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Abstract

We show within the Wilson renormalization group framework how the flow equation
method can be used to prove the perturbative renormalizability of relativistic massive

$4. Furthermore we prove the regularity of the renormalized relativistic one-particle
irreducible n-point Green functions in the region predicted by axiomatic quantum field

theory which ensures that physical renormalization conditions for the two-point function
can be imposed.
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1 Introduction

The theory of the renormalization group and of effective Lagrangians which was invented
by Wilson and his collaborators in 1974 [1] has proved to be a rich and powerful method
for many branches of quantum field theory and statistical mechanics. Adapting the Wilson
flow equations to perturbation theory Polchinski first applied this method to the renormalization

problem of perturbative field theory [2]. Instead of analysing any complicated
divergence/convergence properties of the general bare or renormalized Feynman diagram, this
access solves the problem of perturbative renormalizability by bounding the solutions of the

system of the first order differential flow equations.

In this paper we continue the programme of two of the authors to give mathematically strict
proofs of the perturbative renormalizability of any (by naive power counting) renormalizable
theory of physical interest using an improved version of Polchinski's method. Namely we
show how the flow equation method can be extended to relativistic theories. The first paper
in this series modified and improved Polchinski's proof of perturbative renormalizability of
Euclidean massive O4 [3]. Within the Euclidean framework this improved version of the flow

equation method was then applied to a vast range of renormalization problems of perturbative
field theory, e.g. the renormalization of composite operators [4], the Zimmermann identities
[4], the existence of the short distance expansion [5], Symanzik's improvement programme
[6], the construction of the analytical minimal subtraction scheme [7], local Borei summability
for massive $4 [8] and the renormalization of massless $4 [10] and QED [9],[11].

In order to treat the renormalization problem for relativistic theories one has to deal with
the fact that in momentum space n-point Green functions can in general only be interpreted
as tempered distributions. Therefore renormalization conditions, i.e. the requirement that
certain n-point Green functions and some of their derivatives take special values at given
points in momentum space which ensures that we are dealing with the right physical constants
in the renormalized theory, can only be imposed if supplementary regularity properties can
be verified. Restricting to a massive scalar field theory one has in particular to ensure that
the renormalized two-point Green function has a pole with residue 1 on the physical mass
shell, i.e. the physical mass shell should be in a region of regularity of the renormalized
amputated two-point Green function.

In the literature we found two different ways to handle this problem. The first way uses
renormalization methods that directly lead to the right renormalization conditions for the
renormalized two-point Green function in every order of perturbation theory. Furthermore
it is shown that in every order the renormalized n-point Green functions fulfill the LSZ
axioms and therefore have the domain of analyticity predicted by axiomatic quantum field
theory [12]. Steinmann's method for the renormalization of generalized retarded n-point
functions [13] and the renormalization method of Epstein and Glaser for time-ordered operator
products [14],[15] solve the problem using this strategy. The other possibility is to renormalize
first using some unphysical renormalization scheme like minimal subtraction with analytic
or dimensional regularization or to subtract at a point where regularity is evident, e.g. at 0

momentum in a massive theory, and to ensure afterwards that the required conditions can be
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satisfied in every order of perturbation theory with the help of finite renormalizations [16].

Therefore it is necessary to show that the renormalized n-point functions obtained through
the first step have appropriate regions of regularity for the finite renormalizations to be well-
defined. The singularity regions of unrenormalized Feynman integrals had been studied in
the context of analytical properties of scattering functions in S-matrix theories [17]. Because

at that time no method was known that rigorously solved the problems of renormalization,
it had to be taken for granted and was widely accepted that renormalization did not change
the regularity statements. In 1966 Hepp used the Bogoliubov-Parasiuk subtraction method,
which corresponds to imposing renormalization conditions at 0 momentum, to prove the

perturbative renormalizability of a relativistic massive scalar field theory [18]. Furthermore he

showed that for relativistic massive $4 physical renormalization conditions could be obtained
by a finite renormalization [18],[19]. He only made a short comment (to our knowledge)
on the possibility of transferring the results about singularity surfaces of unrenormalized
Feynman integrals to the case of renormalized ones. Chandler proved this to be true for
analytically renormalized Feynman integrals in 1970 [20]. Finally Rivasseau pointed out
to us the strategy of proving for renormalization in parametric space that the regularity
region of the renormalized two-point Green function is sufficiently large to ensure physical
renormalization conditions on the mass shell.

In this paper we also start from renormalization conditions at 0 momentum similarly as Hepp
did and prove the perturbative renormalizability of relativistic massive $4 We impose
arbitrary conditions at 0 momentum and obtain renormalized n-point functions. (In fact we fix
particularly simple renormalization conditions at 0 momentum for simplicity of notation, but
the generalization to arbitrary renormalization conditions at 0 momentum can be carried out
without difficulties.) Then we show that these renormalized n-point functions have regularity
regions that admit physical renormalization conditions, i.e. the renormalization conditions
at 0 momentum can be chosen in such a way that physical renormalization conditions on
the mass shell are satisfied. In order not to get bothered with the poles of the amputated
connected n-point Green functions for partial sums of external momenta lying on the mass
shell we analyse the one-particle irreducible Green functions.

The paper is organized as follows: We first derive the flow equations for one-particle irreducible

Green functions in the Euclidean theory. Then we show certain analyticity properties of
the renormalized Euclidean one-particle irreducible n-point functions for complex momenta.
We define the relativistic theory with an e-regularization due to Speer [21] and prove
perturbative renormalizability and the fact that the renormalized one-particle irreducible n-point
Green functions become Lorentz invariant tempered distributions in the limit e —>• 0. Using
the analyticity properties of the renormalized Euclidean theory we then derive the regularity
of the renormalized relativistic one-particle irreducible n-point Green functions in a region
that admits physical renormalization conditions for the two-point function.
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2 The Flow Equation for regularized Euclidean
massive $4

In this section we shortly introduce some basic tools of the flow equation method (for details
see [3],[4]), which are necessary for the subsequent considerations.

We use the following regularized free Euclidean propagator

a

Ca°{p) ¦= j da'e-a'{p3°+?2+m2) O<a0<a<oo (1)
ao

Note that this regularization differs from that used in [3],[4], as it respects analyticity in
momentum space. The Fourier transform is denoted as C"°(x — y). The functional Laplace
operator A(a,a0) is defined as

A(a,a0):=\jd4xjd4yC°°(x-y) 6$(x) 5^(y)

$(x) may be viewed as an element in 5(R4). The interaction Lagrangian at scale q0 is

given as a formal power series:

La»'a°($) := £PrLrQ°'a°(<I>)

This is the standard Lagrangian including counterterms:

Lrao'a"($) :=fd4x (a?°<i>2(x)-b?°<l>(x)a<!>(x) + c?°<l>4(x)) (2)

where O denotes the 4-dim Laplace operator.

The effective Lagrangian
/--¦"•(*) :=2>'Lra--(*)

r>i
is defined through

._ eA(c,a0) e-X/>0. «<>(*)
^

,3>

w here Ia<a° collects the terms, which satisfy ¦f^Ia,a° 0. (Note that as long as these

terms appear we have to keep the volume in (2) finite to be mathematically strict. But as we

are only interested in the ^-dependent terms, we will ignore this point.)
The flow equation for the effective Lagrangian can be obtained by differentiation of (3) with
respect to a and is given by

daL°'a°(<l>) + daIa'a° [daA(a,a0)] La'a°(<I>) (4)
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-\Jd<xI d*y {ih La'a°w){dac:°{x -y)) mr) L°'ao(#) ¦

Regarding the fields $ as functions on momentum space, Lra,a°($) can be written as

VO0(*) E / Il £&*(»)*(- E Pi)CrT°fa>- -Ä-i • (5)
n>2 ^ fc=l lZ7rJ ;=1

C"lf" is the rth order contribution to the connected amputated n-point Green function.

It enjoys the following properties:

a) jC°^a° may be assumed symmetric under permutations of pi,... ,pn := — YlfZÌ P3 ¦

b) £°;ao 0 for n > 2r + 2 (connectedness),

C^2kli 0 (due to the symmetry <J> —r -$
c) C°^a° is invariant under (9(4)-transformations of the p3

A) C^o is in C°°([a0,cc) x R4'""1») as a function of a and Pl,...,pn_,

3 Flow Equations for one-particle irreducible Green func¬
tions

3.1 The Generating Functional ra'a°(4>c)

The generating functional Wca'a°(J) of the pertubative, regularized connected Green functions

is given by

W°-a°(J):=L"'"°(<i>)\^ô:oJAla'a°-l-<J,C:°J> (6)

where < f,g >:= /^ f(-p)g(p) J £ S(K4)

The generating functional rac,°($c) of the corresponding one-particle irreducible Green
functions then can be obtained by a Legendre transformation:

Let 8J(p):=S/SJ(p) and j£y $c(-p) := SJ{p) Wca'a°(J) Then rQ'a°($c) is defined by

r°'°°(<i>c):=[Wc°-°°(J)-<J,<i>c>}j=j{/tc) (7)

implying

V(-p)r°'a°(1>c) 077 J(P) ¦ (8)
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In order to compute rQr,O0(<I>c) we have to invert the equation

*c(p,J) C:°(p){(2n)46*{_p)L»'°°(<t>)\*=ô:oJ -J(P)} (9)

to get J(p, $c) Because La'a°($) Yl^Li grL?'°">($) is a formal power series in g and

Z/r°'a°($) is an (even due to the symmetry $ —> — $ polynomial in $ of degree < 2r + 2

(connectedness), we can invert (9) up to any order r and therefore raao(<I>c) is well defined
in the sense of a formal power series in g.
We have to keep in mind that now $c(p) is viewed as the independent variable (as a function
£ S(R4)) and that J(p, <£,_.) is a formal power series in g, which depends on a and q0

3.2 The Flow Equation for Ta a°($c)

By taking the derivative of (7) with respect to a we get

daTa-a°($c) (daW°-a°)(J)\J=J{*c) (10)

We insert (6) and obtain

dar---(*e) [da (L°-a°(<t>) +1"-"»)]4=(5»„J(4c) (ii)

+ [Jd4q (da Ca°°(q)) J(q) 6*{g) La>"°(*) - \ < J, (3a Ca"°)J

Now we use the flow equation for Laa°(<î>) :

da(L°'a°(<!>) + /«•<"<>) [da&(a,a0)] La'a°(1>) (12)

-1- < (2n)% La'a°(<S>),(daC:°)(2n)46*L°'a°(<l>) >

and get from (11), (12):

dar°'°°(<!>c) [daÂ(a,ao)} La'a°(*)\i=e:,J(*c) (13)

A < (2«)*S* L"-"°($)-J(<Kc),(OaC0a°)((2^)4^L — (*)-J(*e)) > |*=(5a«oJ(*e)

Together with (9) this yields

0«(r---(*e) - Ì < *e,{<5a-}-1*e >) [ÔaÀ(a,a0)] £*•"•(*) l^-j^, - (14)

In order to arrive at a differential flow equation for ra,a°(<i>c) we have to express the
functional on the right hand side of the equation (14) in terms of ra,a°(4>c).

J J(*c



Keller, Kopper and Schophaus 253

We insert (9) into the relation

5(p + q) *«,(,) *e(-g) (15)

and with the help of (8) we obtain

8(p + q) -(2n)»Jd4q' [C^(q)C^(q1) <5*e(p)*MsO Ta-a°(<S>c) (16)

Vo^)ia'00(*)]^^oJ(^) + (2^)4^(9)V(p)V(,)ro'on«î'c)

The right hand side of this equation is a formal power series in g. (16) has to be fulfilled up
to any order r and therefore we get the equations:

S(pAq) (2n)4C:°(q)ó*cMS*c(q)rZ-a°(<l>A for r 0 (17)

r-l
E
k=0
£-(2tt)4 fd4q' C:°(q)C:°(q') t^f(«?, -<?', <KC) *?.<„)*?«<,.) r^a°(*c) (18)

A(2n)4C:°(q)6*cM6<tcMr?-a°(<l>c)=0 ,r>0,
with the definition

r?"">(q,p,*c) := (2*r)4{^(p)<fy,)L"-an*)l*=e\»V(*e)}r (19)

We now can insert (17) into (18) and obtain

t?a°(q,P,*A (2ir)4Sic{p)S9cMr^a"(^) (20)

-(27r)4g /rfV c>(<7') f'^rc«,-«',*.) *•.«*•.(,•) rfc,a,(*«) •

*:=1 ^

(20) is a recursive relation for t°'a°(q, p, $c) and allows us to express r",a°(g,p, 4>c) in

terms of rt0,,a°($c) k 1,.. ,r
We compare the left and the right hand side of (14) in powers of g use the definition (19)
and end up with a differential flow equation for rra,a°($c) :

9arr°-°»($c) \jd4p(daCZ°(p))t°-a°(p,-p,$c) r>l. (21)
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3.3 One-particle irreducible Green functions

rrc*,a°($c) is an even polynomial in $c :

r?-"'(*c) E / B 7TTÎ *<(P*)*c(- Eft) r-;-^,...,^-,) (22)
n-l ^4,

T"^00 is the momentum space regularized one-particle irreducible n-point Green function of
order r.
It is defined to be symmetric under permutations of p\,... ,p„ := — YlfZi Pi >

'*¦ 's invariant
under 0(4)-transformations of the p3 and it is in C°°( [a0, oo) x R4(n_1) as a function of
o and pi,... ,pn_i We have: T^"0 =0 for n > 2r + 2 (connectedness). (21) rewritten
for the coefficient functions r°;1a°(pi,... ,pn_i) yields:

da rrX°(Pi,. • • ,Pn-i) \J T^yi (da C:°(P)) t°£%(P, -p,Pu... ,pn_.) (23)

where

rra;?2(P, -P,Pi,- • • ,Pn-i) := (n A l)(n + 2) rra£%(p, -p,p,,... ,p„_i) (24)

-E E (-irA'"(ò1,...,ò„)[n c:°(q'k) r;^+2((7i_,,p.k+i,---,p.t+6j
»=2{«AA,} *=»

ra"',6!+2(9v-P -P. P'v+1 : • • ¦ Pn-1
J symm.

with

bi+...+bk k-1
q'o P 9Jl P + E Pj ' a3 > ° 6j 0,2,4,..., n ù EèJ •

j=i j=i

The sum is over all {a,} with zZJ=i a; r and over all {b,} with 7];=! b, n
K"(6i,..., 6V) is a combinatorial factor, which could be computed with the help of (20) and
[• • -Isymm. indicates the symmetrization operation with respect to p\,... ,pn — ]C?=i Pj •

We use (9) and (7) to compute the lowest order contribution in powers of C°° to r°,0° and
as C/f°(p) 0, we conclude that for a -> q0 £°°'q° rra°'ao and therefore we get from
(2) the boundary values at a ao :

Y^'aa(p) <a + K"p2 r°°f°°(pi,p2,P3) cra<> rrnao(p) o fom>4
(25)

p denotes the tuple (pi,... ,pn-i) ¦

(25) implies

d;r%-°'(p) 0 for n + M>4 (26)

where lo (u/°,..., wj,u>2,..., w^_,) is a multiindex and
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d^ d;/...d;::i m-eUe^M •

With the help of (23), (24) and (25) all one-particle irreducible n-point Green functions of
any order r can be computed by integrating successively (23) with respect to a from the
lower bound a0 up to the new parameter a following the standard induction scheme of the
flow equation method (see [3]) upwards in r and for given r downwards in n

For illustration we can interpret the contributions to r"^i02 in (24) in terms of Feynman
graphs: We suppose r™^a° can be written as a sum of one-particle irreducible Feynman
graphs where every internal line is a function of the parameter a If we now take the derivative
of r";,"0 with respect to a, we can divide the expression obtained into contributions of two
different types. Contributions of the first type stay one-particle irreducible, if we remove
the line on which the derivative acts. The first term on the right hand side of (24) can be

interpreted as a sum of all these contributions. Contributions of the second type become

one-particle reducible, if we remove the line on which the derivative acts. The sum of these
contributions corresponds to the second term on the right hand side of (24).

Due to these considerations we conclude that by integrating successively (23) we indeed get
the one-particle irreducible Green functions (the proof could be carried out by induction in

r and n

4 Renormalizability and Analyticity of the
one-particle irreducible Green functions

Let us now change the index pair (r, n) and take

/ := r - - + 1 and s := 2r - - (27)
2 2

v '

as a new index pair to number our Green functions.(In the language of Feynman graphs /

corresponds to the number of loops and s to the number of internal lines of an (unrenormalized)
graph.) For our new indices (26) reads:

d;r?tr°(p)=0 for H + s>2/ (28)

Furthermore we have:

r^ao(p) 0 for s<2l-\ /<_0 ,s_<_0 (29)

n<2 n>2r+ 2 n>4r

The flow equation (23) written for the new indices is

da F,r°(Pl \ J (0ï (9a Ca°°(p)) f££_,(?, -p,p) (30)



256 Keller, Kopper and Schophaus

where

fi-'S-iü»,-p,?) ¦¦= v, rzz^ip,-p,p) (3i)

-*E E (-im»i Mln'c.-WrMCJW]
v=2 {Cj},^,-} fc=l

The sum is over all {cy} {dj} with Ev=i Cy / — 1 and Ejf=i ^j + u s ¦ where c3,d3 > 0

Furthermore we have:

fc-i
Pk (q'k-i,p,k-ri,---,P,k+bk) bk 2dk-4ck + 2 i* E &i '

;=]

bl+...+6*
<7Ó P i 9* P+ E Pi > P« (9v-nP.-,+i»---.Pn-i,-p) i /if (n + 2)(n+l)

j=i

4.1 Integral Representation for c^T"jao(p)

By successive integration of the flow equation (30) we now want to derive an integral
representation for dpr^a° Note that because we are in a massive theory we may integrate the
flow equation (30) and its momentum derivatives up to infinity with respect to a since the

mass provides an exponential infrared cutoff for large a.
We use the following boundary conditions (see also [3],[4]): At a a0 we impose (28).
For the so-called relevant and marginal terms with ^ + s < 21 we impose renormalization
conditions at q oo by fixing the values of r,<^;a°(0), r/^i"J(0) and dßdu V^}"J(0) (We
restrict to momentum 0 because we want to analyse the corresponding relativistic theory
later on, and there it is convenient to start by renormalizing at 0 momentum). We have to

distinguish three cases:

i. s > 2/

2. s 21

a ut

IT;ao(p) / da' da. r,VQ0(p) j da' (r.h.s. of (30)) (32)

rr;ao(p1 r,r°(o) + EEp^ hx(d^r^a')(Xp) (33)
1 n J

J l ß=o

with

r^ao(o) r£'ao(0) - J da' do.r°''"°(0) (34)

r.h.s. of (30)



Keller, Kopper and Schophaus 257

and
a

^r<r°(p)= [da'd„j da,r?r°°(p)

r.h.s. of (30)

2. s 21-1

r,r°(p) rj£W+\ E p»p»9,d„r,r°(o) (35)

as in (34)

3
1 1 1

+ é pltJdX1psX1Jdx2Pli,.x2x1Jdx3(dli,.dli.dliri:;ao)(x3x2xlp)
p.c',m"=o 0 0 0

with
00

d„ dv r£ao(o) d„du r^'ao(o) - Ida'd„a„ da, r£-a°(o)

r.h.s. of (30)

and
or

0*.» a„. a„ raa° (p) / da' dlt„ dß, dß da,r?ra°(p)

r.h.s. of (30)

For / 0 we get from (29), (30), (32) and (33):

roaoQ°(p) lToa°(0) and rfff°(p) 0 fors>0 (36)

We impose for reasons of simplicity the renormalization conditions:

r0°°o °°(0) := c* and T~;Q°(0) 0 r ~;_a°(0) 0 dß du Tf2la_\(0) 0 for / > 0

(37)
Note that once we have fixed the renormalization conditions the bare parameters appearing
in (25) are determined uniquely [3],[4].

Using (30), (32), (33), (35) and the starting point (36), we obtain by induction an integral
representation for d" T^ao :

Lemma 1.

oo oo

d;r°;a°(p)=fd\i...Jd\a{l,s)Jdai...jdasd;G:»s(a;\,j}) (38)
c*o aro

a and X denote the tuples (ai,...,as) and (Ai,...,Aff(/t,\) and d'f Gfs obeys the bounds

\%Grj3Xp)\ < e-m'ZU°> P(\p\)Q(y/^1,...,y/^s) (39)

where P is a polynomial with nonnegative coefficients - independent of a
in |po,i|, • • • |p3,n-i | and Q is a nonnegative rational function which has no poles for a, > 0
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Proof. The induction scheme is quite simple as on the right hand side of (30) there only appear
contributions up to (/ — l, s — 1) and therefore the induction could proceed for example in
l-\-s To give a short indication how the elementary proof works let us carry out the induction
step for s > 2/ \u\ 0 :

We employ the induction hypothesis (38) on the right hand side of (32) and interchange
the loop-integration d4p with the d\t d\„m^dai das-\ integration which is justified
because of (39). This yields (40), (41). Now we check that the new G°s obeys the bounds
(39) and the induction step is completed. The induction step for |oj| ^ 0 and .s 2/,
s 21 — 1 is analogous. Ü

G"s(a,X,p) and cr(l,s) are determined through the following recursive relations:

1. s >2/
G£,(5,X,p) G,t,(a,X',f)e(a - a,) (40)

with
_d_4p

(2ti

- E E (-l)vA"J(6i,...A)[n e-a«kW+m2î e(a, - aWk)G:k'ìdk(ak,Xk,Pk)
v=l {cj},{d,) fc=l

g:;m(^,xv,pA } ¦v' " J symm.J

The sum is over all {c,} {d3} with E?=j Cj — I — 1 and Ei=i dj A v s where c3, d3 > 0

Furthermore we have:

a* (aA+i>- • • ><*/*+<«») i Xk (XUk+i,.... XUk+a(Ckjk)) X (Aj,..., Aj((i3))

V k-1 k-l
wk Y,djAk fk J2d3 i uk E °{.ciidi) ¦

;=1 j=l j l

As we can add to (38) as many integrals /0 d\3 with new variables \3 as we like without
changing anything we take the maximum number of A-integrals which appear on the right
hand side of (30) during one induction step as our new number of A-integrals. For s > 2/ we
set

V

cr(l, s) := à(l, s) := max {o(l — 1, s — 1), nv} with nv := max {\J <r(ck, dk)}
" UA-{dA fc=1

2. s 2/

3 3

Gt~,Aâ,X,p) -Ói,,(a,A',O)0(a, - «) + E E Pw (3w^<)(^^»(WP)e(a ~ ft») •

j l (<=0

(42)
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Here we set o(l, s) := 1 + ö(l, s)

3. s 21 -I
Gï,(a,\,p)=[-Gl,,(â,\',0)-1- £ P,P,d^Gl,,(S,X',0)]e(as-a) (43)

v,ß=0

3

+ E *i(i,>)-2 X„(i,s)-i pß Pu' p»» [d^id^d^ Gì,,) (a, A', ACT((|JI)_2 A^(/ij)_i \„(,tS) p) Q(a - aa)
i*,p',p"=o

o(l, s) := 3 + ô(l, s)

Note that, as long as we keep a0 > 0 and the external momenta are real, we have absolute

convergence of the integrals in (38), even for a oo

4.2 Convergence of the Integral Representation
-ia, aoIn this section we want to examine the convergence of the integral representation of d" Vt,'

as ao —r 0 and a —r oo in a complex domain obtained by continuing po,i,Po,2, • • • ,Po,n-i to
complex values (see (45) below).

From (40), (41), (42) and (43) we can realize inductively in / + s that d"G"s may be

analytically continued in the zero components of the external momenta into any complex
domain:

dpG",(a,X,p0ii +ifc0,i,p1,...,po,n-i + ik0,n-i, Pn_,) (44)

is well-defined for finite positive a, a and polynomially bounded in p for
fco.ii ¦ ¦ •, fco,n-i 6 R • From now on we restrict the imaginary parts fco (fco.i, • • • fco,n-i) to

n-l
I E fco,j | < 2(m - n) forali r.Ç{l,...,n} fco.n - E *<>-> (45)

j€T<, ;=1

and want to show that we still can control the limit a —> oo of ct' r,Qs'a° Here and in the
following n > 0 is a fixed number which may be chosen arbitrarily small.

In this domain we can integrate \dpG^3\ with respect to a and A over the region indicated
in (38) as long as we keep a finite. This could be shown by induction in / + s using similar
bounds as in (39):

\dp G/?S("» X, po,l + tfco.l, P, - • • Po,n-l + tfco.n-l, P„_, )l

< esa4m2-m2^'^a'P(\p\)Q(^,...,^s) for fco/0. (46)

For fco 0 we can use the bounds (39).
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Therefore

dp r"3'QO(po,l +tfc0,l,£1,...,Po,n-l +«fco,n-l,Pn_,) (47)

is well-defined and the integrand is absolutely integrable. Moreover we are able to give bounds
for the \&Z/ T"'sao\ which for large a do not depend on a or ao :

Proposition 2. The integral representation of the dpV°Ja° in the domain defined by (f5)
obeys the bounds

1 1 oo oo

/ dXi... / d\a(iiS) I dax / das | â£G£(a, A,po,i +^o,i,£1,-- -,Po.n-i + ^otn-\-,Pn_x) \

0 0 ao «o

< J Pl(IPl) for a-â (Au)- 1 P2(|log(a)|) P3(|p1^cT)a-2'+s+^ for a0 < a < â '

Pk are (each time they appear possibly new) polynomials with nonnegative coefficients which
depend neither on a nor on ao but on n,l,s,â. à > a0 is some finite fixed number (e.g.l).

Proof. The proof is performed by induction in I + s. We first consider the case a < à and

s > 21. Applying dp on the recursive relation (41), multiplying by Q(a — as) and taking the

sum of the absolute values of all contributions leads to an inequality both sides of which can
be integrated with respect to a and A (due to the bounds (46)) over the domain indicated
in (48). We change the order of integrations on the right hand side and employ the induction
hypothesis for as < à. Furthermore we bound the powers of the aWk on the right hand side

by powers of as and the corresponding a^-integrals

Jdc^e-'-ie^-lZX +bkk°>)2)
(49)

ao

by constants uniformly in 0 < a0 < a3 < â. We then obtain'

a

l.h.s. of (48) < J da, J d4p{e-a'"2 ar2l+3+l+l^ P2(\\og(as)\) (50)
ao

P3(\p\Väs,\p0\\/äs,...,\p3\y/äs)]

where we have bounded appearing factors of the type \ko,3\y/a~s by 2(m — i])y/â We now
perform the loop-integration and get:

a

l.h.s. of (48) < J dasaf2'+s-1+^ P2(\\og(as)\)P3(\p\^s) ¦ (51)

no

Estimating the integral on the right hand side yields the induction hypothesis and completes
the induction step.
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The induction step for s 21, s 21 — 1 and a < â is also performed using (41), and
therefore the argumentation is almost the same, but we have to split the contributions to
(42), (43) with as > a into two parts: The first part with as < â can be treated as above.
For the second part we employ the induction hypothesis for a„ > à on the right hand side
of the inequality that we have obtained from (41). (Note that p, fc0 0 for these terms.) We
bound the a^^-integrals (49) by

oo

daWke~a^m (52)

compute the loop-integral, estimate the a3-integral and end up with a constant independent
of a, a0 Taking all contributions together we thus can reproduce the induction hypothesis.
This completes the induction step for the case a < â which we can call the renormalizability
part of Proposition 2.

For the case a > â we first consider the induction step for s > 21. Looking at (41) we
examine the two types of contributions on the right hand side. The first type which has

no reducible line is easy to handle since the loop-integration variables can be left real and
therefore - after applying dp taking the absolute value, multiplying by Q(a—as), integrating
over the region indicated in (48) and employing the induction hypothesis for as < a and
for a > as > à - we can reproduce the induction hypothesis for a > â without any
difficulties. The second type which can be described graphically as a sum of chains that
consist of one-particle irreducible Feynman graphs which are connected to their neighbours
by a reducible line requires a more careful analysis, because the propagators corresponding
to the reducible lines may increase exponentially in the aWk Due to this fact we will have to
add an imaginary part to the loop-integration variable p0 that means instead of integrating
along the real p0-axis we want to integrate along the path p0 + «fco with fixed fc0 (We are
free to do so because (44) is polynomially bounded.) Let us now have a look at the exponent
of a propagator corresponding to a reducible line. In order to get an exponential decrease we
have to achieve

'i + -+6k b, + ...+bk &1+...+6,

E p/ + (po+ E pc)2--(**>+ E
3=1 3=1 3=1

Furthermore the real part of the exponent of the differentiated propagator which corresponds
to the line that closes the loop has to be negative to get an exponential decrease in as :

(m2+p2+pl-k20) > e > 0 (54)

and therefore we require
|fco| < m — r) (55)

We now want to show that for each fixed chain that means for each contribution to the
second term of (41) with fixed v,c%,... ,c„,di,... ,dv and a fixed order of external momenta
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Pi,. ,p„-i we can find an imaginary part fco for the loop-integration that fulfills (55) and

(53) for all fc 1,..., v — 1 For a fixed chain we define

qk ¦= E k°,3 ' k l,...,v -1 (56)
3=1

(45) implies

\qk\ < 2(m — n) and \qk — q,\ < 2(m — n) for all k,i (57)

Now it is easy to realize

Lemma 3. Let ko be a real number bounded by

— min{0, min{<7ic}} —m + n<fco<— max{0, max-fi^}} + m — n (58)
k k

then k0 fulfills (55) and (53) for all fc.

Proof. Because of (57) we can always find a fc0 which obeys (58), and from (58) we get

\qk A fcol fi m — n for all fc (59)

and therefore we can see that for this fc0 (55) and (53) are fulfilled for all fc. ü

Since we want to employ the induction hypothesis on the right hand side of (41) fcc has to
satisfy another condition:

(fco, fco.l, • • • ,fco,6, (fco + <7i, fco,i2+i, ¦ • • i ko,,2+b2), • • •, (fco + 9«-i, fco,i„+i, • • • ,fco,n-i, — fco)

(ik Ej=i bj) have to be in the domain indicated by (45). Therefore we have to modify the
bounds which fc0 has to obey. We define

rhk ¦= m<Lx{qk_i + YI ko,,k+3} mk := miii{gA_, + ^2 fco,,fc+j} k=l,...,v
3€ra.k " "

j6T0,k

(60)
where

9o := 0 raM Ç {!,...,6*}

Furthermore we define

m := max{mt} and m := m'm{mk} (61)
k k

(45) implies
m < 2(m — n) and m > — 2(m — n) (62)
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Now we are ready to prove

Lemma 4. Let fco be a real number bounded by

f 2(m - n) - max{0,m} ._,.fc0 < min^ ,_ r- ir (63)
L m — tj — max{0,maxk \qk})

fc0 > max nL -m-f-r; - min{0, minila-}}
then ko fulfills (55), (53) and

rn — rj — max{0,maxjt {qk}}

-2(m — n) — min{0, m)

|fco + q<:-i-l- E k°,ik+i\ ^ 2(m-n) forali ra,k Ç {1,... ,bk} k l,...,v .(64)
j€ra.k

Proof. Due to (45) we can always find a fc0 that obeys (63). It is not difficult to check that
this fco - besides fulfilling (55), (53) due to Lemma 3 - also fulfills (64). O

Now we are able to carry out the induction step for s > 21 : For every chain on the right hand
side of (41) we choose a corresponding fc0 which satisfies (55), (53) for all fc and (64). Then
we apply dA take the absolute value, multiply by Q(a — as), integrate over the domain
indicated in (48) and employ the induction hypothesis for as < ô - for this contribution we

can refer to the case a < à treated above - and for a > as > â on the right hand side. We

bound the a^-integrals

fda^e-a^<2+m2'^+M2)
â

by

*wk

/•daw. e-a'"^2'n-,')
â

and end up with

a

l.h.sof(48) < P1(|pl) + |(Ias{yr(l4pe--(''2+"'2'P1(|p1,|po|,...,|p3|) (65)
â

+ ^|d4pe-Q-("2-'=o+-2)pl(|;3l,|p0| |p3|)}

Now we perform the loop-integration, set a oo and since m2 — kg > n(2m — ;/) > 0 we

obtain the induction hypothesis for a > â

For (42) and (43) the argumentation is almost the same. Note in particular that X3 £ [0,1] for
all j 1,..., o(l, s) so that if (45) is fulfilled for fc0 it also holds for A^fco This completes
the proof of Proposition 2. O

Because a and a0 only appear as bounds of the domain of integration in (38) and (48),
we also get from Proposition 2 the convergence of the integral representation of dp r,Qs'a° as

a0 —> 0 and a —> oo Thus we obtain
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Theorem 5. The one-particle irreducible renormalized Green functions of perturbative
Euclidean massive $4

r:^'°(Po,i +*fco,iiP, ,Po,n-i +îfco,n-i,Pn_]) (66)

are analytic in p0,i + ifco.i, ¦ • ¦ ,Po,n-i + iko,n-i in the domain defined by

(po,i,...,po,„-i) £ R""1 and (fc0,i,..., fc0,„-i) £ Rn_1

n-l
with I ^ fc0lJ I < 2m forali r0Ç{l,...,n} fc0,„ - E ko,3 (67)

3€ra j l

and smooth with respect to (p p _
£ R3'"-1' The integrands of their integral

representations (38) are absolutely integrable.

5 Structure of the Integrands Gf*s

Using (40), (41), (42) and (43) we now want to analyse the structure of the integrands Gfs
We can state

Proposition 6. The integrands Gfs of the renormalized one-particle irreducible Green

functions T,"' with the renormalization conditions (31) have the following structure:

C7°(a,A,p-) E^(P)Q>(5,A)e-£*.»i ^(q^)p'p" V/(a) e"™2 EL, »* (68)
3

(a) V3a(a.) are products of Q-functions in (a, — ak) ±(a — as) The support of V}a(a)
restricts all a, appearing as arguments of Akv(a, A) to a, < a

(b) Akv(a, A) are continuous with respect to A and with respect to a in the support of
VjQ(a) They are homogeneous of degree 1 in a (that means A^„(ra,A) r Akv(a, X)),
and A'(a, X) is a positive semi-definite symmetrical n — \ xn-1 matrix.

(c) Qj(a,A) are rational functions in a and X which are homogeneous of degree d3 £ Z
in a

(d) P3(p) rijKt, ÌPkPv)Uk" rtkv € No, are monomials in 0(4)-invariant scalar products
of the p,

All functions introduced on the right hand side of (68) also depend on l, s and the sum over

j is finite.

Proof. The proof is carried out by induction in I + s We employ the induction hypothesis on
the right hand side of (41). First looking at the second term on the right hand side we realize
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that this contribution can again be written as a sum of terms of the form (68). For these

terms and also for the first term on the right hand side of (41) we thus obtain loop-integrals
of the type

/ JV^ple"""1"^'^'""
where (according to (41)) pn+1 —pn —p

Using

n+l
». p2 - E AL PkPv - E

k,v=l k,v=l

Akn — Akn+i A/,n — Avn+l f

Ann A An+ln+i — 2Ann+1 + as

(69)

PkPv (70)

-( ^n+m+i + Ain - 2AL+1 Aa,)(p+Y; 77
AJ — A1nkn ^fcn+l

k=i Ann A An+ln+1 — 2Ann+1 + a,
Pk

we can perform the loop-integration and reproduce the induction hypothesis for Git> Note
that as > a, due to the induction hypothesis, see in particular (a). Therefore the second

part in the square brackets in (70) is always well-defined. Furthermore the new contributions
to the P3(p) are again of the form indicated in (d) which could be seen by using

(pp)ü (PPk)ù e"y (V.V,)" (VyPky e'« (71)

before computing the Gaussion integral and setting y 0 afterwards. Inserting GiiS in (40),
(42) and (43) again yields the induction hypothesis and completes the induction step. Note
that the A^'s for 0-momentum G's in (42), (43) are simply defined to be 0.

In order to bound the degree of homogeneity d3 of Q3(a, X) we define for fixed l, s

h3 '¦= 2 E <v
k<v

(72)

Inserting (68) in (40), (41), (42) and (43) we can prove by induction in l + s that the following
equation holds:

A3 - dj 21 forali l,s,j (73)

We thus obtain for G'fJ and for all l,s,j

> - s (74)

For s > 21 this is obvious, and for s 21 we see in (42) that because a 00 the first
contribution is vanishing, and with the help of (68) we conclude that therefore only terms
with h3 > 2 contribute. For s 21 — I we get from (43) and (68) that for a 00 only
terms with h3 > 4 contribute.

Now it is easy to prove
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Corollary 7. The integral representation (38) of the one-particle irreducible renormalized
Green functions T™' with the renormalization conditions (37) can be written as

111 s

r,~'°( p) =jdxjdßl...j dß,s{\ - £ ßk) 32Vj0)Pj(p)Qj0,X)

E*,v A{v(ß, A) PkPv + m2 ELi ßk)
d,+s (75)

and the integrand is absolutely integrable. The momentum derivatives dp Y™' are represented

by integrals of the corresponding momentum derivatives of the integrand which are also
absolutely integrable, and due to Theorem 5 this representation is still valid in the complex
domain indicated in (67).

Proof. Considering the integral representation (38) of the renormalized one-particle irreducible

Green functions we define a substitution of the integration variables (we are free to do
so because the integrand is absolutely integrable) by

ak=:rßk fc 1,... ,s and J2 ßk 1
¦

This yields

dax...das r"''S(\ -f^ßk)dßi...dßsdr
k=l

Now we insert the integrand from Proposition 6 and get

11 1 oo s

r,~-°( P) / dX jdß,...j dß, j dr [*(] - £ ßk) £ Vj(ß) Pj(p]
0 0 oo *=1 i

T>+d>-1 Qj(ß,X)e-T'E>:'A>'{ß-X)'"''" e-Tm2E;=,Ä
_

(76)

(77)

(78)

Due to (74) and because the integrand is absolutely integrable we can perform the

r-integration and then we obtain (75).
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6 Relativistic massive <ï>4

6.1 The regularized Theory

We now want to turn our attention to the corresponding relativistic theory. We define a

relativistic regularized propagator which is analytic in momentum space by

a

C°°(p) ¦= J da' e-"W+(<+')'»2)
t £ > 0 0 < a0 < a < oo (79)

ao

where n is the matrix

(80)
(e-i 0 0 0 \

0 e+i 0 0
71 :~ 0 0 e + i 0

V 0 0 0 e + i /
The interaction Lagrangian at scale a0 is defined by

La°'a°($) :=Esr L?',a*W

L?°-ao($):= fd*x (ara'$2(i) +èr'*»$(i)A$(i) -C$(i)9o$W +C$4(i)) (81)

A denotes the 3-dim Laplace operator. As the e-regularization breaks Lorentz invariance
(but not 0(3)- and T-invariance) the interaction Lagrangian contains an additional
counterterm.

In analogy to the Euclidean theory the effective Lagrangian

La-O0($) :=£5rLra'a°($)

is defined through
e iLa-"0{9) +ila-a0 ._ eA(a.ao) g L°0'"o(*) (82)

where the functional Laplace operator A(a,a0) is defined as in section 1 but with the
relativistic propagator (79).

Differentiating (82) with respect to a yields the flow equation for the effective Lagrangian
of the relativistic theory:

daLa-a°(<l>) + daIa-a° [daA(a,a0)} Laa°(t>) (83)



268 Keller, Kopper and Schophaus

6.2 Flow Equations for one-particle irreducible Green functions

The generating functional Wca'a°(J) of the pertubative, regularized connected Green functions

of the relativistic theory is given by

Wc°-°°(J):=iLa-0°(<!>)\t=lô:oJ + iI°'a°-l-<J,C:°J> (84)

Then the generating functional ira'a°(<I>c) of the corresponding one-particle irreducible
Green functions is defined by

ira<a°($c):={Wc<"a°(J)-i<J,$c>]j^) (85)

*c(p,J) -(2n)46J(_p)W;-»°(J) Ca"°(P) {(2n)4 6«{_p)i La^(*)\*=lô:oj +iJ(p)}
(86)

Differentiating (85) with respect to a and using (84), (83) and (86) we get

da(iT°'°°(<l>AA - < *e,{C'B-}-,*e >) [daÀ(a,a0)} iLa'a°(*)\*=ic;°j(*c) ¦ (87)
1

2

We define
t?-a°(q,p,<i>A := (2n)4 {ó*{p)S*M La-a°(<t>)\<,=,c-.->oJ{sr)}r (88)

By the same procedure as in section 2.2 ((15),.. .,(20)) we now obtain a recursive relation

for fra'Q°(<j,p, $c) that allows us to express r?'a°(q, p. $r) in terms of r^'"°($c) fc l,...,r

r?-a°(q,P,*c) (2ir)464c{p)8*cMr?'a°($c) (89)

+ i(»4£ fd4q' c:«(q') r?:ak°(q,-q',*c) *?.(,)*•«<,•)rta'a°(*e)
«:=1 J

Using (87), (88) and (89) the differential flow equation for the relativistic one-particle
irreducible Green functions i r?„a°(pi, • • • iPn-i) reads:

1 A4

dair°n°°(pi,...,Pn-i) 2/(2^ (dcC:'(p)) 1 r°ni°2(p,-P,pi,...,pn-i) (90)

where

ir°;+°2(P. -P. Pi, ---iPn-1) := (n+ \)(n + 2) 1 lA',nl°2(p, -p,pi,...,p„_i) (91)

+ E E Kv(bu.--A)[fi c:°(q'k) »T^foUftYM,-••,;»*+»»)
«=2 MSA *=•
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» rZ£+iWv-l> "P, P.„ + l • • • Pn-1 ]
symm

•

The notation is the same as before (see (24)).

Looking at (20), (23) and (24) we realize that multiplying the Euclidean one-particle
irreducible Green functions by — 1) yields a flow equation which is - apart from the different
definition of the propagators - identical to the flow equation for the relativistic one-particle
irreducible Green functions.

Regarding the propagators we observe that we have to replace the Euclidean metric by the

matrix n and that we have to add a factor (e A i) to the mass term m2 in order to get the

relativistic propagator. Therefore it turns out that as long as we keep e > 0 we can easily
transfer most of our results from the Euclidean theory to the new situation.

6.3 Integral Representation and Renormalizability

The boundary values at a a0 follow from (81) and read:

r"ro(p) a?°-K°p2 + d?°pl r°r°(p,,P2,P3) cra° ^'-(plsfl forn>4.
(92)

This implies (as in the Euclidean theory)

a?C-(p*)sO for n + M>4 (93)

Changing the indices from (r,n) to (l,s) (see (27)) and using renormalization conditions
which correspond to (37) multiplied by — 1)

i r,ro'a°(0) := -cf and r,~;a°(0) 0, r,~;_a, (0) =0,dßdv 1723(0) =0 for / > 0

(94)

we obtain in analogy to Lemma 1

Lemma 8.

1 1 oo oo

d;iYir(p) jdXi...jdXa(Ks)jdai...Jda,d;G^(a,X,p) (95)
0 0 ao a0

and dp Gf, obeys the bounds

\d;Cr,(S,X,P)\ < e-'m,^^a' P'(\p\)Q(y/^1,...,y/^,) (96)

where Pc is a polynomial with nonnegative coefficients - independent of a -
in |po,i|, • • • |p3,n-i| and Q is a nonnegative rational function which has no poles for a, > 0

Proof. We refer to the proof of Lemma 1 in section 3.1.
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In order to examine the convergence of (95) as a0 —r 0 - keeping e > 0 and the external
momenta real - we now transfer our results of section 3.2 and state

Proposition 9. The integral representation of the &fir^a° obeys the bounds

1 1 oo oo

j dXx... j dXa{iiS) j dai... j daa|^G£(a,A,pi,...,p„_i)|
0 0 oro »o

J P\{ IpI for a > â
- I P/(|log(a)i)P3r(|p1>)a-2'+'+^ for a0<a<a (9°

Pk are (each time they appear possibly new) polynomials with nonnegative coefficients which
depend neither on a nor on a0 but on 6,1, s, à. â > ao is some finite fixed number (e.g. 1).

Proof. See the proof of Proposition 2.

From Proposition 9 we directly get

Proposition 10. The one-particle irreducible renormalized Green functions of perturbative.
relativistic massive $4 with an e-regularization given by (79) and (80)

ir^°(pi,...,pn-i) (98)

are well-defined for e > 0 and smooth with respect to (pi,.. ,pn-i) € R4'"-1' The
integrands of their integral representations (95) are absolutely integrable.

6.4 The Limit e -A 0

In order to analyse the limit e —> 0 we need more information about the structure of the

integrands Cf,. Using our results of section 4 we can state

Proposition 11. The integrands G", of the renormalized one-particle irreducible relativistic
Green functions i Tf^ with an e-regularization given by (79), (80) and the renormalization
conditions (94) have the following structure:

Grja,X,p) Y,P3C(p)Q3(S,X)e-^^AL(ârX)pk^VJa(S) (99)
3

(e-*)-"'(£-M)-''e-t'+^E^o*

(a) Akv(a, X), Q3(a,X) and Va(a) are identical to the corresponding functions in the

Euclidean theory.
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(b) Pf(p) X\k<y (Pk r/Pv)"*" (with the same ukv as in the Euclidean theory) are monomials,

which for e 0 are invariant under Lorentz transformations.

Proof. See the proof of Proposition 6.

In analogy to Corollary 7 we can easily prove

Corollary 12. The integral representation (95) of the one-particle irreducible renormalized
relativistic Green functions i T^' with an e-regularization ((79). (80)) and the renormalization

conditions (94) can be written as

C'°(p) =JdxJdßi...Jdß,s(i-J2ßk)
0 0 0 fc=1

(e -i)-il (g + Q-l't^4
E*,„ A{v(ß, A) ipknPv + (te -l)m2 EL, &)

(100)d,+s

The integrand is absolutely integrable. The momentum derivatives dp i F™' are represented

by integrals of the corresponding momentum derivatives of the integrand which are also

absolutely integrable.

Proof. See the proof of Corollary 7. D

Let *(p) £ S'fR4*"-1') and

F;(*,ß,x)=fd*p*(f)-, AA){ ] [ '
z^J

E*.v A3kv(ß, X) i pknpv + (ie - 1 m2 EL, ßk)
(101)

Looking at the denominator in (101) we realize that it has the structure

(P, +uP2-m2 + um2)1 (102)

with
P. E^(/M)(P<UPo.v-£tPv) (103)

k.v

and

P* EAL0,X)(Po*Po,v+PJslv) • (104)
k.v

Because A'(ß, X) is positive semi-definite and continuous in ß, X in the compact region of
integration we can apply a theorem due to Speer (p.105 [21]) that tells us that for e —> 0 (102)
defines a tempered distribution which depends continuously on A}(ß, X) and that (102) has

the same distributional limit as

(P, - m2 + iem2)Z (105)
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which is Lorentz invariant. Therefore we conclude that for £ —> 0 (101) defines a Lorentz
invariant tempered distribution which depends continuously on AJ(ß, A).

In the compact region of integration

52Vj(ß)Qj(ß,X)Ff(*,ß,X) (106)
3

is absolutely integrable for all e > 0 and F°(<P,/9, A) is continuous. Therefore we conclude
that (106) is still absolutely integrable for e 0

Thus we can state

Theorem 13. The. limit e —> 0 of the one-particle irreducible renormalized Green functions
of perturbative relativistic massive §\ defined by (79), (80), (81) and (94)

lim ir",0(pi,. ,pn_i) (107)
ff —>o

exists as a Lorentz invariant tempered distribution £ S'(R4'"-1')

Remark. Using the flow equation (83) written for the perturbative, regularized amputated
connected Green functions iC°',a''(î)) a theorem analogous to Theorem 13 for these Green
functions could be proved by a similar line of argumentation.

Comparing the corresponding integrands of the integral representations in the (multiplied by
— 1) Euclidean theory (75) and in the relativistic theory (100) we realize that they coincide

as functions up to a factor — i)s~l if in (75) the imaginary parts fc0,„ of the zero components
of the external momenta take values in the domain (45) and the real parts are equal to 0,
and if we let e —> 0 and set p0,v fco.v in (100).

According to Theorem 5 these integrands are absolutely integrable and therefore we can
conclude

Theorem 14. The limit e —> 0 of the one-particle irreducible renormalized Green functions
of perturbative relativistic massive <b\ defined by (79), (80), (81) and (94)

\\mir~f°(pi,...,pn-i) (108)
ff->0 '

exist as Lorentz invariant smooth functions in the domain D' defined as follows:

D '¦= HPo.i,-- -iPo.n-i) G R"-' with I VJ Po,3 I < 2m forali ra Ç {1,.. .,n}
^ j6t„

Po.n -E^iPOj and (pv. ..,£„_,) 6 R3«""1)} ; D' := (Jael A D L S Lorentz

group.
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