set of possible descriptions of the measurement context on
the precise time that we decide to perform the measurement, i.e., there exists a set of rel-
evant’ parameters for the measurement context. We call this set of relevant parameters the
'states of the measurement context’.

Assumption 2 The result of a measurement, which is the result of the interaction between
the entity and the measurement context, is completely determined by the state of the entity
and the state of the measurement context, i.c., there is a ‘deterministic dependence’ on the
initial conditions.

Assumption 3 There exists a statistical description for the relative frequency of occurrence
of the states of the measurement context during the measurement.

We suppose that all these assumptions are fulfilled. In the next sections, we will denote
the set of states of the measurement context as A. For a fixed state of the measurement
context A € A, the measurement process is strictly classical® (because of the deterministic
dependence), and thus, for every such strictly classical hidden measurement there exists a

strictly classical observable:
oa: L — O (2.1)

Where ¥ is the set of states of the physical entity and O, is the set of possible cutcomes
of measurement e. Thus, we have the following set of strictly classical observables that
correspond with the different possible states of the measurement context:

®y = {oald € A} (2.2)

Since there exists a relative frequency of occurrence for states of the measurement context,
there exists a probability measure:

HA - B,\ — [0, 1] (23)

4We remark that ’existence’ is not equivalent with ’knowledge’. Thus, we don’t have to know the set of

possible descriptions of the measurement context.
SWe use ’strictly classical’ in stead of ’classical’ since we exclude the situations of unstable equilibriim
that occur in most classical theories.
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Where B, is a o-field of subsets of A. Thus, we are able to compute a probability defined
on subsets of the set of outcomes, for every given initial state, i.e., we obtain an ’outcome
probability’ for every measurement e on the entity in a state p:

Pye:B. — [0,1] (2.4)

Where B, is a o-field of subsets of O.. In fact, we have summarized, and represented, the
'unknown but relevant information’ of the measurement process (i.e., all possible interactions
during the measurement, for all possible initial states), in a couple consisting in: a set of
strictly classical observables ®, and, a probability measure ps defined on these observables.
In the last section of [11] we illustrate how these mathematical objects are encountered in
Aerts’ model system for a spin-3 quantum entity.

3 An axiomatics for context dependence

In this section we translate the assumptions of the previous section in an axiomatic way.

3.1 Measurement systems (m.s.)

We characterize the physical entities that we consider by the following objects:
e a set of states ¥ and a set of measurements £.
e Ve € £, a set of outcomes O, represented as a measurable subset of the real line.

e Vp € ¥, Ve € £ a probability measure P, : B, — [0,1], where B, are the measurable
subsets of O,.

We call ¥, € a m.s. and denote the collection of all m.s. as MS. Let Ogf = UeeeQOe, Be =
{B € B.le € £} and Pg = {B C O.|e € £}. For a fixed set of outcomes O and a fixed set
of states ¥, the set of all £,€ € MS with Og C O is denoted as MS(X,0). If £ contains
only one measurement e we call it a one measurement system (abbreviated as 1m.s.), and
we denote it as ¥,e. The collection of all 1m.s. is denoted as MS,. To summarize all
probability measures that characterize a m.s. within one mathematical object we introduce
amap Pyge: X xExBg — [0,1], which is such that Vp € ¥,Ve € £: P, is the trace of Py ¢
for a restricted domain {p} x {e} x B., and for all B € Bg:

P,e(B) =P e(BNO,) (3.1)

For this collection of m.s. we express in the following definition the relation ’... is repre-
sentable as ...” in a mathematical way.
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Definition 1 Two m.s. ¥,& and ¥'. & are called mathematically equivalent (denoted by
Y, E ~ Y E) if there exist two maps ¢ : ¥ — X and n: € — &', both one to one and onto,
and if Ve € £, there exists a o-isomorphism v : B, — B,y such that:

¥p € N,VB € B, : P, (B) = Py (o) (v(B)) (3.2)

Clearly, theorems on the existence of certain representations of a m.s. can be expressed
in terms of mathematical equivalence. We end this section the notion of "belonging up to
mathematical equivalence’. Let £,€ € MS and N, N’ C MS. If there exists ¥/, £ € N such
that £/, & ~ 2. £ we write:

S.£eN (3.3)

3.2 Hidden measurement systems (h.m.s.)

In the following definition we introduce these m.s. that are related to parameterized sets of
‘compatible’ strictly classical observables, i.e., strictly classical observables with a common
set of states and a common set of outcomes.

Definition 2 ¥, & € MS is called “strictly classical’ if Ye € &, e s a ‘strictly classical
measurement’, i.e., Vp € VB € B, : P, .(B) € {0,1}.

If ¥, &€ is a strictly classical m.s. then, Ve € £ there always exists a strictly classical observable
we : ¥ — O, such that Vp € ¥ and VB € B, we have P,.(B) = 1g[p.(p)] (15 is the
indicator® of B). We use this property in the following definition, where we introduce a
parameterization of a set of strictly classical measurements with common sets of states and
outcomes. In this definition we denote P, ., as P, \ and the set of all subsets of the set A as

Ph.

Definition 3 Let € = {e)|A € A} and let O¢ be the outcomes of ey forall X € A. ¥, € € MS

is called a 'N-m.s.” if there exists a set

Q= {L,Q,\ 1Y — Og‘/\ . *\} (34)

which is such that Vp € ¥, VA € A\VB € Bs : P,\(B) = 1g[pa(p)]. We introduce a map
AN : ¥ x Pe — Py such that Vp € E,VYo € O¢,VB € Pe : AA) = {) € Alpa(p) = o} and
AAE = UsepAA, (AA] 15 the image of (p,{o}) and Af\f the image of (p, B)).

One easily verifies that we are able to restrict the domain of AA to ¥ x Be. To avoid
notational overkill, we apply the same notations for the map AA when defined on ¥ x B¢ as

®The indicator 1p : O, — {0, 1} is such that Vo € B : 1p(0) = 1 and Yo € O,\B : 15(0) = 0.
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when defined on ¥ x Pg (which of the two domains we consider will follow from the context,
or will be specified). For a fixed state p € ¥, we can consider AA, : Bg — Py, i.e., AA with
the domain restricted to {p} x Be. For every fixed state p € ¥ we can introduce ¢, : A — O¢
which is such that YA € A : ¢,(X) = pa(p). Let AA(E x Be) = {AAS|p € B,VB € B¢}

Proposition 1 Let By be a sub-o-field of Py and let AA(X x Bg) C By. For all p € X,
AN ExBg — By defines a o-morphism, namely AA, : Be — By, andVp € ¥, ¢, : A — O¢
is @ measurable function.

The proof of this proposition is straightforward and therefore omitted.

In the following definition we introduce a probability measure on a collection of strictly
classical observables in the following sense: we consider a new (in general non-classical)
measurement by supposing that one of the strictly classical measurements corresponding with
the strictly classical observables occurs with a given probability. The idea of defining new
measurements by performing one measurement in a collection has been introduced by Piron
(see [21] and [22]). The idea of creating non-classical measurements by considering classical
measurements, equipped with a relative frequency of occurrence, has been introduced by
Aerts in his model system for a spin-1 quantum entity (see [1] and [3]).

Definition 4 A 'A-hidden measurement model” ¥,E, up consists in:
i) a A-measurement system ¥, E
11) a probability measure pp : By — [0, 1] that fulfills AN(E x Bg) C By

Define e, as the measurement which is such that a strictly classical measurement ey € £
occurs with the probability determined by yu, t.e., VB € By, the probability that X € B is
pualB). The Im.s. X, e, related to ¥, & pp ts called a ‘pa-h.m.s.”. If pa ts not specified, but
A s, we call it @ 'N-h.m.s.”. If pa nor A are specified, we call it a 'h.m.s.’

Thus, every A-hidden measurement model defines a new one measurement system if we
suppose that py expresses a lack of knowledge concerning which ¢, € £ actually takes place.
Since in general, the measurements e, are not strictly classical, they are related to non-
classical observables. In this definition one easily sees that A can indeed be interpreted as
the set of states of the measurement context in the sense that for every given A € A, ey
determines an interaction between the entity under study and the measurement context.

Proposition 2 Let ¥,¢, be the Im.s. related to a A-hidden measurement model ¥, &, jip
and let P, ., be the trace of Py ., for a restricted domain {p} x {e ,} xBe. Vpe £,VB € Bg¢:

Pre (B) = na(AAT) (3.5)
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Proof: Since AA(Y x Be) C By, Py, is well defined:

PE,C“

¥ % Bg s} [0,1]

AN N\ o
By

Vp € E,VB € Be: P, (B) = pa({\ea(p) € B}) = [LA(AAE). 5

Define the set of all h.m.s. in MS, as HMSy, the set of all A-h.m.s. in M8y as HMSy(A),
and the set of all gp-h.m.s. in MSy as HMSq(pp). In the following definition we extend
Definition 4 to h.m.s. with multiple non-classical measurements, all of them defined in the
same way as we defined ¢, in Definition 4, i.e., we suppose that Ve € £, there exists a set of
classical observables, paramertized by a set A of states of the measurement context.

Definition 5 Let ¥,€ € MS. IfVe € € : £,e € HMS, we call £, a h.m.s.”. [fVe €
E:Y,e € HMSy(A) we call £,€ a A-h.m.s. IfVe € € : ¥, e € HMSp(pa) we call ¥,€ a
pp-h.m.s.

The set of all h.m.s. is denoted as HMS. For a fixed set A, we denote the set of all A-
h.m.s. as HMS(A). For a fixed probability measure i, we denote the set of all yx-h.m.s.
as HMS(pa) (when the specification of A is not relevant, we will also use the simplified
notation HMS(p)). Clearly we have HMS(py) € HMS(A) € HMS C MS. For a fixed
set of states ¥ and a fixed set of outcomes O we denote the set of all h.m.s. in MS(¥, O) as
HMS(X,0). Again for fixed sets ¥ and O we denote the set of all A-h.m.s. in MS(X, O)
as HMS(E, 0, A) and the set of all up-h.m.s. in MS(X,0) as HMS(X, O, up). For every
¥, € € HMS we can define a map AA : ¥ x & x B¢ — Py, such that Ve € £, the restriction of
this new map to ¥ x {e} x B, corresponds with the map introduced in Definition 3 and, such
that VB € Be : AAP, = AADBD¢ (we denote the restriction of this new map to {p} x {e} x B¢
as AA,.). The results of this section remain valid for this new map if Ve € £, we replace
AA by the map AA, : ¥ x Bg — P, (which is obtained by restriction of the domain of
AA : X X € x Be — P,), if we replace AA, by AA, . : Be — Py and if we replace ¢, by
@pe: A = O,

"We remark that the symbol £ which appears in Definition 4 (i.e., a A-set of strictly classical measure-
ments) 1s from a conceptual point of view completely different from the one which appears in Definition 5
(any set of measurements on an entity with X as set of states such that all ¢ € £ are defined in the same way
as we defined e, in Definition 4), i.e., for every e € £ of Definition 5 there exists a set of strictly classical
measurements ..
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3.3 Compatibility of the definition of a h.m.s. with the geometric
structure of quantum mechanics

[f there exists an additional structure on the set of all possible outcomes of a measurement
system®, one could demand that this additional structure induces a structure on A. In this
section we show how the additional structure in the description of a physical entity can be
implemented in a straightforward way within this framework. We consider the case of a
quantum entity submitted to measurements with a finite number of outcomes. We will show
that it suffices to have a h.m.s.-representations for only one of the measurements to obtain
a representation for all measurements. If £ consists of all measurements with n outcomes,
we can represent such a measurement by n eigenvectors pei,...,p.n and n corresponding
eigenvalues o 1,...,0.,. Consider one given measurement ey (with pg1,...,po, as eigenvec-
tors and o0g1,...,00, as respective eigenvalues) for which we have a h.m.s.-representation,
i.e.. there exist:

(I)A,O = {990,.\ DI {PO,lt ce -,p().n}l’\ € A} (36)

and

pao: By — [0,1] (3.7)

that characterize this h.m.s.-representation. Then, we can define a representation for every
e € £ in the following way:

(I)A.e = {\roc,.\ X — {pO.la v aPO.n} p— (-"FE 0 @pA\0© L’IC_I(P)I/\ = A} (38)

and
HAe = HAQ (3.9)
where [/, is the unitary transformation defined by Vi : p.; = Uc(po;). In this way, the

h.m.s.-representation clearly ‘respects’ the structure that characterizes this quantum entity.
For an example of the application of eq.3.8 and eq.3.9 we refer to Aerts’ model system which

can be found in [1], [2], [4], [6], [8] and [10], and which is also discussed within the formalism
of this approach in [11].

4 On the existence of h.m.s.-representations

Before we proceed we need to introduce some measure theoretical notations and lemma’s.
Nonetheless, to avoid a notational overkill in the main section of this paper, we have collected
all lemma’s and proofs in an appendix at the end of this paper.

SFor example, a partial ordering of the subsets of all outcomes and/or the implementation of spatial
symmetries.
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4.1 Some mathematical preliminaries and notations

First we will introduce and study a collection of mathematical objects that’ll play a crucial
role in the characterization of the h.m.s. in HMS, and thus, also in the criterion for the
existence of h.m.s.-representations which will be presented at the end of this section.

Definition 6 Let B be a Borel algebra, and let p : B — [0,1] be a probability measure.
Define B/p as the set of equivalence classes for the relation ~ on B, which is defined by:
B~ B & u(BAB')=0. We call (B, p) a measure space if B= B/u, i.e.:

{B|B € B,u(B) =0} = {0} (4.1)

Two measure spaces (B, i) and (B', i) are isomorphic (denoted as (B, ) = (B, 1)), if there
exists a o-isomorphism H : B — B’ which is such that VB € B : u(B) = p/(H(B)).

One can verify that B/p is again a Borel algebra, and that g induces a probability measure
on B/u. For a proof we refer to [7]. The Borel sets of [0, 1] will be denoted by By ) and the
Lebesgue measure by so1). The quotient By 1)/ g0, is denoted by Br and the probability
measure introduced on Bg by g1 as ur. If we consider the measure space (Bg, ug), we
omit the index R in pg (in Lemma 1 we will see that that this cannot lead to any confusion).
To characterize 'not to big’ Borel algebras we have the following definition:

Definition 7 We call a Borel algebra B separable if there exists a countable dense subset,
i.e., if there exists a set D = {B;|i € N} which is such that the smallest Borel subalgebra of
B containing D is B itself. We call a measure space (B, i) separable if B is separable.

Let M be the collection of all classes consisting of 1somorphic separable measure spaces, i.e.,
every M in M is a class of isomorphic separable measure spaces. In the appendix at the
end of this paper, we characterize M in an explicit way. On M we introduce the following
relation®.

Definition 8 Define a binary relation < on M by: M < M' ifV(B,u) € M and V(B', i) €
M/, there exists a o-morphism F : B — B’ such that VB € B: (/(F(B)) = u(B).

Clearly, it suffices to have one o-morphism [ such that VB € B : p/(F(B)) = u(B).
Proposition 3 The o-morphism F' in Definition 8 is one to one.

The proof of this proposition is straightforward and omitted. Denote the set of all integers,
smaller or equal then a given n € N as X,. Let B, be the Borel algebra of all subsets

°In [11] we prove that M, < is a poset, i.e., < is a partial order relation.
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of X, and let By be the Borel algebra of all subsets of N. Denote the class of all sets
isomorphic with X,, as X, the class of all sets isomorphic with N as Xy, and the class of
all sets isomorphic with R as Xg. Let X = U,enX,, U Xy U Xg. For a given set X € X,
denote the set of all subsets of X as Py. There exists a one-to-one map hy : X — [0,1],
and thus, we can consider Bxyr = {{z|hx(z) € B} | B € By} € Px. Clearly, hx is a
measurable function, i.e., we can consider the o-morphism fy : By — By induced by
this measurable function. Let MX be the collection of all triples (X, By, px ), where X € X,
By = Byg and px : By — [0,1] is a probability measure. In the following proposition we
prove a connection between the relation < on M and the existence of measurable functions
for objects in MX.

Proposition 4 Let (X,By, ux) and (Y, By, py) in MX, and suppose that the measure space
related to Bx and px belongs to My, and the one related to By and puy belongs to My . If
My < My, there exists a measurable function f 1Y — X such that the related o-morphism

F: By — By fulfills VB € By : ux(B) = uy (F(B)).

For the proof of this proposition we refer to the appendix at the end of this paper.

4.2 A criterion on the existence of h.m.s.-representations

In this section we identify an explicit criterion that enables us to verify whether a given
h.m.s. is a representation of a given m.s. This criterion will be the main key in the proof on
the existence for a h.m.s.-representation for every m.s. Moreover, as it has been shown in
[10] and [11], this criterion also enables us to build a complete classification of all possible
h.m.s.-representations for a given quantum-like m.s. Nonetheless, in this paper we only want
to show that our definition for context dependence can be imposed on every m.s.

If no confusion is possible, we write u € MX (or gy € MX) in stead of (A, B,,, pa) € MX.
Consider ¥,€ € MS with an event probability Ps e : ¥ x € x Be — [0,1]. Vp € ¥ Ve € £
we denote B./P,. as B, ., and the induced probability measure on B,, as p,.. VY, € €
MS, (B,., jtpe) is a separable measure space for all p € ¥ and for all ¢ € £, and thus,

(Oe, Be, By ) € MX.

e Let M, . be the unique class in M such that (B, ., jt,.) € M.

o VE.£ € MS we introduce: AM(E,€) = {M,.|p€ L, e € &}

For every ¥, e € HMS, there exists pp such that £, e € HMSg(ua). Denote Ba/pa as B,
and the induced probability measure on B, as u. Analogously, if ¥, & € HMS, we can define
B,,p for all e € £. For ¥,€ € HMS(pa), there exists one unique measure space (B, pt),
which is called "the measure space related to the py-h.m.s. ¥, €. For ¥, & € HMS(A), we
have to consider a measure space (B, pn) for all e € £.
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o Let M, be the unique class in M such that (B,,u) € M,..

For a h.m.s. in ¥,€ € HMS(A) we have to consider one measure space B, u for all e € £.
For every A € X we introduce the following subset of M:

e M, = {M,|us € MX}
We also introduce the following relation on subsets of M.

Definition 9 VN, N’ C M:
N<N&VMeNIMeN MM

We’ll denote N < {M} as N < M and {M} < N as M < N. In the following definition we
introduce a subcollection of HMS that contains these h.m.s. in which appear only separable
measure spaces.

Definition 10 Let HMS; be the collection of all ¥,¢ € HMSy such that (B, u) is a
separable measure space and let HMS® be the collection of all £,€ € HMS such that
Ye€ £: ©,e € HMS;.

In the following section, we will prove that it suffices to consider measure spaces contained
in classes in M, and this automatically allows us to limit ourselves to h.m.s. in HMS?®.

Now we identify the necessary and sufficient condition for the existence of a pa-h.m.s.-
representation in HMS(X, O¢, ua ), for a given m.s. in MS.

Theorem 1 Let £,& € MS and pp € MX:
S, E £ HMS(E,Og, pip) & AM(E,E) <M, (4.2)

Proof: = Let ¢ € £. According to Definition 5, there exists £, &', s such that ¥, e ~ ¥, ¢,,.
Thus, there exists a o-morphism v : B, — Bg: which is such that VB € B. : P, (v(B)) =
P,o(B) (¢ : ¥ — Y is the identity, n : {e} — {e,} is trivial). Moreover, there exists AA, . :
Be — By (see Proposition 1) which is such that VB € Be : pa(AA, (B)) = P (BN O,)
(see Proposition 2). Since Bg: C Be, we can consider the map [AA, ov] : B, — By. Clearly,
[AA, 0] is also a o-morphism and fulfills VB € B, : ua([AA, .0 v](B)) = P, .(B). Define
F,:B. — B, and F, : B, — B, by the following scheme:

v Alpe
B —* Bg-' ¢ BA

BN el L LE
B, — [031] — B,
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Thus, VB € B, : p([F, 0 AApe o v)(B)) = P,.(B). For all B € B, ., there exists at least
one By € B such that F,(B,) = B. Let B] = [F,0 AA,. o v|(By) € B,. If B, # B; and
Fy(B;) = B, then P, .(B1AB,;) =0, and thus

p([FuoAApeov](B1)A[F, 0 AA, .0 V](Bs)) =
p([FuoAA, .0 v](B1AB;))
P, (BiAB;) = 0

By definition of F, there exists only one By = [F, 0 AA,. 0 v|(B2) = [F,0 AA, . 0 v](By).
Thus, we can define F, : B,. — B, such that VB € B, : F,(B) = [F,0 AA,. 0 v|(B') &
B = F,(B’).
v AApe
Be T Bgr — BA

Fo \ F, /F,

Bye — B,

Let B' € B, be such that F,(B) = [F, o F},](B’). We have, u(F,(B)) = p([F, o F,)(B')) =
#[Fu0 ANy 0 V)(B') = pa([AApc 0 V)(B')) = P, (v(B')) = Bpo(B') = iy, e( B), and thus,
Definition 8 is fulfilled. As a consequence, M, ., < M, and thus, AM(X,€) < M,,.

< Lletp€ Yande € €. Since M, < M, and, since both (O, B, P,.) and (A, Ba, pp ) are
in MX, we can apply Proposition 4. Thus, there exists a measurable function f, : A — O,
such that the related o-morphism F, : B, — B, fulfills VB € B, : P, (B) = pa(Fp(B)).
Define AA, : ¥ x Bg — By such that VB € Bg : A/\BlE = F,(O.NB). Define p) : ¥ — X such
that Vp € B: wa(p) = fo(A). We have ¥p € £: AAE = A]d € A, £,()} = (AX € A, a(0)}-
Thus, there exists a set of strictly classical observables £,. Thus, AA. defines a A-m.s. Still
following Proposition 4, VB € B, : P,.(B) = ua(F(B)), and thus, VB € Be : P,.(B) =
pa(F(Oc N B)) = ua(AAB,) (see eq.3.1). If we identify e with e,, the measurement related
to X, &, ua, we obtain ¥, e £ HMS( (X, O¢, pp ), and thus, £, € £ HMS(X,O¢, pp). ©

An alternative version of this theorem expresses the sufficient and necessary condition for
the existence of at least one representation in HMS®(X, O, A):

Theorem 2 Let £,€ € MS and A € X:

¥, € £ HMS*(,0¢,A) & AM(E, €) < My (4.3)

Proof: £,€ £ HMS®(X,06,A) & Ve € £ : £,e s HMSS(,0¢,A) © Ve € £ 3pa
Y, e EHMS(X,0¢,up) & Ve € £,3up : AM(E,e) S M, & Ve € £,IM, € My :
AM(Z, ) < M, & Vee £: AM(Z,e) < My & AM(E,E) < M,. o
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4.3 A proof for the existence of h.m.s.-representations for all m.s.

In the following theorem we prove that the axiomatics for the dependence on the measure-
ment context imposed by the definition of a h.m.s. implies no restriction for a general m.s.,
i.e., every m.s. can be represented as a h.m.s., with [0, 1] as set of states of the measurement
context.

Theorem 3 VI, £ € MS: £, ¢ HMS® (X, O, [0,1]).

Proof: According to Lemma 6 we know that M < Mpg. Tor all £,.& € MS we have
AM(E, €) < M. Thus, AM(E, €) < Mg, and thus, £, € £ HMS(Z, O¢, o) € HMS®(E, 0

5 Conclusion.

Every m.s. in MS has a representation as a h.m.s. in HMS, and thus, also quantum mechan-
ics can be represented in this way. As a consequence, the h.m.s.-formalism that is presented
in this paper can be seen as an ariomatics for general physical entities for context depen-
dence that leads to a classical representation of non-classical systems. We also identified
the general condition for the existence of a h.m.s.-representation with A as set of ’states
of the measurement context’, or with u, as relative frequency of occurence of these states
of the measurement context. If no further restrictions or assumptions are made on A, we
only obtain restrictions on the ordinality of A, and on the specific probability measure up
that we consider. A lot of problems are still to be solved, for example, how precisely should
this h.m.s.-formalism be fitted in the more general operational formalisms for quantum me-
chanics like Piron’s approach (see [21] and [22]) or the Foulis-Randall approach (see [14]
and [15])'°. Still, we think that the approach presented in this paper certainly leads to a
successful extension of the contemporary quantum framework as well from a philosophical
as from a mathematical point of view.

6 Appendix: some measure theoretical lemma’s

Let B and B’ be two Borel Algebras. Denote their direct union'! by BOB’, i.e., BOB' =
{(B,B")|B € B, B' € B'} equipped with three relations:
(B, B))U(Bs, By) = (BiU By, B U By)
(Bi,B')N (B, B,) = (BN By, B NB)
“(By,B)) = (‘B By)

1%More recently, Aerts introduced an operational approach, namely the closure structure approach (see
[3], [6] and [25]), which is intrinsic compatible with the general idea of hidden measurements.
1A more general construction, and also more details, can be found in [24].
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In the following definition we introduce an extension of this notion of direct union of Borel

algebras to the collection of measure spaces, i.e., we introduce a way to 'compose’ measure
spaces.

Definition 11 Let (B, u) and (B', i') be measure spaces, a €]0,1[ and ,u(-?p/ :BOB' — [0,1]
such that V(B,B') € BOB' : pC-aB,u’(B,B’) = (1 —a)u(B) + ap'(B’). Define the weighted
direct union (B,,u)@(B',,u') of (B, i) and (B', ') as the measure space'® (BOB',u@Dy’).

As in section 4.1, we denote the set of all integers, smaller or equal then a given n € N as X,.
Let B,, be the Borel algebra of all subsets of X,, and let By be the Borel algebra of all subsets
of N. We introduce the following sets of monotonous decreasing strictly positive functions:

M, = {m:X,— [0,1]|im(i) =1Lit<j=m(j) <m(1)}
My = {m. ‘N — [0, I]IZm,(’l) = 1= j = m(]) < 77’2(2)}

1€EN

For all m € M, U My we define a probability measure p,, : By — [0,1] by Vi : pn({2}) =
m(1). We also introduce the following notations for some classes of measure spaces:

Mg = {(B,p)|(3,,u) = (Bm,,u)}

VN € NU{N},Vm e My :

ME = {(Bv .u)l(Bnu) = (BNaﬂm)}

VN € NU{N},Vm € My,Va €]0,1]:

%o = {(B.)I(B,u) = (Ba, u)Q (Bw, i)}

and also the following notations for sets of such classes:

My = {MZ | m € My}
Mg, = {My,| N e NU{N},m € My}
M = Unenu(nMN Uqejoaf Mr,o U { Mg}

The use of this symbol M (which we used in section 4.1 as a notation for the collection of

all classes consisting of isomorphic separable measure spaces) is justified by the following
lemma.

2One easily verifies that this weighted direct union is indeed a measure space.
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Lemma 1 The collection of all separable measure spaces is:

MR UnenuiNy Umemy My Uaejon My . (6.1)
Moreover, for every separable measure space (B, ), 3'M € M such thai (B, ) € M.

The proof is a rather long construction that uses Lemma 2, Lemma 3, Lemma 4 (see fur-
ther) and the Loomis-Sikorki theorem (see [20] and [23]). Since the content if the theorem
agrees with our intuition, and the proof of it doesn’t contribute in an essential way to the
understanding of the subject of this paper, this proof is omitted. An explicit proof with the
notations of this paper can be found in [10].

Lemma 2 If B is a separable Borel algebra with {B € B|B' C B = B' = 0} = {0}, then
B = Bg. Moreover, for every probability measure pp : B — [0, 1], there exists a o-isomorphism
F,:B — Bg such that VB € B : u(B) = ur(F.(B)).

Proof: This lemma is proved by Marczewski. For an outline of it we refer to [7] or [18]. e

Lemma 3 Let (B,p) be a measure space, By € B, a = u(By), B, = {B € B|Bn By = 0}
and B, = {B € B|BnN By = B}. Define two maps, y; : By — [0,1] and p, : B, — [0,1] such
that VB € B, : w(B) = MT(‘—%l and VB € B, : p.(B) = &(QE) Then, both (B, u) and (B,, u, )
are measure spaces. Moreover we have (B, p) = (B;,p:z)@a(B,-,/.tr).

Proof: One easily sees that B, (resp. B;) are Borel algebras, with By (resp. Bf) as greatest
element. By definition, g and p, are o-additive. Since u(By) = a and p(B§) = 1 — a, both
w; and g, are normalized. Thus, g and g, are probability measures, and thus, (B, y;) and
(B., it;) are measure spaces. We have to show that there exists a o-isomorphism H : B —
B/OB, such that VB € B,Y(B;, B,) € BOB, : (B,B,) = H(B) = u(B) = ;tg(-aB,u,(B;, B.).
Since VB € B we have: /.e,(?;tr(B N B, BN By) = (1 —ayu(BnN B+ au. (BN By) =
p((BNB§)U (BN By)) = p(B), we can define H by VB € B: H(B) = (BN B, BN By).

Lemima 4 A measure space cannol have an uncountiable subset of disjoint elements with a
nonzero probability.

Proof: Suppose that there exists such a set D. Let D; = {B|B € D, u(B) > %} Clearly,
D = U;enD;. Since D is uncountable, there exists n € N such that D, contains an infinite
set of elements. Let D! = {B;|t € N} be a countable subset of D,. We have u(Ugep,) >

1(UBepr,) = Sien t(Bi) 2 Sient =c0. @

Lemma 5 Let iy : By — [0,1] and py : By — [0,1] be two probability measures such
that Bjg1)/p1 = Bpoyy/p2 = Br. There exists a measurable function f:[0,1] — [0, 1], which
is such that the related o-morphism F' : B 1) — Bjoy) fulfills VB € Bjg ) : p11(B) = pa(F(B)).
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Proof: Let b € [0,1]. We prove that there exists ¢ € [0, 1] such that u,([0,z]) = b. Suppose
that r doesn’t exist. Let b_ be the supremum of all ¥’ € [0, b[ such that there exists z’ € [0, 1]
fulfilling p1([0,z']) = b'. Then, there exists an increasing sequence (b;); with for all : € N:
bi € [b- — 1/i,b_] and 3z; € [0,1] such that u,([0,z;]) = b;. Clearly, b_ is the supremum of
{b;]i € N} and (z;); is also an increasing sequence. Denote the supremum of {z;|: € N} as
z_. There are two possibilities z_ € {z;|¢ € N} and z_ ¢ {z;|s € N}. If z_ € {z;|¢ € N}
then U;en([0,z;] = [0,2_], and thus p;(Uien(0,z:]) = i ([0,z-]). If z_ & {z:|¢ € N} then
Uien[0, 2] = [0,z_[, and again we find p1([0,2_]) = i ([0,z-) = p1(Uien[0,z;]), since
w{{z-}) = 0. We also have for all : € N: p(]zi, zi+1]) = ([0, zis1]) — p1([0, z]). Thus:

p([0,2_]) = m(Uien[0,2:]) = ([0, 21] U (Vien]zi, 2i41]))
= ([0, z1]) + Y (i, zin])
ieN
= m([0,z1]) + D m([0,zia]) = D ([0, zi))
1eN ieN
= T (B = = B
ieN

Define by as the infimum of all &' €]b,1] such that 3z’ € [0,1] : p1([0,2]) = ¥’ (there exists
at least one such b since p;([0,1]) = 1). Then, there exists an decreasing sequence (b;);
with for all 7 € N: b; € [by, by + 1/¢] and Jz; € [0,1] such that u;([0,z;]) = b;. Denote the
infimum of {z;|: € N} as z;. Clearly, Nien[0,2:] = [0,24] and (z;); is also an decreasing
sequence. Thus:

p1([0,24]) = m(Nien(0,z]) = p1((Vien(0, 2:]°)°)
= 1 - (Uien]zi, 1]) = 1 = pa(Jz1, 1] U (Vien]Tigr, Ti]))

= 1—(u1(]z, 1)) + Z#](]wi+laxi]))

1eN
= 1—(1—=m(0,z])+ Z(#l([ovmf]) — 11([0,zi1])))
1eN
= 1-(1-b +Z(b,——b,—+1)) = by
1€N

For all 2" €]z_,z,[ we have pq([0,2]) > i ([0,2-]) = b-, i ([0,2']) < u1([0,24]) = by,
but, as a consequence of the definition of b_ and b,, there exist no z’ €]z_,z[ such that
p1([0,2]) € [b—,bs]. Thus we obtain a contradiction. As a consequence, z exists. For
all z € [0,1], define f such that u([0, f(z)]) = w2([0,2]). We can define a o-morphism
F: By — By, related to this measurable function. Thus, F([0,z]) = {y|f(y) € [0,z]} =

{ylfly) <z} = {y|p2([0,y]) < p1([0,2])} for all z € [0,1]. For all z;,z, € [0,1] such that
T < T2g:

F(]xla‘r?]) = F([Os*r?] \ [0,1‘1]) = F([O"rﬂ) \ F([O!ml])
= {ylpa((0,y]) < w1 ([0, 22])} \ {ylr2([0,9]) < ([0, z4])}
= Jy(z1),y(z2)]



458 Coecke

where y(z) is the smallest real in [0, 1] such that u([0,y(z1)]) = #1([0,2]) and y(z,) is the
largest real in [0, 1] such that u,([0,y(z2)]) = w1([0,z]). All this leads us to pa(F(]zq,z2))) =
ua(Jy(zr), y(z2)]) = pa([0,y(22)]) — p2([0,y(x1)]) = ([0, 22]) — pa([0,21]) = pa(Jar, z2)).
By definition, Bjg) is the smallest Borel subalgebra of P} containing {]a,b]|0 < a < b <
1;a,b € [0,1]}. This completes the proof as a consequence of the o-additivity of u, and pus,.
o

Lemma 6 M, < has a greatest ellement, namely Mg, 1.e., M < My

Proof: First we prove that VM, € Mg, : Mg, < Mg. Consider the Borel algebra’®
©O.enBr, and a probability measure g’ : ©Q;enBr — [0,1] which is defined by the rela-
tions VB € Bg (u is defined as in (Bg,pu)): p'(B,0,...) = (1 —a).u(B);4'(0,B,0,...) =
am(1).u(B); 1'(0,0, B,0,...) = am(2).4(B);.... One verifies that {B € QexBg|u(B) =
0} = {0} and that ©;enBgr is separable, i.e., Q;enBgr, p' is a separable measure space.
Clearly, there exists no B € Q;exBr with p'(B) # 0, and such that B' € Q;enBgr and
B' C B implies B’ = 0, and thus, (Q,enBg, ¢') = (Bg, 1) (see Lemma 2), i.e., there exists
a o-isomorphism H : Q;exBr — Bg such that VB € Q,enBr : ¢/(B) = p(H(B)). For
all B € By, define a map Xg : N — {0,/} which is such that Vi € B : Xg(i) = I and
Vig B: Xp(i) = 0. We define a map F : BeOBy — ©O,enBr by the relations VB € By :
F(B,0)=(B,0,0,...) and VB € By : F(0,B) = (0, Xg(1), XB(2), Xg(3),...). One verifies
that the o-morphism Ho F' : Bg© By — Bg fulfills the requirements of Definition 8 and thus
we have MY, < Mg. Along the same lines one proves that VM € Mg, : M7, < Mg
and that My U, .y M, < Mg. As a consequence M < Mg. o

We end this appendix with the proof of proposition 4.

Proof: Consider two o-epimorphisms Fx : Bx — By /ux and Fy : By — By /uy, which
induce a probability measure u : Bx/ux — [0, 1], respectively p’ : By /uy — [0,1]. Clearly,
(Bx/px.p) and (By /uy,p') are measure spaces. There also exists ' : Bx/pux — By /py
which fulfills Definition 8. Let Dy = {B € Bx|ux(B) # 0,B D B' € By = B’ = 0}. Since
Dyx is at most countable (see Lemma 4), there exists a smallest set X € U{X, |t € N} of indices
such that Dy = {B;|i € X}. Vi € N: let B! € By be such that Fy(B!) = [F'o Fx|(B;), and
B! = BA\(UZ{"'B!). Clearly, Uiexy B! = Uiex, B! and Vi,j € X : i # j = B/'n B! = 0.
Since Vi, € X : i # 7 = B;,NB; =0, we have Vi € X : B; N (Uji’l'lBj) = 0, and
thus, Fy(B!) N (szi"le(BJ’-)) = 0. As a consequence, Vi € X : uy(B/N (U;;TIB;)) =
W (Fy(B) N (Uj:'l-le(B;-))) = 0, and thus, Vi € X : Fy(B/) = Fy(Bf\(UjjzhlB;)) =
Fy(B!) = [F' o Fx](B:), what leads to uy(B!") = p/(Fy(B!)) = ¢'[F' o Fx](B!)) = ux(B;).
Define X; = UiexBi, X2 = X\ Xy, Y1 = Uiex B! and Y, = Y'\Yi. Suppose that px(X,) =
py(Y2) # 0. Consider By = {X,NB|B € By} and By = {Y2NB|B € By }. Following Lemma
2 and Lemma 3, we know that BY /u'y = By /uy = Br (i'y and py are the restrictions of py
to By, respectively py to By, multiplied by 1/uy (Y2), and thus, they correspond with f, in

130ne can easily prove that it poses no problem to extend the notion of direct union to countable sets of
Borel algebras. For more details we refer to [24].
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Lemma 3). This observation, together with the definition of MX, leads to BYy = By, = By ).
Let f: Y — X be such that Vi € X,Vy € B” : f(y) € B;. There are two possibilities:
py (Y2) = 0 or py (Y2) # 0. If py(Y2) = 0, Vy € Yi: we can choose f(y) in X,. If py(Y2) # 0,
we define f(y) for all y € Y3 by applying Lemma 5 (i.e., we identify By and B, with By,
iy with gy and py with py). We can define the related o-morphism F': By — By. We
find that Vi € X : F(B;) = B!, what leads to puy (£'(B;)) = py(B) = ux(Bi). VB € By :
uy (F(B)) = px(B), as a consequence of Lemma 5.
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