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Determination of the chiral pion-pion scattering
parameters: a proposal

By Gérard Wanders

Institut de physique théorique, Université de Lausanne,
CH-1015 Lausanne, Switzerland

Dedicated to Klaus Hepp and Walter Hunziker

(14.V.1996)

Abstract. An explicitly crossing-symmetric decomposition of the pion-pion scattering amplitudes
into low- and high-energy components is established. The high-energy components are entirely
determined by absorptive parts at high energies. They impose constraints on the behavior of the
low-energy amplitudes. The use of these constraints for the determination of the parameters in the
one- and two-loop amplitudes is proposed.

1 Introduction and statement of results

Chiral perturbation theory of the meson sector is an effective field theory providing a success-
ful description of low-energy strong interaction processes in terms of expansions in powers
of external momenta and quark masses [1]. These expansions are derived from an effective
Lagrangian which is itself a series of powers of the pion field, its derivatives and the quark
mass matrix. It contains effective coupling constants whose number increases dramatically
as one proceeds from the leading terms to higher order corrections [2]. The problem of
determining the values of these coupling constants arises. As one is dealing with an effec-
tive low-energy theory, part of the coupling constants is meant to encode the low-energy
manifestations of high-energy phenomena, therefore it must be possible to relate some of
the coupling constants to the characteristics of such phenomena. In the present context,
high energies are of course very modest, starting around 500 MeV. Order of magnitude es-
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timates can be obtained by evaluating contributions of the high-energy states (resonances),
by means of a Lagrangian describing these states and their coupling to the pion field [3].
This procedure amounts to saturating high-energy cross-sections by resonance contributions
in a narrow width approximation. Other, potentially more accurate, methods are based on
the use of dispersion relations which connect low- and high-energy processes [4, 5].

In this paper I follow the dispersion relation path and consider a special process, pion-
pion scattering. I address the problem of determining the parameters appearing in the chiral
amplitudes of this process. These parameters are related in a known way to the coupling
constants of the chiral Lagrangian. More precisely, [ am asking two questions:

1. Is it possible to decompose a pion-pion amplitude into a high- and a low-energy com-
ponent? The high-energy component should be determined by high-energy absorptive
parts and i1t should be possible to obtain the low-energy component from the chiral
absorptive part.

2. Is it possible to determine unambiguously the chiral parameters and, consequently, the
chiral coupling constants, with the aid of the high-energy components?

As crossing symmetry is a basic property of pion-pion scattering, I require the decom-
position into low- and high-energy components to be explicitly crossing symmetric. If one
works with dispersion relations, the main difficulty of question (1) comes from this last re-
quirement. In fact, ordinary dispersion relations are not convenient tools and a technique
developed thirty years ago turns out to be more appropriate [6]. It is based on the following
considerations. The isospin / s-channel amplitude 7' is a function of the three Mandelstam
variables s, t and u (/ = 0,1,2) [7, 8]. Crossing symmetry dictates the transformation of
the 7' under permutations of s, t and u. One defines three amplitudes G}, linearly related
to the T/, which are totally symmetric functions of s,¢,u (i = 0,1,2). Conversely the total
symmetry of the (; implies crossing symmetry for the 7. When expressed in terms of
appropriate new variables the &, cbey dispersion relations which do not spoil their sym-
metry properties. The low- and high-energy components L; and H; of (i; are obtained by
splitting its dispersion integral into low- and high-energy parts. The L; and H, are totally
symmetric and define a crossing symmetric decomposition of the /. Therefore the answer
to question (1) is affirmative.

A strategy for fixing the chiral parameters is to adjust them in such a way that the
chiral amplitudes TXI are good approximations of the true amplitudes T at points where
the chiral expansion has to be valid. I adopt and implement this strategy by requiring that
truncated Taylor expansions of T/ and T>f coincide at a conveniently chosen point where both
amplitudes are regular. Points in the Mandelstam triangle s < 4M2, t < 4AM? u < 4M? are
good candidates and I shall work with Taylor expansions around the symmetry point s = t =
u =4M?/3. The outcome will be a set of equations relating the parameters of the higher-
order terms of the chiral amplitudes to high-energy pion-pion scattering. Consequently the

answer to question (2) is also affirmative to some extent.

As a by-product of my investigations I obtain upper bounds for the Taylor coefficients of
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the high-energy components at the symmetry point. They seem to be compatible with good
convergence properties of the chiral expansion.

A similar method for the determination of pion-pion parameters has been developed
in [4]. The main difference between this method and my proposal lies in a treatment of
crossing symmetry which does not depend on the order of the chiral expansion.

The principal aim of this paper is to establish that the idea of obtaining restrictions on
the chiral coupling constants from high-energy processes can be implemented precisely and
unambiguously in the special case of pion-pion scattering. My technique cannot be extended
to other processes in a straightforward way. Here, I am mainly interested in questions of
principle and the practical application of my constraints is another task. Due to the poor
shape of our information on high-energy pion-pion scattering, it is doubtful that they really
can improve the results already obtained [4].

The paper is organized as follows. Section 2 contains an outline of the derivation of
dispersion relations for the totally symmetric amplitudes G;. Section 3 is technical: the
analyticity properties allowing Taylor expansions in two variables around the symmetry
point are established. The results are stated in two propositions. Constraints for the chiral
coupling constants are derived in Section 4. Explicit equations up to the sixth order of the
chiral expansion are written down. Technical details are presented in two Appendices.

2 Dispersion relations for totally symmetric
amplitudes

High energy components of the pion-pion amplitudes 77 will be defined with the help of
three totally symmetric functions G;(s,t, u):

Go(s,t,u) = %(Te(s,t,u)+2T2(s,t,u)),
T'(s,t,u) T t,u,s) T'u,s,t)

Al 't —
G](-S,,U) t—u + U—38 + s —1 )
1/, . 1
Gyls b)) = — (T (S’t’“)_T(t’s’“)) (2.1)
s—1t t—u S—u
1 Tl(t,u,s)_Tl(u,t,s) N 1 Tl(u,s,t)_Tl(s,u,t)
t—u u— 8 t—s u—3S8 s—1 u—t '

The Mandelstam variables will be expressed in units of M2, M, = pion mass (s +t+u =
4). No poles are produced by the denominators because T (s,?,u) is antisymmetric in ¢ and
u. The functions Gy, G; and G, have been introduced by Roskies [7]: Go is simply the

7% — 7% amplitude. Crossing symmetry is encoded in the total symmetry of the G;. The
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individual amplitudes T are reconstructed in the following way.

5 2 2
T(s,t,u) = —3—G0(s,t,u) + §(33 —4)Gy (s, t,u) — —2—,’,[35.:2 + 6tu — 16)G4(s,t,u),

T'(s,t,u) = (t—u) %Gl(s,t,u) + 3(33 — 4)Go(s,t,u)|, (2.2)
2 1 1
T*(s,t,u) = gGo(s,t,u) — 6(38 —4)Gy(s,t,u) + 2—7[352 + 6tu — 16]Ga(s, t,u).

The symmetry of GG; implies that it can be expressed as a function of two independent
variables which are totally symmetric and homogeneous in s, ¢ and u, for instance the
variables z and y defined by

T = ——11—6(st + tu + us), 3 = %stu. (2.3)
No singularities are induced by the change of variables (s,t,u) — (z,y): each singularity of
G; as a function of z and y is the image of a singularity in the (s,¢,u)-space. Analyticity
properties of G;(z,y) have been established [6, 8] by looking at its restrictions to complex
straight lines

y = a(z — 29) + Yo, a,zo,yo € C. (2.4)

As a function of z, at a fixed value of the slope a and for a given point (z,yo), the
restriction

Fi(z;a,20,y0) = Gi(z,a(z — z0) + yo) (2.5)

has simple analyticity properties. As long as a and yo belong to an z¢-dependent neighbor-
hood V(z¢) of the origin, F; is regular in the z-plane with a cut C(a,zo,y0). This cut is
the image in the z-plane of the physical cut {s,¢,u|4 < s < co}. The Froissart bound for
the asymptotic behavior of the pion-pion amplitudes implies a once subtracted dispersion
relation for Fy and F; and an unsubtracted relation for Fj:

F,(:L', a, To, yU) - (1 - 52'2)F£'(I13a3 Lo, yO)
(2.6)

- lf dé [“1— = (1~ ) —— | Disc Fi(€,0, 70, 10),
7 JC(a,z0,%0) (- {—n

where Disc F; is the discontinuity of F; across the cut C'. The relation (2.6) holds whenever
(a,yo0) € V(zo); it is an exact consequence of the general principles of quantum field theory.

My high-energy components of the pion-pion amplitudes will be obtained from a decom-
position of the right-hand side integral in (2.6) into low- and high-energy parts. To this end,
it is convenient to parameterize the cut C' by means of the energy squared s and rewrite the
right-hand side of (2.6) as an integral over s. The variable £ in (2.6) becomes a function of
s:

1

16(s + 4a) [5%(s = 4) + 64(azo — yo)] . (2.7)

6(‘9; a,To, yU) =
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The discontinuity of F; is related to the absorptive parts A’(s,t) of the pion-pion am-
plitudes evaluated at a (complex) value 7(s;a,o,y0) of the squared momentum transfer
E

T(s;a, zo,yo) = —;— {(s —4) — [(3 —4)? — . j_64a (as(s —4) — 16(azo — yo))] 5} . (2.8)

With these prerequisites the change of variable £ — s transforms (2.6) into

1

Gi(z,y) = (1 = 8:2)Gi(x1, 1) + Té?ﬁ ds- +14a {6 i =— [~ 6‘2)&—%] Bi(s,7). (2.9)

The relation (2.6) has been written in terms of G, the points (z,y) and (z;,y;) belonging
to the straight line (2,4). In the integral, £ and 7 denote the functions defined in (2.7) and
(2.8). The function B, is proportional to Disc Fi:

Bi(s,7) = (s — 7)(2s — 4 4+ 7)Disc F;(&; a, zo, yo). (2.10)

It is obtained from the absorptive parts A:

Bols,t) = (s = )2 —4+1) (4%s,1) + AX(5,0)
Byl d) = é(Bs —4) (QAO(S, t) — 5A2(S,t))
(s—=8)(2s—4+1) 1 "
+ [ Bi—1+s) 5(21&—44—3)] A'(s,t), (2.11)
By(s,t) = —é (2A°(s,t) - 5A2(s,t)) + g-if—j%i—s/il(s,t).

The construction of the domain V(zq) specifying the validity of relation (2.9) can now be
explained. It is based on the known exact properties of absorptive parts [9]. At fixed s
(4 < s < o0) Al(s,t) is an analytic function of ¢ which is regular in an ellipse E(s) with foci
at t =0 and t = —(s —4) and right extremity r(s) given by

(16
= for 4 < 3 < 16,
s—14
2
r{s) = 20 for 16 < 5 < 32, (2.12)
s
4s
ST for 32 <s< oo

The integrand in (2.9) is defined if 7(s;a,z¢,yo) always stays within the ellipse E(s).
This is precisely the condition defining the domain V() which I shall use:

V(zo) = {a,y0 | 7(s;a,20,y0) € E(s), 4<s<o0}. (2.13)
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Figure 1 illustrates the limitations resulting from the condition
(a,y0) € V(x0) (2.14)

for real values of the parameters a, x¢ and yo. Figure 2 displays the permitted values of the
slope a when o = —50 and yo = 1/27. If (2.14) is fulfilled, the relation (2.9) not only holds
true but the absorptive parts appearing in B; are given by their convergent partial wave
expansions. In this sense the integral in (2.9) only involves physical quantities.

Figure 1: Qualitative picture of the real (z,y)-plane. The real (s,t,u)-space is mapped
onto a domain bounded by the curves Cy and C_ (C- = image of the line s = ¢, ¢ > 4/3,
C, = image of the line u = ¢, ¢t > 4/3). The point s corresponds to the symmetry point
s=1t=u=4/3. The liney = —z is the image of s = 4. The curves B and A are the images
of the extremities of the semi-major and semi-minor axes of the ellipses E(s) (s > 4). For a
real slope a and a real point P(zg,yo), the restriction F; to the line d (y = a(z — z0) + yo)
has a real cut starting on the line y = —z if the point @ is below d. It starts on C_ if Q is
above d. The dispersion relation (2.6) is valid if d avoids the shaded region.

3 Defining high-energy components

From now on, I keep zo and y, fixed, and confine myself to the family of straight lines (2.4)
passing through the point (z¢,y0). Furthermore, the subtraction point (zy,¥) is identified
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AIma

W
-1 \ Re a
JH >

Figure 2: Domain W of the permitted values of the slope a defined via (2.14) for xy = —50
and yo = 1/27. The dispersion relation (2.6) is valid if a is within this domain; it contains
the circle |a|] = 1.

with (2o,v0) and the dispersion relation (2.9) is used as a representation of the function
G/i(x,y) in a domain of the (z,y)-space determined by condition (2.14) with a = (y —
Yo)/(x — x0). I choose (zg,yo) in such a way that this representation holds in a neighborhood
of the point + = 2, = —1/3, y = y, = 1/27, which is the image of the symmetry point
s =t =wu=4/3. The Taylor expansion of G; around this point can then be obtained from
the representation and the parameters of the chiral pion-pion amplitudes are constrained by
equating Taylor coefficients of the chiral G; with the coefficients derived from (2.9). This
explicitly crossing symmetric procedure will be explained in detail in Section 4.

The main aim of the present Section is the extraction of high-energy components from
equation (2.9), but it is first necessary to ensure that this equation really provides a repre-
sentation of (7; in a neighborhood of the symmetry point.

Proposition 1 If xy s real, =72 < x¢ < 3245/2, yo = ys, the function G(x,y) given by
equation (2.9) s regqular for (z,y) € M where M is the cartesian product D, x D, of two
disks Dy and D, in the x- and y-plane respectively, centered on x4, and ys.

The integral J(z,a) in (2.9) is primarily a function of x and a. Since zq and yo are fixed,
condition (2.14) defines a domain W for a. The integral J(z,a) is defined and regular if
a belongs to W and z is in C\C(a), C'(a) being an abbreviation for C(a, zq,yo) (the point
(2o, yo) being fixed, explicit reference to the zy- and yo-dependence will also be dropped in
¢ and 7). Information on the location of the cut C'(a) is needed in order to proceed. If the
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slope a is real, inspection of Fig. 1 shows that

§(s,a) 2 £(4,a0) (3.1)

if s >4 and —1 < a < ap. This means that for such values of a, the cut C(a), which is on
the real z-axis, is entirely on the right of the point = = £(4, ap) = (aozo — yo)/(1 + ao).

An inequality similar to (3.1) holds for complex slopes and in a more general context.

Lemma 1 If|a| < ag, ap < A?/4, A > 4, yo > 0 and o + yo < 0, the inequality
Re £(s,a) > €(A?, ap) (3.2)

holds for A* < s < .

This lemma follows from a straightforward computation.

Setting A = 4 in (3.2) one sees that the whole complex cut C(a) is on the right of the
line Re 2 = £(4, ao).

Lemma 2 The integral J(x,a) is defined and regular for Re * < £(4,a0) and |a| < ao if
To < 3x5/2 and ag < 1. The circle |a| = ao has to be inside the domain W.

To prove this lemma I choose ag in such a way that £(4,a0) = z,/2 = —1/6. With yo = ys
this gives
s + 2y,

ap = .
Ts —2$0

(3.3)
As, by assumption, o < 3z,/2, the condition ag < 1 is satisfied. One verifies that the circle
la| = ag is contained in W if =72 < 29 < 32,/2. Cousequently, Lemma 2 shows that J(x,a)
is regular in the product D, x D, of two disks, D, with center x = z, and radius p, = —z,/2,
and D, with center a = 0 and radius ag given in (3.3). This result implies Proposition 1.
Indeed, the representation (2.9) can be rewritten as

Gi(z,y) = Gi(zo,y0) + J (3:, = yo) : (3.4)

T — T

Ifz € D,,y € D,, the radius of D, being p, = ao((3z,/2)—z0), the slope a = (y—y,)/(x—x0)
verifies the inequality

'al - |y - ys‘
|z = o

< aog, (35)

because |y — y,| < p, and |z — zo| > (32,/2) — xo when |z — z,| < p,. Therefore a € D, and
the right-hand side of (3.4) is defined and regular. ]

The proof of Proposition 1 contains arbitrary choices leading to special, non-optimal,
values of the radii p, and p,. This does not matter because the role of Proposition 1 is simply
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to ensure analyticity in a product of two disks which, in turn, guarantees the convergence of
the Taylor expansion of GG; in both variables z and y.

The validity of (3.4) in a neighborhood of the symmetry point being established, a de-
composition of G; into a low- and high-energy component valid in that neighborhood can be
defined simply by splitting J(z,a) into an integral from 4 to A% and an integral from A? to
infinity. The high-energy component H; of G; is defined by

- 1 1 1
Hi(z,y) = 16_ij oo [f——x ~(1- 6 _xo] Bi(s, ) (3.6)

where a = (y — yo)/(2 — zo). The following proposition, an analogue of Proposition 1, holds

fOI‘ H.'.

Proposition 2 If
—T2 < x9 < _6L4A4(A2 —4) + GAQ + 1) Ty + Ys (3.7)

the function H; defined in (3.6) is regular in the union My of a family of cartesian products
of two disks:

My = U [Dz(pz) x Dy(py)]- (3-8)

Pz

The disks D, and D, are centered at ¢ = x5 and y = y, and their radit p, and p, are related
by

l 23— pr— 29
= =T [AYA? - 4) - 16A%(z, + p,) — 64y, 3.9
P = g (NN = 4) = 1607 (z, + p2) — 4] (3.9)
with
0< <—2(A2 4 1y (3.10)
=< 16 )= '

The proof of Proposition 2 is a paraphrase of the proof of Proposition 1. If Jy(z,a)
denotes the integral in (3.6), this function is defined if a belongs to a domain Wy obtained
from (2.13) by restricting s to values larger than A%. As a function of z Jy(z,a) has a cut
Cul(a):

CH(a):{x | z =£€(s,a), sEAZ}. (3.11)

Lemma 1 now indicates that the cut Cy(a) is entirely on the right of the line Re @ = £(A?, ao)
if la| < ap < (A%/4), £(A? ao) being given by (2.7). This quantity is the abscissa of the
intersection of the line y = ao(z — o) + ys with the image

64y = A? (A*(A? - 4) - 162z) (3.12)
of the line s = A% in the real (z,y)-plane.

By analogy with Lemma 2, it now appears that the integral Jy is defined and regular for
Re = < £(A?, ap) and |a| < ag, provided that the circle |a| = ag is within Wy. If 2o verifies
(3.7) this last condition is satisfied for ap < 1.
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The regularity of H,(x,a) for z € D, is ensured if the radius p, is such that

pr < E(A?, aq) — =, (3.13)

At a given p, this fixes the maximal slope aq:

AY (A% — 4) — 16A%(z, + p;) — 64y,
ap = . (314)
64(Is + Pr — IO)

As ap must be positive, p, has the upper bound (3.10). Furthermore, ag has to be smaller
than 1 in order to secure regularity with respect to a in D,, the disk |a| < ag, ag given by
(3.14). If p, is allowed to vanish, this imposes the upper limit in (3.7). As in the last step
of the proof of Proposition 1, the regularity of Jy(z,a) for (z,a) € D, x D, now implies the
regularity of H,(z,y) in D.(p.) x Dy(py,), the radius of D, being p, = ap(xs — p, — o). The
expression (3.14) for ap leads to the relation (3.9) between p, and p,. O

As the radii of convergence of the Taylor expansion of H; will matter, Proposition 2 goes
into greater detail than Proposition 1 although it is not aimed at being optimal.

Whereas (3.6) defines crossing-symmetric high-energy components of the T via (2.2), a
drawback of these components is that they depend on the choice of the subtraction point
(z0,Y0). This comes from the explicit appearance of xq in the integral of (3.6) (if z # 2) and
the (zo, yo)-dependence of £ and 7 (cf. (2.7) and (2.8)). In fact, after identification of (o, yo)
and (z1,y;) 1n (2.9), the right-hand side has to be independent of (zo,y0) and this leads to
constraints on the absorptive parts already noticed in [8]. If the integral is split into a low-
and a high-energy part, there is a coupling between low- and high-energy absorptive parts,
which [ shall not discuss.

4 High-energy constraints on the one- and two-loop
chiral pion-pion parameters

The outcome of the previous Sections is a representation of the symmetric amplitudes
Gi(z,y) in a neighborhood of the symmetry point. It provides a decomposition into low-
and high-energy contributions,

Gi(z,y) = Li(z,y) + Hi(z,y), (4.1)

where

, 1A 1 1
Li(z,y) = (1 = 6i2)Gi(xo,y0) + ;/{ dss nyp L . (1~ 612)5 — Bi(s,7) (4.2)

is the low-energy component and H; the high-energy component defined in (3.6). Proposi-
tion 1 applies to L;: this function is known to be regular in the domain M of Proposition 1.
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The high-energy component H; is certainly regular in the larger domain My defined in (3.8).
These analyticity properties imply that the Taylor expansion of G(z,y) around (z,,ys) in
the two complex variables  and y can be extracted from the representations (3.6) and (4.2).
[t converges in a domain containing M whereas the expansion of the high-energy component
converges in a larger domain containing My.

In order to derive well defined constraints on the parameters appearing in the chiral
amplitudes T){ from (4.1), I make two assumptions:

(i) The symmetric amplitudes G} obtained from the 2n-th order chiral amplitudes ap-
proximate the true symmetric amplitudes G; in a neighborhood of the symmetry point
up to higher order corrections.

(i1) The discontinuities Disc G} of the 2n-th chiral symmetric amplitudes approximate
Disc (¢; in a bounded interval above threshold up to higher order corrections.

This means that the representation (4.1) can be rewritten in the following way if A? is
conveniently chosen and if (z,y) is close to (zs, ys):

*(z,y) = L¥(x,y) + Hi(z,y) + higher order terms. (4.3)
The low-energy component L} is obtained from (4.2) where B; is replaced by Bf.

The precise value of A? plays no role in what follows. A special value I have in mind is
A? = 16 corresponding to an energy of 560 MeV.

Each chiral amplitude T;: is a sum of a polynomial in s, { and u and non-polynomial
terms exhibiting the cuts necessarily present in any scattering amplitude. According to
(2.1) the symmetric amplitudes G* have the same structure. The polynomial part of G} is
O(p*™ ) where n; is determined by n and depends on i. Although the G} do not have the same
asymptotic behavior as the GG;, they share the regularity properties we have established. The
coefficients appearing in the polynomials and in the non-polynomial terms are determined
by the chiral coupling constants.

By construction G} and L} have the same discontinuity across the cut C'(a) as long as
4 < s < A% This implies that the difference (G} — L) can be written as

Gi(x,y) — Li(z,y) = —(1 = 8i2) Gi(zo, yo) + Fi(x,y) + H{ (2, y) (4.4)

where P; is a low-energy component and HX is the high-energy component of G}. As P, has
no discontinuity across the low-energy part of the cut C'(e), it is regular in a domain which
is larger than M. Up to the sixth order of the chiral expansion P; is in fact a polynomial of
degree 2n;. The following discussion applies to that situation, i.e. I assume that n < 3 from
now on. I show in Appendix A how P; and H} are constructed.

Combining (4.4) and (4.3) gives

Pi(z,y) = (1 = 62)Gi(z0,y0) = Hi(z,y) — HX(z,y) + O (A1), (4.5)
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The strengths of the successive terms of the chiral expansion are measured by means of a
parameter A: a convenient choice is A* = M2/(167F?). The relation (4.5) has to hold in
a neighborhood of the symmetry point. For consistency H; and H are replaced by their
2n;-order truncated Taylor expansions @; and Q}:

Pi(z,y) + QX(x,y) = (1 — 62)Gi(z0,40) + Qilz,y) + O (\2+1) (4.6)

The left-hand side is entirely determined by the 2n-th order chiral amplitudes whereas the
right-hand side involves the pion-pion absorptive parts above A? and the value of G; at
the subtraction point if : = 0,1. Equating the coefficients of the left- and right-hand side
polynomials gives a series of constraints on the parameters of the chiral amplitudes. The
¢ = 0 and : = | constraints coming from the constant terms in (4.6) have a special status
because of the presence of G;(z¢,yo), the unknown value of GG; at the subtraction point. The
remaining constraints relate the chiral parameters to high-energy pion-pion scattering.

The regularity of H; in the family of products My implies upper bounds for the coeffi-
cients C, ,,, of its Taylor expansion

Hiw,y) = Y Ch (e = 2)"(y = o)™ (4.7)

If p. and p, are such that D,(p,) x D,(py) is inside My, |H;| is finite on the boundary
of this product of two disks and

: K;
S 4.8
| ' l (Pr)n(Py)m ( )
One checks that p, = p, = 9 fulfills the above requirements if o = —50, yo = y, and

A% = 16 (notice that these values are compatible with (3.7)). This leads to the simple but
severe bound |C} | < Ki/9"*™) . A more refined bound is derived in Appendix B. The
same bounds hold for the Taylor coefficients of HX. Inequality (4.8) is an important result:
it shows that the coefficients of the high-order polynomials @; fall off exponentially. In view
of (4.6) this indicates that a rapid decrease of the size of the high-order terms in the chiral
expansion is conceivable.

Finally I examine the nature of the conditions that equation (4.6) imposes on the one-
and two-loop chiral amplitudes [10, 11]. These amplitudes are obtained in a standard way
from a single function AX(s,t, u) which is the sum of a second-, fourth- and sixth-order term

AX(s,t,u) = N2 Ag(s, t,u) + A Ag(s, t,u) + A®Ag(s, t,u). (4.9)
The polynomial parts of these terms have the form
ASOI(S, t, ’U,) = dz0+ a8
AR (s tu) = aaot agns + asps? + agstu (4.10)
AEOI(S, t, u) = dagpot+ as18 t+ 06'282 + agstu + a6’4s3 + ag sstu

The non-polynomial parts are sums of products of polynomials with analytic functions of
a single variable s, t or u exhibiting the cut [4,00). At fixed az0 and a,, the parameters
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appearing in these non-polynomial terms are linear in the ag4, @ = 0,1,2,3. The 2n-th
order term £, ,, of the polynomial P; defined in (4.4) is either a constant or a polynomial of
first degree.

P0,2 = (,2; P1,2 = 01,2, Pz,z = 0,

P0,4 = apq t+ /30.4(53 - l‘s), P1,4 = 14, P2.4 = Q24,

Pos = aog + Pos(z — z5) + Yo6(y — ¥s), Pig =16+ Pre(z — ), Pyg = azg.
(4.11)

The «; 2n, Bi2n, Vi2n are linear combinations of the az, m.

The Qf”") have the same form as the Pim"): they are obtained from (4.11) by replacing
Qi 2n, - - - by new coefficients aff, ,... which are linear in the a4, at fixed a2 and az;.

From (4.11) and (4.6) one obtains two constraints at leading, second order, four con-
straints for the fourth-order one-loop amplitudes and six constraints for the one- and two-
loop sixth-order amplitudes. If the conditions involving the values of Go and G, at the
symmetry point are disregarded, two second-order constraints remain:

A (02,4 T 0’5{4) = H2($57 ys) + 0()‘6)’

(4.12)
XM (Boa + BY)) = (0Ho/0z)(zsys)-
At sixth order we obtain four conditions:
A (02,4 + a§f4) + A° (02,6 + aﬁfe) = Ha(zs,ys) + O(N®),
A (Boa + BE,) + 2 (Bos + BLs) = (0Ho/0x)(z4,us) + O(®),
NBH 4 X0 (Bue + Bfs) = (9H1/02)(z4,ys) + O(N®), )

Niydly + 3 (vo6 + 98%) = (0Ho/By)(zs,ys) + O(N®).
The fact the 8y 4 = 704 = 0 has been taken into account.

In the right-hand sides of these equations we have integrals over absorptive parts A’(s, 7(s))
evaluated at 7(s) ~ —(64/27)/8s(s — 4)?), s > A?, very close to the forward direction, if
o = —30, yo = ¥s.

Similar constraints have been derived in [5] and [10].

The equations (4.12-13) have not been analyzed in detail until now: this is beyond the
scope of the present work. This means that I end up with a proposal whose practicality
remains to be explored.
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Appendix A Constructing the polynomial P;: a sample
calculation

The polynomial part of AX produces a polynomial part of G¥ which appears unchanged in
the polynomial P; defined in (4.4). The main point is to find out the contribution to P
coming from the non-polynomial terms of AX. Up to sixth order, these terms have a simple
structure, some of them having the form

A(s,t,u) = R(s)f(s), (A.1)
where R is a polynomial and f an analytic function with a right-hand cut [4,00). As an
illustration I compute the terms of Py and L§ coming from A. This produces the following
term of G§: )

Go(s,t,u) = R(s)f(s) + R(t)f(t) + R(u)f(u). (A.2)
The functions f of the one- and two-loop amplitudes obey once-subtracted dispersion rela-
tions. This allows a decomposition of f into a low- and a high-energy component:

f(s) = fu(s) + fu(s), (A.3)
fu(s) = f(O)+%LA %"I?—f(:—) (A.4)
fuls) = ;]Aw%"l—‘:f#:) (A.5)

The high-energy term HY is simply obtained by replacing f by fy in (A.2). Equation (4.4)
becomes

~

Fo(z,y) = R(s)fu(s) + R()fu(t) + R(u) fu(u) — Lg(z,y) + Go(2o, yo)- (A.6)

Inserting the representation (A.4) and introducing Disc G¥ = R(s)Im f(s) into (4.2) gives
an explicit expression for the polynomial Fy:

- 1 A% d
Po=C+ f(0)[R(s) + R(t) + R(u)] — — j4 ?cr [S(s,o)+ S(t,0)+ S(u,0)]Im f(o), (A.T)

s

where S(s,o) is a polynomial in two variables:

S(s.0) = sR(s) — oR(o) (AS)

S —0

and the constant C is given by

Cz_lLMda[l x| Bteimm fe):

e o — Sp o — g o — Ug
For convenience, the Mandelstam variables are used instead of z and y.
The contributions of the term A of AX, defined in (A.1), to Py, Py, HY and HY are

obtained in a similar way, and so are the contributions of the other non-polynomial terms

of AX.
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Appendix B An upper bound for the Taylor coeffi-
cients C,, ,,

Replace (3.9) by the linear relation

P Py
”M P2

0 < pr £ p1, where p; and p; are such that D,(p.) x Dy(p,) belongs to My if p, and p,
obey (B.1). The Taylor coefficients C,, ,, defined in (4.7) have the upper bound

I" I—' n m
= n‘m (1 + ﬂ) (1 + —n—) : (B.2)
PRy PP n m

If one chooses A% = 16 and zo = —50, one can take p; = 12.3 and p; = 49.3. This gives an
extremely rapid decrease if m increases, n being fixed.

= (B.1)

|Cm| < Inf
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