Zeitschrift: Helvetica Physica Acta

Band: 70 (1997)

Heft: 1-2

Artikel: Perturbative renormalization with flow equations in Minkowski space
Autor: Keller, Georg / Kopper, Christoph / Schophaus, Clemens

DOl: https://doi.org/10.5169/seals-117019

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 20.11.2025

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-117019
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Helv. Phys. Acta 70 (1997) 247 - 274
0018-0238/97/020247-28 $ 1.50+0.20/0
© Schweizerische Physikalische Gesellschaft, 1997 I Helvetica Physica Acta

Perturbative Renormalization with Flow Equations in
Minkowski Space

Georg Keller Christoph Kopper, Clemens Schophaus
Rotherschlossli Institut fur Theoretische Physik
CH-6022 Grosswangen Universitat Gottingen

Bunsenstrafie 9
D-37073 Gottingen
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Abstract

We show within the Wilson renormalization group framework how the flow equation
method can be used to prove the perturbative renormalizability of relativistic massive
®3. Furthermore we prove the regularity of the renormalized relativistic one-particle
irreducible n-point Green functions in the region predicted by axiomatic quantum field
theory which ensures that physical renormalization conditions for the two-point function
can be imposed.
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1 Introduction

The theory of the renormalization group and of effective Lagrangians which was invented
by Wilson and his collaborators in 1974 [1] has proved to be a rich and powerful method
for many branches of quantum field theory and statistical mechanics. Adapting the Wilson
flow equations to perturbation theory Polchinski first applied this method to the renormal-
ization problem of perturbative field theory [2]. Instead of analysing any complicated di-
vergence/convergence properties of the general bare or renormalized Feynman diagram, this
access solves the problem of perturbative renormalizability by bounding the solutions of the
system of the first order differential flow equations.

In this paper we continue the programme of two of the authors to give mathematically strict
proofs of the perturbative renormalizability of any (by naive power counting) renormalizable
theory of physical interest using an improved version of Polchinski’s method. Namely we
show how the flow equation method can be extended to relativistic theories. The first paper
in this series modified and improved Polchinski’s proof of perturbative renormalizability of
Euclidean massive @3 [3]. Within the Euclidean framework this improved version of the flow
equation method was then applied to a vast range of renormalization problems of perturbative
field theory, e.g. the renormalization of composite operators [4], the Zimmermann identities
[4], the existence of the short distance expansion [5], Symanzik’s improvement programme
(6], the construction of the analytical minimal subtraction scheme [7], local Borel summability
for massive ®3 [8] and the renormalization of massless ®} [10] and QED [9],[11].

In order to treat the renormalization problem for relativistic theories one has to deal with
the fact that in momentum space n-point Green functions can in general only be interpreted
as tempered distributions. Therefore renormalization conditions, i.e. the requirement that
certain n-point Green functions and some of their derivatives take special values at given
points in momentum space which ensures that we are dealing with the right physical constants
in the renormalized theory, can only be imposed if supplementary regularity properties can
be verified. Restricting to a massive scalar field theory one has in particular to ensure that
the renormalized two-peint Green function has a pole with residue 1 on the physical mass
shell, i.e. the physical mass shell should be in a region of regularity of the renormalized
amputated two-point Green function.

In the literature we found two different ways to handle this problem. The first way uses
renormalization methods that directly lead to the right renormalization conditions for the
renormalized two-point Green function in every order of perturbation theory. Furthermore
it is shown that in every order the renormalized n-point Green functions fulfill the LSZ
axioms and therefore have the domain of analyticity predicted by axiomatic quantum field
theory [12]. Steinmann’s method for the renormalization of generalized retarded n-point
functions [13] and the renormalization method of Epstein and Glaser for time-ordered operator
products [14],[15] solve the problem using this strategy. The other possibility is to renormalize
first using some unphysical renormalization scheme like minimal subtraction with analytic
or dimensional regularization or to subtract at a point where regularity is evident, e.g. at 0
momentum in a massive theory, and to ensure afterwards that the required conditions can be
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satisfied in every order of perturbation theory with the help of finite renormalizations [16].
Therefore it is necessary to show that the renormalized n-point functions obtained through
the first step have appropriate regions of regularity for the finite renormalizations to be well-
defined. The singularity regions of unrenormalized Feynman integrals had been studied in
the context of analytical properties of scattering functions in S-matrix theories [17]. Because
at that time no method was known that rigorously solved the problems of renormalization,
it had to be taken for granted and was widely accepted that renormalization did not change
the regularity statements. In 1966 Hepp used the Bogoliubov-Parasiuk subtraction method,
which corresponds to imposing renormalization conditions at 0 momentum, to prove the
perturbative renormalizability of a relativistic massive scalar field theory [18]. Furthermore he
showed that for relativistic massive ®} physical renormalization conditions could be obtained
by a finite renormalization [18],[19]. He only made a short comment (to our knowledge)
on the possibility of transferring the results about singularity surfaces of unrenormalized
Feynman integrals to the case of renormalized ones. Chandler proved this to be true for
analytically renormalized Feynman integrals in 1970 [20]. Finally Rivasseau pointed out
to us the strategy of proving for renormalization in parametric space that the regularity
region of the renormalized two-point Green function is sufficiently large to ensure physical
renormalization conditions on the mass shell.

In this paper we also start from renormalization conditions at 0 momentum similarly as Hepp
did and prove the perturbative renormalizability of relativistic massive ®3. We impose ar-
bitrary conditions at 0 momentum and obtain renormalized n-point functions. (In fact we fix
particularly simple renormalization conditions at 0 momentum for simplicity of notation, but
the generalization to arbitrary renormalization conditions at 0 momentum can be carried out
without difficulties.) Then we show that these renormalized n-point functions have regularity
regions that admit physical renormalization conditions, i.e. the renormalization conditions
at 0 momentum can be chosen in such a way that physical renormalization conditions on
the mass shell are satisfied. In order not to get bothered with the poles of the amputated
connected n-point Green functions for partial sums of external momenta lying on the mass
shell we analyse the one-particle irreducible Green functions.

The paper is organized as follows: We first derive the flow equations for one-particle irredu-
cible Green functions in the Euclidean theory. Then we show certain analyticity properties of
the renormalized Euclidean one-particle irreducible n-point functions for complex momenta.
We define the relativistic theory with an e-regularization due to Speer [21] and prove per-
turbative renormalizability and the fact that the renormalized one-particle irreducible n-point
Green functions become Lorentz invariant tempered distributions in the limit ¢ — 0. Using
the analyticity properties of the renormalized Euclidean theory we then derive the regularity
of the renormalized relativistic one-particle irreducible n-point Green functions in a region
that admits physical renormalization conditions for the two-point function.
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2 The Flow Equation for regularized Euclidean
massive ¢}

In this section we shortly introduce some basic tools of the flow equation method (for details
see [3],[4]), which are necessary for the subsequent considerations.

We use the following regularized free Euclidean propagator

a
G20 (p) = [da'e*f*’“'%*a’*""’) L 0<ap<a<oo . (1)

agQ

Note that this regularization differs from that used in [3],[4], as it respects analyticity in
momentum space. The Fourier transform is denoted as C2°(z —y). The functional Laplace
operator A(a,aq) is defined as

A(a, ap) = = /d4 /d4 Ca®(z _y)(S(I)(S(:C)(s‘I’J(y)

®(r) may be viewed as an element in S(R*). The interaction Lagrangian at scale «y is
given as a formal power series:

cho,ao(qj) = Zgr L:!o,ao(q)

r>1

This is the standard Lagrangian including counterterms:
Looao( /d“ (a20®2(z) - b7 @ (x)08(x) + 0@ %(z)) 2)

where O denotes the 4-dim Laplace operator.

The effective Lagrangian
Lo (®):=) g L *(®

r>1

is defined through
g ~L0®) —I%0 . o Afaag) - L0 20(8) (3)

¥

where [* @0 collects the terms, which satisfy % [*> = 0. (Note that as long as these
terms appear we have to keep the volume in (2) finite to be mathematically strict. But as we
are only interested in the ®-dependent terms, we will ignore this point.)

The flow equation for the effective Lagrangian can be obtained by differentiation of (3) with
respect to a and is given by

Do LS o B, 590 = |G Aleyeg)] E5(0) (4)
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—5 ] 4 [ ¢ (5am 7®) 0 Cinle - 1) g L7 (@)

Regarding the fields @ as functions on momentum space, L™ “°(®) can be written as

n— l d4
L@ =% [ I zpj ) LE (e put) - (5)

n>2

L2 is the r*" order contribution to the connected amputated n-point Green function.
[t enjoys the following properties:
a) L% may be assumed symmetric under permutations of py,...,p ):;‘ D -
b) £2% =0 forn > 2r 42 (connectedness),

L7555, =0 (due to the symmetry & — —®).
c) £2,7 is invariant under O(4)-transformations of the p; .

d) L& isin C*([ag,00) x R*"=1)) as a function of a and pi,...,pu-1 -

3 Flow Equations for one-particle irreducible Green func-
tions

3.1 The Generating Functional ['**(®,)

The generating functional W >2(J) of the pertubative, regularized connected Green func-
tions is given by

1 a
Wo(J) i= L) [ guggny +17%0 =5 < J,0800 >, ©)

where < f,g >: —f(g,,)4 f(=p)a(p) , J € S(RY) .

The generating functional I'**°(®,.) of the corresponding one-particle irreducible Green
functions then can be obtained by a Legendre transformation:

Let &) :=6/6J(p) and (5;1)_4 ®.(—p) =05y W>o(J) . Then I'**(®.) is defined by

P (@) = [Woe(J)- < J, @, >] (7)

J=J(®:)

implying

é-‘I’c(‘l”)FOI,OIO(QC) = (27'_)4 J(p) L (8)
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In order to compute I'**°(®,) we have to invert the equation

e(p,J) = C2(p) { (2m)* bo(op) L7°(®) | gogmoy — J(P) } (9)

to get J(p,®.). Because L**(®) =32, g"L>*(®) is a formal power series in g and
LY (®) is an (even due to the symmetry & — —®) polynomial in ¢ of degree < 2r + 2
(connectedness), we can invert (9) up to any order r and therefore I'**°(®,) is well defined
in the sense of a formal power series in g.

We have to keep in mind that now ®.(p) is viewed as the independent variable (as a function
€ S(R*)) and that J(p, ®.) is a formal power series in g, which depends on a and ap.

3.2 The Flow Equation for I'*%(®,)
By taking the derivative of (7) with respect to a we get

DaT=0(0,) = (80 W) (J) | Jmsiar) - (10)
We insert (6) and obtain

aa [\a,ao(q_)c) — [aa (La,ﬂo((l)) + ]“'an)] ¢=C‘:°J(¢c) (11)

U d%q (0. C22()) J(q) Fage) L™ (@) — % < J, (3, C0)J >]

J=J(®.)
Now we use the flow equation for L@ (®):
o (L™0(®) + 1) = (00 Aa, a0) ] L™ (D) (12)
—% < (2m) 485 L20(D), (0, C20) (21) 10 L0 (D) >
and get from (11), (12):
0o L' (d.) = [0a A(‘11010)] L**(®) |¢:C‘a°°.](¢~c) (13)

~5 < (2m) 45 L%0(®) — J(8.), (B, C27) ((2) 60 L¥(®) — J(®2)) > |amsizosie,
Together with (9) this yields

1 ~ ~ ,
0 (T™7(8,) = 5 < &, {C2°} 710, >) = [0 Ao, 20)] L™(®) [ggosoy - (1)

In order to arrive at a differential flow equation for I'***°(®.) we have to express the func-
tional on the right hand side of the equation (14) in terms of I'**(®,.).
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We insert (9) into the relation

d(p+q) = do.(p) Pc(—9q) (15)

and with the help of (8) we obtain

6(p+a) = —(2m)° [ d'q [C22(0)C2(q) boumFauian ™ (20) (16)

Sa(~g)0a(q) L (@) ]

The right hand side of this equation is a formal power series in g. (16) has to be fulfilled up
to any order r and therefore we get the equations:

®=Cq0J(d.) + (QW) ! C:() (q) 6¢C(p)§¢c(‘7') [*hed ((I)C)

5(p+q) = (2m)* C2°(q) da.(p)da.(q) Lo ()  for r=0 (17)
r—1 . - R
> —(QTF)4]d4q' Co(@C(q) Iy (g, — 4, @) da.(p)0a.(en Tk (D) (18)
k=0

+ (27[')4 é:o(q) 5¢c(p)6¢c(q) F:"ao(‘bc) =0 y o> 0 3
with the definition
L (q,p, &) := (2m)* {5¢(p)5¢(q) L*o(®) |«z>=c'cf‘0.1(q>c)}r : (19)
We now can insert (17) into (18) and obtain

ree(q,p,®.) = (2r)* 0o, (p)0a.(q) I (D,) (20)
r—1
—(2m)* > fa”tf C(q) I (g, —q', ) So.p)da.(on) [ (Pe)
k=1

(20) is a recursive relation for f‘:’"’“(q, p,®.) and allows us to express f‘f'“”(q,p, ¢.) in
terms of [)"(®.), k=1,...,7 .

We compare the left and the right hand side of (14) in powers of ¢, use the definition (19)
and end up with a differential flow equation for '™ (®.):

1 - 2
0.12%(0.) = 5 [d' (0.C() T2™(p-p, @) , r21. (21)



254 Keller, Kopper and Schophaus

3.3 One-particle irreducible Green functions
[ (®,) is an even polynomial in ®.:

n 1 dq
aao Z/ 2 )4 Zp]) I"Of Oro pla""p"—l) . (22)

n>2

% is the momentum space regularized one-particle irreducible n-point Green function of
order r.

It is defined to be symmetric under permutations of p;y,...,p, := — ;:11 p;, it is invariant
under O(4)-transformations of the p; and it is in C°°([ag, 00) x R*™~1) as a function of
a and pi,...,pn-1 . We have: T7% =0 for n > 2r 42 (connectedness). (21) rewritten
for the coefficient functlons Lo (py, ... pao1) yields:

r,n

0 (e spomt) = 5 [ 50 OuCioo) EEb b pct)  (20)
where
:!nio?(p& —P,P1y- - apn—l) = (n + 1)(”’ A 2) F:;:.%(Pa =P P, spn-—l) (24)
r v=1 -
DS DI C O SRR D | (e ICAR Vi I TR
v=2{a,}.{5,} k=1
a,ag ’ _ ]
Fau,bu+2(qu—]1 p!ptu-}-lv""pﬂ—l)]symm- )
with
bi+...+bi
q(’)':p ) q;c:p+ Z P; aj>0 ’ bj=012’4a"'an ) 1k:ZbJ
j:] R

The sum is over all {a;} with 3°7_, a; = r and over all {b;} with ='_, b, =n.
K"(by,...,b,) is a combinatorial factor, which could be computed with the help of (20) and
- Jsymm. indicates the symmetrization operation with respect to p1,...,p, = — ;‘;11 ;s

We use (9) and (7) to compute the lowest order contribution in powers of C2o to [** and
as C2°(p) = 0, we conclude that for @ = ap £29 = I3 and therefore we get from
(2) the boundary values at a = ay:

T (p) = e +02p" T (ppaps) =¢ , TRy (p)=0 forn >4
, (25)
p denotes the tuple (pi,...,pu-1) .
(25) implies

oy rr(p)=0 for n+wl >4 , (26)

where w = (w?,...,w Wl ...,w?_|) is a multiindex and
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R A W
s YPn-1 b \wlzz_u OZJ lw

With the help of (23), (24) and (25) all one-particle irreducible n-point Green functions of
any order r can be computed by integrating successively (23) with respect to a from the
lower bound ¢ up to the new parameter a, following the standard induction scheme of the
flow equation method (see [3]) upwards in 7 and for given r downwards in n.

For illustration we can interpret the contributions to ['® a2 in (24) in terms of Feynman

graphs: We suppose I'?;* can be written as a sum of one-particle irreducible Feynman
graphs where every internal line is a function of the parameter «. If we now take the derivative
of I'7;* with respect to o, we can divide the expression obtained into contributions of two
different types. Contributions of the first type stay one-particle irreducible, if we remove
the line on which the derivative acts. The first term on the right hand side of (24) can be
interpreted as a sum of all these contributions. Contributions of the second type become
one-particle reducible, if we remove the line on which the derivative acts. The sum of these
contributions corresponds to the second term on the right hand side of (24).

Due to these considerations we conclude that by integrating successively (23) we indeed get
the one-particle irreducible Green functions (the proof could be carried out by induction in
r and n).

4 Renormalizability and Analyticity of the
one-particle irreducible Green functions

Let us now change the index pair (r,n) and take

n n
l:=r—=+1 d =2r — — 2l
r—3 + and s r—3 (27)
as a new index pair to number our Green functions.(In the language of Feynman graphs [ cor-
responds to the number of loops and s to the number of internal lines of an (unrenormalized)

graph.) For our new indices (26) reads:

T (p) =0 for I;J—l +s>20 . (28)
Furthermore we have:
a, Qg T
5@ =0 for s<20-1 , [<0 , s<0 . (29)
n<?2 n>2r+2 n>4r

The flow equation (23) written for the new indices is

d4
2150 = 5 [ s a2 T (30)
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where )
Lore i (p—p,B) = hi 1205 (P, —p, D) (31)
s—I+1 =i
=X X (UK b 0TI Coola) TR G TG ]
v=2 (¢}, {d} k=1

The sum is over all {c;}, {d;} with 3%_,¢; =1—1 and 3%, d; +v =5, where ¢;,d; > 0.

Furthermore we have:
Pr = (Gkors Pigsts - s Pigay) 5 b =2de —deax +2 ik = ij ?

b1+...+bk
Q{l):P ) qJ’c:p+ Z P; ﬁv:(q;—lvpiu+la'-'1pn—l:_p) s fzf=(71+2)(71+1).

4.1 Integral Representation for o I';*(p)

By successive integration of the flow equation (30) we now want to derive an integral repres-
entation for 9 I'7; " . Note that because we are in a massive theory we may integrate the
flow equation (30) and its momentum derivatives up to infinity with respect to a since the
mass provides an exponential infrared cutoff for large o .

We use the following boundary conditions (see also [3],(4]): At a = ap we impose (28).
For the so-called relevant and marginal terms with !%E + s < 2] we impose renormalization
conditions at a = oo by fixing the values of I'[5;*°(0), I'%;27(0) and 38,0, I'5;27(0) (We
restrict to momentum 0 because we want to analyse the corresponding relativistic theory
later on, and there it is convenient to start by renormalizing at 0 momentum). We have to
distinguish three cases:

1. s B 2[ a
a0 = /da Do T2 () :/da’ (r.h.s. of (30)) . (32)
2.8=12]
3 3 .
L% (p) =I5 +ZZPuJ]dA O Ul ao)()\m y (33)
7=1 u=0 0
with

[o0(0) = I /da Do T2 (0) (34)
r.h.s. of (30)
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and
00 T () = fda 00 0 U577
‘-—v-_’
r.h.s. of (30)
J.s=20—-1
L% (p) = T5°°(0) + Z Pu Py 0,0, T (0) (35)
(SR ‘“,_0
as in (34)
. 1 1 1
+ z p”'/dAl p#:/\lj’d)\g p“r:AzAljdA3 (6u.f8#f3# Ffs‘ao) (,\3)\2/\1 P) y
pop’, u"=0 0 0 0
with
8,0, T%5°0(0) = 8,8, [7>°(0) fda B, 8y B T 2(0)
—————
r.h.s. of (30)
and
B By B, T2 (p [daa,,aaa L2 (p)
. P
r.h.s. of (30)
For [ =0 we get from (29), (30), (32) and (33):
Foo™°(P) =Tg0™°(0) and Ig; (@) =0 fors>0 . (36)

We impose for reasons of simplicity the renormalization conditions:

Fog 0) =2 and T3 %0) =000y =0,8,0, 3 3{0)=0 fr {0,
(37)
Note that once we have fixed the renormalization conditions the bare parameters appearing
in (25) are determined uniquely [3],[4].

Using (30), (32), (33), (35) and the starting point (36), we obtain by induction an integral

representation for 9% '/

Lemma 1.
1 1 (oe] [o e}
F T (5) = /d,\1 .../d,\a(,,,,]da, .../da, 8 G (& X p) - (38)
0 0 g ag

& and X denote the tuples (a1,...,04) and (i, ..., Ass)) and 87 G obeys the bounds

8¢ G(@, X, )| < e”™ L= P(I]) Q(Vay,- -, Va,) (39)

where P is a polynomial with nonnegative coefficients — independent of o -
in |poals- .-y |pan-1| and Q is a nonnegative rational function which has no poles for a; > 0.
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Proof. The induction scheme is quite simple as on the right hand side of (30) there only appear
contributions up to (Il —1,s — 1) and therefore the induction could proceed for example in
[+s. To give a short indication how the elementary proof works let us carry out the induction
step for s > 2[ ,|w|=0:

We employ the induction hypothesis (38) on the right hand side of (32) and interchange
the loop-integration d*p with the d\;...d)\, . do;...da,_; integration which is justified
because of (39). This yields (40), (41). Now we check that the new G} obeys the bounds
(39) and the induction step is completed. The induction step for |w| # 0 and s = 2/,
s =2l —1 is analogous. O

Go(a, X,ﬁ) and o(l,s) are determined through the following recursive relations:

1. 5> 2l B ) B
G (a, A, p) = Gisa, N,p)O(a — ay) (40)

with

-

2 - X 1 d4p - m s a = =
G[,s(a, Af”ﬁ') = 5-/ 27r 5 e S(P2+ 2) {hl Gl_sl'_g_l(aa/\!papa _p) (41)

s—1+1

-2 2 (-1PK¥(h,..., [H o (G54 Qo — g, ) G2y, (G Ak, Pr)
v=2 {CJ}'{dJ} k=1

Gg’s‘d”(&v’ ,\U’ ﬁu) ] symm.}

The sum is over all {c;}, {d;} with %_,¢; =1—1 and }%_, d; +v =5, where ¢;,d; > 0.

Furthermore we have:

&k:(af;‘-l-l:"'vafk‘i‘dk) 5 /\k:(Auk+]1"'1’\Uk+0’(Ck-dk)) , )\’:()\la-..,A&(l,s)) 3
i k-1 k—1
wp =Y di+k , fi=) d; , u=) o(cd)
1=1 1=1 j:l

As we can add to (38) as many integrals fj d)\; with new variables \; as we like without
changing anything we take the maximum number of A-integrals which appear on the right
hand side of (30) during one induction step as our new number of A-integrals. For s > 2l we
set

o(l,s):=4a(l,s) := msxx{o'(l —1,s=1),n,} with n,:= nﬁzi( {Z (ck,di)}

2. s =21

- 3 3

Ge (@, X, 5) = =G1a(@,X,0)0(ay = a) + 33 P (01 Gra) (@, X, Aoy ) Ol — )

j:l u=0

(42)
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Here we set o(l,s):=1+a(l,s) .

3. s=21-1

-y ~ — 7 1 < a — 1
Giu(@,%,p) = [~Gual@X,0) = 3 3 pup 0,8.G1a(@, X, 0] O —a) ()

v, u=0

3
+ 2 N2 Aolta)=1 Pu P P (BB, G;,,) (&, X, Aa(t,0)-2 Ao(t,s)-1 Aa(s) P) O — a4)

! " —

oty "' =0

o(l,s):=3+4a(l,s) .

Note that, as long as we keep ap > 0 and the external momenta are real, we have absolute
convergence of the integrals in (38), even for a = oo .

4.2 Convergence of the Integral Representation

In this section we want to examine the convergence of the integral representation of 8 I'/;*°

as ag = 0 and @ — oo in a complex domain obtained by continuing poi,po2,---,Pon-1 to
complex values (see (45) below).
From (40), (41), (42) and (43) we can realize inductively in [ 4+ s that 85 G, may be

analytically continued in the zero components of the external momenta into any complex
domain:

apw Gfs(a! X! Po,1 2 ikO,l)Bls -+ Pon-1 4 ikO,n—-lsP_n_l) (44)

is well-defined for finite positive a,@ and polynomially bounded in_p for
kois-..,kon—1 € R. From now on we restrict the imaginary parts ko = (ko1,-.-,kon-1) to

n-1
| Y kol <2(m—n) forall 7,C{l,...,n} , kon=— > ko (45)
jETa ]‘=1

and want to show that we still can control the limit a — oo of 3 Ff;‘a" . Here and in the
following n > 0 is a fixed number which may be chosen arbitrarily small.

In this domain we can integrate |3y G%| with respect to & and X over the region indicated
in (38) as long as we keep « finite. This could be shown by induction in [ + s using similar

bounds as in (39):
18, G (@, XaPO.l + ko1, pys- - s Pon—1 + thon-1,p, )l

< e P(IA) Q(Vay, ..., Va,) for Ko #0. (46)
For ko = 0 we can use the bounds (39).
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Therefore
3y s (poa + tkon, pys- -+ Pon—1 + tkon-1,p, ) (47)

1s well-defined and the integrand is absolutely integrable. Moreover we are able to give bounds
for the |8, T'°,”°| which for large a do not depend on a or ag :

Proposition 2. The integral representation of the 82T, in the domain defined by (45)
obeys the bounds

1 1 oo 00
jdAl ---]d)\a{l,s) /dal ---/dﬂs l BS’G,?S(&, X, Poa + iko.l,gl, coyPon-1 t iko.n-lagn_]”
0 0 ag ag

S{Pl(hi']) for a > &

w 48
Py([log(@)]) Py([Flv/a) a=*++% for qp<a<a (48)

Py are (each time they appear possibly new) polynomials with nonnegative coefficients which
depend neither on a nor on ag, but on n,l,s,&. & > ag is some finite fired number (e.g.1).

Proof. The proof is performed by induction in [ + s. We first consider the case a < & and
s > 2l. Applying 8y on the recursive relation (41), multiplying by O(a —a,) and taking the
sum of the absolute values of all contributions leads to an inequality both sides of which can
be integrated with respect to & and X (due to the bounds (46)) over the domain indicated
n (48). We change the order of integrations on the right hand side and employ the induction
hypothesis for @, < &. Furthermore we bound the powers of the «a,, on the right hand side
by powers of a; and the corresponding a,, -integrals

[ ]
r by+...+b
/dawe—awk(qﬁm?—(zj‘_ * ko,;)?) (49)
by constants uniformly in 0 < ay < a, < &. We then obtain:
y

l h S. Of /da’jd4 —C(,p —2{+S+1+ 2 P2( l log(as)l ) (50)

Py(|plVay, [polVay, - -, Ipalve,) } ;

where we have bounded appearing factors of the type |ko;|\/a, by 2(m — n)Véa . We now
perform the loop-integration and get:

a ~ g el
Lh.s. of (48) gjdas @ T p((log(as)] ) Pa(A1VE,) (51)

Estimating the integral on the right hand side yields the induction hypothesis and completes
the induction step.
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The induction step for s = 21, s = 2l — 1 and a < & is also performed using (41), and
therefore the argumentation is almost the same, but we have to split the contributions to
(42), (43) with a, > a into two parts: The first part with a, < & can be treated as above.
For the second part we employ the induction hypothesis for a, > & on the right hand side
of the inequality that we have obtained from (41). (Note that g, ko = 0 for these terms.) We
bound the ay,-integrals (49) by

[ dou e 2
0

compute the loop-integral, estimate the a,-integral and end up with a constant independent
of a,aq. Taking all contributions together we thus can reproduce the induction hypothesis.
This completes the induction step for the case a < & which we can call the renormalizability
part of Proposition 2.

For the case a > a we first consider the induction step for s > 2. Looking at (41) we -
examine the two types of contributions on the right hand side. The first type which has
no reducible line is easy to handle since the loop-integration variables can be left real and
therefore — after applying 85, taking the absolute value, multiplying by ©(a—a,), integrating
over the region indicated in (48) and employing the induction hypothesis for a; < & and
for @« > a; > & - we can reproduce the induction hypothesis for @ > & without any
difficulties. The second type which can be described graphically as a sum of chains that
consist of one-particle irreducible Feynman graphs which are connected to their neighbours
by a reducible line requires a more careful analysis, because the propagators corresponding
to the reducible lines may increase exponentially in the «,, . Due to this fact we will have to
add an imaginary part to the loop-integration variable p, that means instead of integrating
along the real pp-axis we want to integrate along the path py + tky with fixed ko. (We are
free to do so because (44) is polynomially bounded.) Let us now have a look at the exponent
of a propagator corresponding to a reducible line. In order to get an exponential decrease we
have to achieve

bl++bk b|++bk b|++bk
m+(p+ Y P+ (po+ X pos)—(kot+ Y. ko) 2e>0. (53)
=1

j=1 1=1

Furthermore the real part of the exponent of the differentiated propagator which corresponds
to the line that closes the loop has to be negative to get an exponential decrease in a;,:

(m*+p*+pi—k3) > e >0 (54)

and therefore we require
lko| < m—7n . (55)

We now want to show that for each fixed chain that means for each contribution to the
second term of (41) with fixed v,¢;,...,¢,,d,,...,d, and a fixed order of external momenta
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Pi,...,Pn—1 we can find an imaginary part ko for the loop-integration that fulfills (35) and
(53) for all k=1,...,v—1. For a fixed chain we define
bi+...4bi
Gei= 3, kog ;5 E=ljeyu=1 . (56)
=1
(45) implies
lgx| <2(m —n) and |G — G| <2(m—7n) forall k,z . (57)

Now it is easy to realize
Lemma 3. Let ko be a real number bounded by

— min{0, min{gx}} — m +n < ko < — max{0, max{gi}} + m —n , (58)
then ko fulfills (55) and (58) for all k.

Proof. Because of (57) we can always find a ko which obeys (58), and from (58) we get
gk + kol < m—n forall & | (59)

and therefore we can see that for this ko (55) and (53) are fulfilled for all k. O

Since we want to employ the induction hypothesis on the right hand side of (41) k; has to
satisfy another condition:

(k()a kO,la veey kO,bl )7 (kO 2 éla kO,i2+11 feey kD,iz-i-bz )1 ceey (kO + qu—h kO.iu-Ha ey kO.n—-la _kﬂ)
(14 = Z;?;II b;) have to be in the domain indicated by (45). Therefore we have to modify the
bounds which k¢ has to obey. We define

Thk o= r%a’kx{qhk—l + Z ko,fk+j} ] Thk = I‘Ili:l{ék—l + Z kO,ig-*—j} ] k = 11 U

jeTa,k jE'ra,k
(60)
where
(50120 ’ Ta,kg{l,...,bk}
Furthermore we define
i = m‘?x{ﬁu} and 1= mkin{mk} : (61)

(45) implies
m < 2m—-n) and m > —2(m-—7n) . (62)
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Now we are ready to prove

Lemma 4. Let ko be a real number bounded by

2(m —n) — max{0,m}

m — n — max{0, max, {dc}} (63)

k() S mm{
—2(m — n) — min{0, ™"}
o >
ko 2 max{ —m + 1 — min{0, mink {¢x}}
then ko fulfills (55), (53) and

lko+ Gr—1+ Z koi+il < 2(m—n) forall t,.C{l,....50: , k=1,...,0 . (64)

jeTa,k

Proof. Due to (45) we can always find a ko that obeys (63). It is not difficult to check that
this ko - besides fulfilling (55), (53) due to Lemma 3 - also fulfills (64). O

Now we are able to carry out the induction step for s > 2{: For every chain on the right hand
side of (41) we choose a corresponding ko which satisfies (55), (53) for all k£ and (64). Then
we apply 8%, take the absolute value, multiply by O(a — a,), integrate over the domain
indicated in (48) and employ the induction hypothesis for a, < & - for this contribution we
can refer to the case a < & treated above — and for @ > a; > & on the right hand side. We
bound the a,,-integrals

g
/daw e‘“wk(q;‘2+m2~(ko+6k)2)

" P
a

[o o]
jdau; e —cru.kn('Zvn—-u)

i W ¥
&

and end up with

Lh.sof (48) < P(|p]) + /das{/d“p e ~s(P*+m?) p ( 121, pols - - s |p3l) (65)

—a, 2_ 24,2
+Zjd4pe (=K Py 1A, Ipol - - Ipsl) }

Now we perform the loop-integration, set a = oo and since m?* — k > n(2m —n) > 0 we
obtain the induction hypothesis for a > &.

For (42) and (43) the argumentation is almost the same. Note in particular that A; € [0,1] for

all g =1,...,0(l,s) so that if (45) is fulfilled for EO it also holds for /\J-Eo. This completes
the proof of Proposition 2. O

Because a and «q only appear as bounds of the domain of integration in (38) and (48),
we also get from Proposition 2 the convergence of the integral representation of dy '™

0 as
ap — 0 and @ — oo. Thus we obtain
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Theorem 5. The one-particle irreducible renormalized Green functions of perturbative Eu-
clidean massive @}

FI?S,O(PO.I + ik(),ls 213 » .-y Pon—-1 + ikO,n—l ’Bn—l) (66)

are analytic in po1 + tkoa,-..,Pon-1 + thkon—1 in the domain defined by
(Pogy---sPon-1) € R™™  and (koy,...,kon-1) € R*!

n—1
with | Y kojl<2m  forall 1,C{l,...,n} , kon=—) ko, (67)

jETo

and smooth with respect to (Pyere s ’Bn—l) € R3"=1) | The integrands of their integral repres-
entations (38) are absolutely integrable.

5 Structure of the Integrands G

Using (40), (41), (42) and (43) we now want to analyse the structure of the integrands G/ .
We can state

Proposition 6. The integrands G, of the renormalized one-particle irreducible Green

functions F,‘?’s’o with the renormalization conditions (37) have the following structure:

- n—1

Gey (@, X p = T B(F)Qy(& ) e 2ben Al @Neape (@) e Ticn L (68)

s J

(a) V;*(@) are products of O-functions in (a; — ar) , £(a — a;). The support of V.%(d)

restricts all a; appearing as arquments of Aj (@, X) to a; < «v.

(b) A,': (a, X) are continuous with respect to X and with respect to & in the Support of
Vi#(a@). They are homogeneous of degree I in @ (that means A} (7@, /\) = 7 A, (&, )\)},
and Aj(a,)\) is a positive semi-definite symmetrical n — 1 x n — 1 matrir.

(c) Q;(a, X) are rational functions in a@ and X which are homogeneous of degree d; € Z
in a.

(d) Pi(p) = [Tr<w (pkp,,)"'i-v , u,ﬂ-'v € Ny, are monomials in O(4)-invariant scalar products
of the p, .

All functions introduced on the right hand side of (68) also depend on l,s and the sum over
] is finite.

Proof. The proof is carried out by induction in [ +s. We employ the induction hypothesis on
the right hand side of (41). First looking at the second term on the right hand side we realize
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that this contribution can again be written as a sum of terms of the form (68). For these
terms and also for the first term on the right hand side of (41) we thus obtain loop-integrals
of the type

[ Bi(5) 77 Eikea Alumare (69)
where (according to (41)) pny1 = —pn = —p.
Using
n+1 n—1 J 7 j 3
2 7 7 (Akn — Akn+1 ) (Avn - Avn+l ) ]
—a,p° — Aiy PkPy = — [A,,— : ' ‘ pepy  (70)
k,uz=1 ¢ k,g_; ¢ Adn + Ar':+1n+1 - 2Ain+1 + o,

- - - Aly = Al ’
- Ar{ nt1 T Ar{n - 2A1-:n. + a, ( + : — = )
( Angingd +1 ) p ; It AL 24]  ta Pk

we can perform the loop-integration and reproduce the induction hypothesis for Gl.s' Note
that a, > «; due to the induction hypothesis, see in particular (a). Therefore the second
part in the square brackets in (70) is always well-defined. Furthermore the new contributions
to the P;(p) are again of the form indicated in (d) which could be seen by using

(Pp)* (ppk) €™ = (V, V)" (Vypi) " €™ (71)

before computing the Gaussion integral and setting y = 0 afterwards. Inserting G, in (40),
(42) and (43) again yields the induction hypothesis and completes the induction step. Note
that the A7’s for 0-momentum G’s in (42), (43) are simply defined to be 0. O

In order to bound the degree of homogeneity d; of Q;(a, X) we define for fixed [, s

hy =23 ui, . (72)

k<v

Inserting (68) in (40), (41), (42) and (43) we can prove by induction in {+s that the following
equation holds:

%hj —~dy = 2L , forall {,8,7 . (73)
We thus obtain for G and for all [,s,
dj > =8 . (74)

For s > 2l this is obvious, and for s = 2/ we see in (42) that because a = oo the first
contribution is vanishing, and with the help of (68) we conclude that therefore only terms
with h; > 2 contribute. For s = 2l — 1 we get from (43) and (68) that for @ = co only
terms with h; > 4 contribute.

Now it is easy to prove
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Corollary 7. The integral representation (38) of the one-particle irreducible renormalized
Green functions I‘f:‘:‘o with the renormalization conditions (37) can be written as

() = [dX [dg,... [as,8(1 Zﬁk)[ZVj B) Pi(7) Q;(8,X)
0 0 0

1 |
(Zk.u Aj,,(ﬁ, X) PrPyv + m2 >y ,Bk) d,+s ;

(75)

and the integrand is absolutely integrable. The momentum derivatives O Ff:”o are repres-
ented by integrals of the corresponding momentum derivatives of the integrand which are also
absolutely integrable, and due to Theorem 5 this representation is still valid in the complex

domain indicated in (67).

Proof. Considering the integral representation (38) of the renormalized one-particle irredu-
cible Green functions we define a substitution of the integration variables (we are free to do
so because the integrand is absolutely integrable) by

akziTﬁk i k:l,...,S and Z/@kzl : (76)

This yields
day...day = 77 8§(1-Y B ) db:...dB.dr . (77)
k=1

Now we insert the integrand from Proposition 6 and get
1 1 00 5
) = [ i---/dﬁsde[C‘(l—Zﬁk)Z‘G(L)R(ﬁ)
0 0 0

Due to (74) and because the integrand is absolutely integrable we can perform the
T-integration and then we obtain (75). O
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6 Relativistic massive ¢}

6.1 The regularized Theory

We now want to turn our attention to the corresponding relativistic theory. We define a
relativistic regularized propagator which is analytic in momentum space by

Coo(p) := /da'e"‘"(”””"'(‘*’")mz) , e>0,0<pp<a<oo |, (79)

g

where 1 is the matrix

e—i 0 0 0

| 0o e+i o0 0

=1 o 0 e+4i 0 (80)
0 0 0 E+1

The interaction Lagrangian at scale aq is defined by
Lowoo(®) = Y g7 Lovo0(d)
r>1

and
Leowo(@) i= [d's (a20%(z) + b7 0(2)A0(z) — d@(2)00(x) + ¢ @4 (2)) , (81)

A denotes the 3-dim Laplace operator. As the e-regularization breaks Lorentz invariance
(but not O(3)- and T-invariance) the interaction Lagrangian contains an additional coun-
terterm.

In analogy to the Euclidean theory the effective Lagrangian
Loen(@) = 3 g7 Lo (®)
r>1

is defined through
e iLT0(®) #ilm0 _ A(aao) iL%0%0(d) , (82)

where the functional Laplace operator A(a,ap) is defined as in section 1 but with the re-
lativistic propagator (79).

Differentiating (82) with respect to a yields the flow equation for the effective Lagrangian
of the relativistic theory:

aaLa,ao((I,) x5 aala,ao = [BQA(CY,CYO)] La.ﬂo((I)) (83)

t5 ) % [ 4t (5 Ln(®)) (00 Ol = ) g L7 0(@)
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6.2 Flow Equations for one-particle irreducible Green functions

The generating functional W *2°(J) of the pertubative, regularized connected Green func-
tions of the relativistic theory is given by

1 -
Woo(J) o= i L) | goggoy + 117 — 5 < J,C300 > (84)

Then the generating functional :I'**°(®.) of the corresponding one-particle irreducible
Green functions is defined by

D) = [Wa () —i < S8 > ] | (85)

=J(®c)
where
1 e e 1) ~ agq % a, g :
De(p, J) = =(2m) 8y W0 () = C0(p) { (2m) Baopy i L7 70(®) [ gy +i () } -

(86)
Differentiating (85) with respect to a and using (84), (83) and (86) we get

. 1 = ‘ A ; Y,
Oo (1T (D) + 5 = O {C} 710, >) = [0. Ala,0) ] i L"(P) [gicoope,y - (87)

We define )
Lo (g,p, @) = (27)* {Somdag) L %(®) lomicose,) |, - (88)

r

By the same procedure as in section 2.2 ((15),...,(20)) we now obtain a recursive relation

for [0 (q, p,®.) that allows us to express [ *°(q, p, ®.) in termsof [ *°(®,), k=1,...,r

[(q,p, ®c) = (27)* 6, (5)00.() [ ™ (Pe) (89)
r—1
+i(2m)* Y fdtl‘f Cao(q') T2 (g, —q', ®2) o ()0, L (D)
k=1

Using (87), (88) and (89) the differential flow equation for the relativistic one-particle irre-
ducible Green functions i I'%*(py,...,pa_1) reads:

S 1 d* o o & G i
aOzr\r,r‘l O(Pl,---,Pn-l) = 5]@';%’ (aa CQO(P)) l r‘r‘1+2(pa _P$p11""pn—l) ’ (90)

where

1 Iq:jr'z:-oZ(pv —PyP1y- - apn—l) = (n : & 1)(” = 2) i F:nc-:—OQ (pa PPy 7pn—1) (91)

v—1

+E z Iiru(blv"'abv)[n Caao(Q;c) ir:,;z:-{-‘z(qi—}vpik%-h"'7pik+bk)
v=2{a, },{b,} k=1
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4 a, g !
t Fau,bu+2(qu—]’ Py Piy+1y-- -y Pn-1 )]

symm.
The notation is the same as before (see (24)).

Looking at (20), (23) and (24) we realize that multiplying the Euclidean one-particle irre-
ducible Green functions by (—1) yields a flow equation which is - apart from the different
definition of the propagators — identical to the flow equation for the relativistic one-particle
irreducible Green functions.

Regarding the propagators we observe that we have to replace the Euclidean metric by the
matrix 1 and that we have to add a factor (¢ + i) to the mass term m? in order to get the
relativistic propagator. Therefore it turns out that as long as we keep ¢ > 0 we can easily
transfer most of our results from the Euclidean theory to the new situation.

6.3 Integral Representation and Renormalizability

The boundary values at o = ap follow from (81) and read:

Bp) = 0T —bIP AR, T (ppaps) =, TEU(H) =0 forn >4,
(92)

This implies (as in the Euclidean theory)

o) =0 for n+|w >4 . (93)

Changing the indices from (r,n) to (/,s) (see (27)) and using renormalization conditions
which correspond to (37) multiplied by (—1)

i Dgg TL0) = —-clR and FS,’“"(O) =5 (] Ff;]ff(()) =0, 0,0, Ff;,‘ff(()) =0 for [>0,

(94)
we obtain in analogy to Lemma 1
Lemma 8.
1 1 00 00
O i T () = /d,\,.../d,\a(,,s)fdal ...jda, 0 GG, N F) (95)
0 0 ag ag
and 3 G, obeys the bounds
- v - 'rr;2 2 £
18 Gi(@, K, )] < 7 2om PY(|f) Q(Va, ., Va,) (96)
where P¢ is a polynomial with nonnegative coefficients — independent of a -
in |poils. ..y |pan-1| and Q is a nonnegative rational function which has no poles for a; > 0.

Proof. We refer to the proof of Lemma 1 in section 3.1. O
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In order to examine the convergence of (95) as ap — 0 - keeping ¢ > 0 and the external
momenta real — we now transfer our results of section 3.2 and state

o, g
l,s

Proposition 9. The integral representation of the 9T obeys the bounds

1 1 (o] [o'e)
fdAl...fd/\a(,,,)/dal...]da,|8;’G,‘f’,(&,:\‘,p1,...,pn_,)|
0 0 ap ag

<

{ Pe(p]) for a>a (97)

P#(|log(a)]) PE(lflvVa) a2+ for ap<a<a

P are (each time they appear possibly new) polynomials with nonnegative coefficients which
depend neither on « nor on ag, but on ¢,l,s,& & > ag is some finite fired number (e.g.1).

Proof. See the proof of Proposition 2. O

From Proposition 9 we directly get

Proposition 10. The one-particle irreducible renormalized Green functions of perturbative
relativistic massive ®§ with an e-regularization given by (79) and (80)

i %P1y s Pomt) (98)

are well-defined for ¢ > 0 and smooth with respect to (py,...,pay) € R¥ "=V . The integ-
rands of their integral representations (95) are absolutely integrable.

6.4 The Limit ¢ = 0

In order to analyse the limit ¢ — 0 we need more information about the structure of the
integrands G, . Using our results cof section 4 we can state

Proposition 11. The integrands G, of the renormalized one-particle irreducible relativistic

Green functions il_'f;'o with an e-reqularization given by (79), (80) and the renormalization
conditions (94) have the following struciure:

GE(@ A7) = 3 PR(F) Q@ R) ™ Loww A(EDPIP o) (99)
J
(e — i) (e + i) H e (HIM K

(a) A,iv(&', X), Q;(a, X) and V:*(a) are identical to the corresponding functions in the
Fuclidean theory.
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(b) Pr(P) = [Tk<u (Px npu)“'{‘v (with the same u,‘:'u as in the Euclidean theory) are monomi-
als, which for ¢ =0 are invariant under Lorentz transformations.

Proof. See the proof of Proposition 6. O

In analogy to Corollary 7 we can easily prove

Corollary 12. The integral representation (95) of the one-particle irreducible renormalized
relativistic Green functions iD[3'° with an e-regularization ((79), (80)) and the renormal-
ization conditions (94) can be written as

iT0(7) = [ 48 ]dm ]dﬁ, -3 6)| T v () QAT
0 k=1

J

e 4 e+ -2l d;+s
: (e =) H (4 i) d,+,] , (100)
(S AL (B, )i prenpy + (i — 1) m2 iy B

The integrand is absolutely integrable. The momentum derivatives 01 I‘f":"o are represen-
ted by integrals of the corresponding momentum derivatives of the integrand which are also
absolutely integrable.

Proof. See the proof of Corollary 7. O
Let ¥(p) € S(R'"~Y) and

" o ok .
P (e =) H (e +0) ¥

i85 = [d'F () — it , o - (101)
(ko AL (B, X) i prnpy + (i€ — 1) m? T, Br)
Looking at the denominator in (101) we realize that it has the structure
(Py +iePy — m*+iem?) (102)
with L
Z AL(B, N)(poxpoy — P, P,) (103)
and _‘ _‘
Z ALB M) (Pokpos + 1, D) - (104)

Because Aj(ﬁ, X) is positive semi-definite and continuous in 5 X in the compact region of
integration we can apply a theorem due to Speer (p.105 [21]) that tells us that for ¢ — 0 (102)
defines a tempered distribution which depends continuously on A~ (ﬁ /\) and that (102) has
the same distributional limit as

z

(Pr — m? +iem?) (105)
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which is Lorentz invariant. Therefore we conclude that for ¢ — 0 1) defines a Lorentz

(10
invariant tempered distribution which depends continuously on A’(3, ).

In the compact region of integration

-

zv Q;(8,X) F£(¥,5,X) (106)

is absolutely integrable for all ¢ > 0 and Ff(@,ﬁ, X) is continuous. Therefore we conclude
that (106) is still absolutely integrable for ¢ = 0.

Thus we can state

Theorem 13. The limit ¢ — 0 of the one-particle irreducible renormalized Green functions
of perturbative relativistic massive ®3 defined by (79), (80), (81) and (94)

lim BT (e s 5 P ) (107)
ezists as a Lorentz invariant tempered distribution € S’'( RY"~1) .

Remark. Using the flow equation (83) written for the perturbative, regularized amputated
connected Green functions :L£";*°(p) a theorem analogous to Theorem 13 for these Green
functions could be proved by a similar line of argumentation.

Comparing the corresponding integrands of the integral representations in the (multiplied by
(=1)) Euclidean theory (75) and in the relativistic theory (100) we realize that they coincide
as functions up to a factor (—7)*~! if in (75) the imaginary parts ko, of the zero components
of the external momenta take values in the domain (45) and the real parts are equal to 0,
and if we let ¢ — 0 and set po, = ko, in (100).

According to Theorem 5 these integrands are absolutely integrable and therefore we can
conclude

Theorem 14. The limit ¢ — 0 of the one-particle irreductble renormalized Green functions

of perturbative relativistic massive ®3 defined by (79), (80), (81) and (94)
lim i 1351, o) (108)

exist as Lorentz invariant smooth functions in the domain D' defined as follows:

D := {(po,l,...,po'n_ﬂ e R*! with | Zpg,j|< 2m  forall 7, C{l,...,n},

JETa

Pon = — ;-‘;11 Po,; and (}_}l,.. P,_,) € RS(”_I)} i D' i=Uper AD , L = Lorentz
group.
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