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Abstract

Using the 6j-symbols and the R-matrix for the quantum group Slq(2, C) at roots
of unity we construct local algebras of observables and fields with braid group statistics

on the lattice TL. These algebras are closely related to the XXZ-Heisenberg model
and the RSOS models thus exhibiting the quantum group symmetry of these models.

Our discussion relates the theory of integrable lattice models to the Doplicher-
Haag-Roberts theory of superselection sectors. The construction of these algebras
is a variant of the path space construction of Ocneanu and Sunder which replaces
the usual tensor product construction of lattice models in statistical mechanics and
extends previous discussions by Pasquier. Our construction is based on the theory

of coloured graphs on 52 and the associated Wigner-Eckhart theorem obtained
previously by the authors.

1 Introduction
Lattice models of quantum statistical models are usually based on the concept of the

tensor product and variants thereof like the antisymmetric (=fermionic) and symmetric

(=bosonic) tensor product (see e.g. [1]). Thus to each site x on a finite lattice A one

associates a Hilbert space hx (usually finite dimensional) and the Hilbert space associated

to A is then given as H\ (S>r hx. As an example for the Heisenberg model one takes

hx C2 and for the Hubbard model one takes hx C-f C2 +C C4 which is the Fockspace

for two spin 1/2 particles (spin-up and spin-down). In this last case TL\ AxeA hx and in

both cases it makes sense to speak of global SU(2) invariance for lattice models given in
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terms of local Hamiltonians and where on each hx one has the canonical representation
of SU(2).

The aim of this article is to provide a general set-up for one-dimensional lattice models

which is based on the so-called path space formulation. This is similar to Baxters [2]

formulation of the eight-vertex model in terms of the SOS-model. Using the quantum

group SLq(2,C) [3] at roots of unity (q exp", 3 < r € N+) Pasquier [4] introduced this

concept (see e.g. Ocneanu [5] and Sunder [6] (see also [7])), for lattice models of quantum
statistical mechanics. The path space we will use is the set of all paths in the Bratteli
diagram obtained by tensoring the "good" representations of SLq(2,C) (see e.g. [8]) with
the fundamental spin \ representation.

Thus to each "interval" / C TL we will associate a finite dimensional Hilbert space Vj
with basis elements labelled by paths of length |/| + 1, where |/| denotes the number of
lattice points in /. Intuitively to each lattice point there is associated one copy of the

fundamental representation. For generic q not a root of unity and up to multiplicities this

formulation is essentially equivalent to the tensor product formulation. In particular this
basis replaces a basis in the tensor product representation labelled by magnetic quantum
numbers. For q being a root of unity, the case we will consider, the path space V/ has a

dimension smaller than 2'7', is the dimension of the corresponding tensor product version.

To each V/ we will associate a *-subalgebra of End(V}), the so-called observable algebra Ai
localized in /. By construction it is the linear space of elements in End(V/) whose matrix
elements with respect to the path basis are given in terms of invariants of planar coloured

graphs (with colours indexed by the "good" irreducible representations of SLq(2,C)) on
the boundary S2 dD3 of the unit ball. Such invariants in terms of partition functions

were obtained in [9] as generalizations of the combinatorial Turaev-Viro approach to

topological quantum field theory using the 6j symbols of SLq(2,C) [10].

These constructions of V/ and Ai for varying / are related in the following way. There
is a canonical bilinear map O : V/, x V/2 —> Vuui2 for neighboring intervals /i and /2.

This map o replaces the tensor product and is not injective since dimV/,- dimV/2 >
dimVftu/,, which is again related to the fact that we work at roots of unity. Furthermore
this map o induces a map from Ai, x Ai2 into -4/,u/2, also denoted by o • In particular
O leads to an injective *-homomorphism Lpj of Ai into Aj' for any / C /'¦ Now

<•/,/, (^;,) and ti,i2(Ai2) commute wherever I\ and /2 are disjoint subintervals of /. Thus

our construction exhibits all the properties required for local observable algebras on a

lattice. In particular one may introduce dynamics in the form of models given by local
Hamiltonians. Moreover, motivated by the theory of superselection theory of Doplicher,
Haag and Roberts [11] (see also [12]) we construct a local endomorphism associated to
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the fundamental representation and whose index of inclusion is given by the square of the

q-dimension dq(^) of the fundamental representation.
Furthermore we may even construct field algebras Tj which are »-subalgebras of

End(V/) and which contain Ai- Ti is the analogue of the algebra in the tensor product
formulation with a basis given by magnetic quantum numbers generated by irreducible tensor

operators T1 of spin j. More precisely this analogue looks as follows. Recall that such

operator TJ are completely determined by their reduced matrix elements < /cr||TJ||A;j >
due to the Wigner-Eckhart theorem for 5(7(2) by which

<kr,mr\Ti\ka,ms>=c(kr J k,)<kr\\P\\k.>m \mr m maJ

Here mr,m and ms are magnetic quantum numbers, kr and k, are total angular
momentum (s source, r range) and C is the resulting Clebsch-Gordon coefficient. In

our context Tj is indeed generated by elements ipj(k,,kr) replacing these reduced matrix
elements. As a »-subalgebra of ZFi, the algebra Ai may then be viewed as the algebra of
invariant operators, i.e. those for which j 0. In fact the Jones index of the inclusion

Ai C Ti is essentially given by Ylj d?(j), i.e. the sum of the squares of the q-dimension

squared of the representation space for the spins j.
Moreover, the inclusion map ipj (/ C /') extends to an inclusion map from Ti into

Tp, such that the tensor product construction for the ,4/'s extends to the Ti's. Also there
is a family of traces tr/ on these field algebras compatible with these inclusion maps. This
allows one to discuss the thermodynamic limit, i.e. the inductive limit, of these algebras,

which then carries a trace. This in turn makes a GNS construction possible.

Our path space formulation finally allows a discussion of quantum group symmetry,
thus providing an alternative to the discussion given by Mack and Schomerus [13]. In

fact, we construct an algebra which we call a path Hopf algebra, wheie the tensor product
operation ® is replaced by o, but which otherwise exhibits all properties usually valid
in Hopf algebras.

This article is organized as follows. In Section 2 we briefly review the theory of planar,
coloured graphs as given in [9] and which we will need in what follows. Section 3, where we

introduce the spaces V/ and the local observable algebras Ai, is a review in our language

of well known results as far as index theorems (see e.g. Wenzl [14]) and the tensor product
construction (see e.g. [15]) is concerned. Thus 3 serves as an introduction of techniques
which will be used in the following chapters. In Section 4 we introduce the field algebra.
In Section 5 we make a further generalization by introducing so-called generalized field

algebras, which in Section 6 will allow us to introduce these path Hopf algebras and to
discuss the associated quantum group symmetry. These (generalized) fields also exhibit
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a structure which may be considered to be a path space version of what is called the

concept of auxiliary space by the St. Petersburg school (see e.g. [16]). In Section 7 we

discuss the thermodynamic limit. Finally in Section 8 we show how to construct models

by defining local Hamiltonians, exemplified in the definition of RS0S models in this path

space formulation. In particular we give the order parameters for the RSOS model.

2 The theory of coloured graphs on 52 revisited
In this section we briefly review the theory of coloured graphs on the boundary dM of

a compact oriented 3-manifold M given in terms of the 6j-symbols and the R-matrix of
the quantum group Slq(2,C) at roots of unity (q exp(in/r), r € N + 2) (see [9]). We

will only need the case M D3 (the unit ball in K3) such that dM S2 (the unit disc).
Let |G| be the topological space associated to a 1-dimensional simplicial complex G (see

e.g. [17]). By assumption on G, every vertex u° € G is contained in the boundary of

n n(a°) 1-simplexes with 3 < n < 4 and we will say that cr° is an n-vertex. Again by

assumption every 4-vertex o° is given an additional structure by pairing the 4 1-simplexes

meeting at <r° into two unordered pairs. The 1-simplexes in an pair are called opposite to
each other. In addition one of the pairs is given the name "above" and the other pair the

name "below" as depicted in (1.1). We say that the pair "below" undercrosses the pair
"above". \ / (2.1)

By abuse of notation we continue to denote by |G| this topological space with this
additional structure. By definition a coloured graph |G|£ is such a space |G| and a

map x : cr1 i-> x(crl) from the set of nonoriented 1-simplexes in G into the set T —

{0, j, 1, |,..., j — 1} (r € N + 2) with the following property: If two 1-simplexes a\ and

<t\ are opposite to each other at a 4-vertex then x(o\) x(a\) (compare Fig. (2.1)).
By definition a coloured graph on S2 is a pair (|G|£, tp) where tp is a homeomorphism of

|G| into S2 with the following local property near a 4-vertex a0. In a neighbourhood in S2

of tp(a°), the images of the two open opposite 1-simplexes in one pair are separated by the

images of the closed 1-simplexes in the other pair (compare again (2.1)). Two coloured

graphs (|G|E,tp) and (\G\x,<p') are called homotopic if there is a homotopy tpt (0 < t < 1)

of the maps tp and tp' such that (\G\x,tpt) is a coloured graph for all 0 < t < 1. Using
the 6j-symbols and the Ä-matrices of the quantum group Slq(2,C) at roots of unity
(q exp(in/r), r G N + 2) and by a generalization of the state sum of Turaev and Viro
[10] one may associate complex numbers Z(\G\x,tp) to coloured graphs (|G|£,tp) on S2.
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These numbers are homotopy invariant. To simplify notation we will identify |G| with its

image y(|G|) in S2 and we will call |G| a planar graph. Furthermore we will even use the

symbol |G|£ to denote its state sum. Thus one has in particular

0^(0) «*

I'Y'] mZ

liXjl 6 /j I a \iy\jj b

E)>) - *h

)¦ i j k

l m n

\ _ 9a9&

/ 9cqd

i a

j b

c

d

Here w2 is up to a sign the q-dimension

w2 (2j a d_, (-iy>dq(j) (-i)2jSin;|^+1)-
r

For later purpose we make the convention that w3 i2j\wj\. Hence the w3 are

integer j and purely imaginary for half-integer j.
The fusion matrix is for i, j, k £T)

Ni _ f 1 if k < i + j, j < i + k, i < j A k, r - 2 > i A j + k € Z
3 10 otherwise.

The expression (2.4) is the 6j-symbol and (2.5) is the fi-matrix (see [18]) with

9o (-i)V(o+1) (ael).
The 6j-symbol is normalized such that it has the symmetry

i j k
£ m n

j i k

m £ n

i k j
£ n m

i m n
£ j k

and is nonvanishing exactly when Njk N^n N}n N(m 1. One has

£/V6>2 u,>2.
C

With respect to the state sum the following local rules are valid:

(2.2)

(2.3)

(2-4)

(2.5)

(2.6)

real for

(2.7)

(2.8)

(2.9)

(2.10)

c
J

1
(2.11)
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Also for a local colouring near a 3-vertex of the form

lc

a/\b

SahS,

(q-q->)2

AA
ì c ir vabOed

and dc0

a/\b w*w* a/\b

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

one has the fusion rule in the sense that the partition function vanishes unless /V6ac 1.

Finally for a local part A of |G|£ with n "external legs" of colours ji, ¦ ¦ ¦ ,jn one has a

Wigner-Eckhart theorem in the form

ill j'ai I • • ¦ It M"

ii

c J E «4

c
(2.17)

with the weight factor w2a FI"=2 wl„- F°r n 2 one has ji j2 and the weight factor is

w~ For n 1 the single colour jt has to be zero. Note that the first relation in (2.12)

may be derived from (2.17) and (2.3). Furthermore we have

abc
d e f (2.18)

such that (2.13) may be rewritten as

d d,

£" (2.19)
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Note that (2.19) alternatively follows from the second relation in (2.12). Relation (2.13)
is called a Fierz transformation in the present context.

3 The local observable algebra

In this section we will associate to each interval / {xt, x, + 1,... ,£/ x,-+ |/| — 1} (x,=
initial point, x/=final point), of |/| lattice points in Za finite dimensional »-algebra Ai
which will be a subalgebra of End(V)), where V/ is a finite dimensional vector space over
C. Ai will be the linear space spanned by elements A whose matrix elements will be given
in terms of (partition functions of) certain coloured graphs. First we recall some well

knows fact on the braid group. Let B be a braid in the braid group *S|/| of |/| elements.

This means B is a graph containing only 4-vertices (in the sense of (2.1) and satisfying
the rules (2.11)) with 2|/| external legs whose colours are all 1/2, where \I\ of these legs

point upward and |/| legs point downward. We depict this as follows

X, Xf

B= Ç Q (3.1)

Xi x/

Unless stated otherwise, in what follows vertical legs will always carry colour 1/2 (they
are depicted by thin lines whereas lines of arbitrary colour are depicted by thick lines).
The multiplication of two braids is given putting them on top of each other

aAAB= TIT (3.2)

CO
Definition 3.1 The linear space spanned by these braids (with coefficients in C) is the

braid group algebra Bi

Lemma 3.2 The braid group algebra Bi is generated by the unit braid

1/= (3.3)
Xi Xf



Karowski and Schrader 199

and the simple braids

and J\-i
x-l x x+1 x+1

(3.4)

with Xi < x < Xf — 1.

Next we introduce the path space representations of the braid group algebra Bj. We

start with a construction of vector spaces Vj for any interval /.

Definition 3.3 The basis of the path space V/ is given by the symbols \a) with the path
i

a (aX|_i, aXx,... ax/) (ax € I) such that the fusion rule N£xax+i =1 (x, — 1 < x < xj)
holds. We depict this graphically as

whe

Xi Xf
\&) K.-i,-•¦,<**,) •">« V '1 ^| ' ' " 2\ 2\ J

ax,-l ax, ¦ ¦ ¦ axf-l aXf

1 x'
— nw**-

(3.5)

(3.6)

This is the path space version of the usual tensor product C®2!7! in the context of lattice
models in statistical mechanics (see e.g. [19]). (For later purpose we also allow / 0,

with a (a) and »„ l/wa.) The "bra"-vector corresponding to (3.5) is depicted by

ax.-l aXi ¦¦¦ ax,-l o,x

(a\ (ar,_i,. r 2\ 21
* * ' 2\ 2\ ^ (3.7)

Xi Xf

and by definition the pairing is given in terms of a graph as

«*,-i '.,
(a'\a) w,•.c 1

x>

dx.-l O-x, ¦ ¦ • aXj-l O-x
x=x, — l

(3.8)

where the second relation follows from iterative application of (2.12). This allows us to

introduce a scalar product on Vj by

(v'\v) Y KVS- (3.9)
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for |t>) J2a \a)va and \v') Yla \ìÙva making V/ a finite dimensional Hilbert space.
These spaces V/ form the ingredients for our path space approach and replace the tensor

product stuctures usually employed in lattice models (see e.g. [19], [1]). In analogy to
the usual tensor product, however, there is a bilinear map o '¦ V/, x Vj2 —» Vj,u/2 written
as U) x v2 i-> UiOf2 (fi € V/,., t 1,2) and defined on the basis vectors as follows. For

lâi) \axi ,,...,axx) e Vh

iv i v „ 3.10
\a2) \axj_u...,axA £ Vh-f

with Xj x2 — 1 and hence ax\ axi_l we set

|âiOa2> \a-x\-\,---,a-x) ««?-i.- •• >ors) G V/lL,/, (3.11)

if ari a2, j and Ic^ o a2) 0 otherwise. Note that in contrast to the tensor product setup

we have dim(V/j)dim(V/2) >dim(V/,u/2). This inequality is related to the fact that the

tensor product of two "good" representations of slq(2,C) contain "bad" representations.
This is also visible in the fact that

(a'iOâblâiOaj) <£„<,,„ t(g/i\a.i)(a2\a2) (3.12)

Concerning the dimension of the spaces we have

dimV^YiN1'2)^ (3.13)
a,b

In particular with / / U {x/ + 1}

dimV/<2dimV/ (3.14)

such that by complete induction

dim V, < const. 21'1 (3.15)

for all /. We can even say more. Since the Verlinde matrix S diagonalizes each fusion

matrix N1 with eigenvalues Su/'Sod, we have (see e.g. [9])

*»V,-£(^)\A Ç(^)\J (3,6)

with fi 5Za Sad- Since the largest absolute value of the eigenvalues of N1?2 is dq(l/2)
and since fi/2 /Owe obtain

lim IndimV/ =lnrf,(l/2) <ln2. (3.17)
l/|.vH



Karowski and Schrader 201

Note that the corresponding number in the tensor product formulation is ln2, when the

space at each lattice site is C2. The above number may be interpreted as the entropy per
site at temperature T oo (see also [20]).

To each braid B € Bi we associate an element of End(V/) also denoted by B. Its
matrix elements w.r.t. the basis \a) (i.e. B\a) J2\a')(a'\B\a)) are given as

(a'ÌBÌa) w„wa:

Qx.-i

r/-l a'

B

aXt oX/_, "*/

(3.18)

where ax,_i a^..,,^ a'.
Definition 3.4 The subalgebra Ai C End(Vj) spanned by all graphs of the form (3.18)
is the algebra of local observables.

By the Wigner-Eckart theorem (2.17) the matrix multiplication of the elements in Ai as

transformations on the vector space V/ is compatible with the multiplication in the braid

group algebra /5/.

Lemma 3.5 The algebra Ai C End(V/) yields a representation of the braid group algebra

Bi

nr.Bi-^Ai. (3.19)

Since we do not associate a numerical value to an open graph, in the following all relations

containing open graphs in Bi have to be understood in terms of relations in Ai via

eq. (3.18).
Let A be an arbitrary planar graph with 2|/| external legs whose colours are all 1/2

(note that the colour 1/2 corresponds to the fundamental representation of Slq(2, C)). We

assume |/| of these legs point upward and that |/| legs point downward and depict this
also as follows

Xi Xf

*-Qj (3.20)

X, Xf
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Lemma 3.6 Such graph A can be written as a linear combination of braids. Therefore

we may identify the linear space spanned by all such planar graphs A with the braid group
algebra Bj.

The proof of this lemma will be given in Appendix A. Note that Bi C if |/| 1.

Theorem 3.7 Ai is spanned by the coloured graphs of the form

J

«tt-( II «W J U,., bXi bXf_2
(3-21)

x=x, —1 >^ Ii ••• iii
with b (bXi_,,bXi,... ,bXf_l), y (b'x%t,bXi,.. .^i,,,) and 6£._j 6r,—i or alternatively
by the elements of the form

I I I •¦¦ I I

i i i — ii—u
with b' bx We have the orthogonality relations

e6;6e6'"è" ^t"' ei'fc" (3-23^

and the completeness relation

Le6ir l/- (3.24)
b

Similar relations are valid for eb',b. The center of Ai is spanned by the minimal projectors

p' E 4ï E 4L (3-25)

suc/i t/ìaf Ai decomposes as

Ai 0.4/j where .4/j p\Ai (3.26)

The proof is a trivial consequence of the Wigner-Eckhart theorem. Note that the factors

in front of eqs. (3.21) and (3.22) are real by the fusion rules and eq. (2.6).

Example 3.8 The matrix elements of ebfb are given by

n h „i n> y
(3.27)(a'|e^|a) w^Wa YI WKW>>*

x=x, + l

ax, ax-l Ox-1

a*è bx

a' a' b'
Xj x—1 X —1
1 hi „'
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with 6X|. 1 b' The matrix elements of the elementary braids r'x are obtained from
(2.5) as

(a'H\a) fj Say<a,t)wa,wai
»«*,—i

9ai-i9aJ+i

qaxqa'x

1/2 ar_i ax
1/2 ax+i a'x

(3.28)

The algebra Ai is also a »-algebra, whose involution of a graph A in Ai by definition is

given by associating to A" the graph obtained by mirroring the graph A along an arbitrary
horizontal axis, such that for example a 4-vertex

is mirrored into / and vice versa. (3.29)

j / \ i i / \ j
Extending this antilinearly to all of Ai, it is easy to see that with respect to the scalar

product on V/ introduced above, A' is indeed the adjoint of A.

Example 3.9 (|/| 3):

r
(3.30)

Obviously, we have ebfb ebb, and by definition (r^)_1 (r'x)". In particular the algebra

Ai Ç End( V/) defines a »-representations of Ai and also of the group algebra of the braid

group 25|/| for |/| elements.

Remark 3.10 It is easy to see that B £ <8|/| C Bi given by a braid is unitary BB* 1/.
Hence we have a unitary representation of the braid group.

Moreover, Ai is also a C*-algebra, since the identity transformation 1/ of End( V/) belongs

to Ai and is given in terms of the graph (3.3). In particular (see e.g. [7] proposition II.1)

Ai is (isomorphic to) a direct sum of full matrix algebras. We will characterize these full
matrix algebras in Section 4.

In the following part of this section we analyse the inclusion properties of the local

observable algebra under enlarging the lattice /. On the braid group algebras we now
define canonical injective »-homomorphisms ipj : Ai —r Ar whenever ICI' and satisfying

tpiji o ipj uh i for I Ç I' Ç I" and ijj id^, as follows. With /' {x[,..., x'A such

that xj < Xi and x/ < x'j and for a graph A £ Ai (and extended by linearity to all of .4/)
we let

I-VÄA) Aj (3.31)

Xi xf
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i.e. t/'/(A) is A with x, — x[ vertical lines with colour 1/2 added to the left and x', — xj
vertical lines with colour 1/2 added to the right. If we denote the corresponding maps on

the observable algebras by the same letter, then in particular the maps i/<,/ are isometric,
when the algebras Ai are viewed as C'-algebras (see e.g. [7], prop. II.4). With this

construction we have that Ai, and Ai2 commute whenever /i and /2 are disjoint in the

sense that t/',/i(*4/i) and tiij2(Ai2) are commuting subalgebras of Ar for any /' D /iU/2.
For graphs Ai £ Ai, and A2 £ Ai2 this is written pictorially as (/i to the left of I2)

S Ai

A2 Ai

A2
(3.32)

For later purposes we will rewrite the construction (3.31) in another way. Write /'
/;u/U/; with /; {x;,..., x,¦- l}, /; {x,+ l,...,x'f}. Then we write (3.31) as

tr,i(A) lreoAoln (3.33)

and more generally we introduce a multiplication o : Ai, x Ai2 —> AilUi2, with /i and /2

forming neighboring intervals, on graphs A, £ Ai, (i 1,2) and extending bilinearly as

Ai0A2= AAA A2 J - (3.34)

This operation " o " replaces the tensor product of operators and is compatible with the

corresponding operation on the vector spaces V/. In fact by the Wigner-Eckhart theorem

we have

(a1Oâ2|AiOA2|a1Ofi2) £•'!,« ,(âil^i|a1)(a2|A2|a2) (3.35)
*/ */

for |a,-),|aj.) £ V/, (i 1,2), generalizing eq. (3.12). Obviously the product o is associative,

compatible with the »-operation and

(AiBi)o(A2B2) (AioA2)(BioB2) (3.36)

holds for Ai,Bi £ Aix and A2,B2 £ Ai2. This tensor product construction in the path

space picture is of course well known ([15]) using the juxtaposition of braids.

We also note there is a trace tr/ on Ai, given on graphs by

tr, : A ^ir,(A)
f... r^1 -

w1/2 ^ ^J

i'p.^1

2|/| -
^1/2 [Ay

(3.37)
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with tr/(l/) 1. Note that the second relation in eq. (3.37) follows from the homotopy

invariance of the partition functions of such coloured graphs on S2. More explicitly

tr/(A)
1

2|/|
ul/2

E <,-¦<, (filala) A£Ai. (3.38)

This trace is faithful, i.e. the quadratic form defined by the trace via (A, B) =tvi(AB)
(A, B £ Ai) is non degenerate. This follows easily from eq. (3.23) and the fact that

l'r \- ' a,tTA.e'Sb) (3.39)
^i/2

Note that by eq. (2.6) and the fusion rules u>2
_ w^ /wA2 > 0. Therefore we have that

tr/(/l) > 0 for A > 0 with strict inequality if A ^ 0 since tr;(-) is faithful.
Note that we have compatibility of these local traces in the form

tr/.(t/.,/(A)) tn(A) (3.40)

for all A £ Ai and / Ç /'.
Motivated by the concept of superselection sectors in algebraic quantum field theory

we turn to a construction of certain local endomorphisms. They will be denoted by

px (x £ TL) and will be maps from Ai into Aj with / / U {x; + 1}. The construction of

px goes as follows. If x $. I we set px(A) Ao l{r/+i} tj j(A). If x £ I we define px

on graphs A £ Ai (and extend by linearity to all of Ai) by

X Xf + 1 Xi X Xf Al

Px

I

\

Xf \

J

Xi

(3.41)

Note that if x — Xf + 1 then

Px(A) Aol{x} ¦

Obviously the first relation in (2.11) implies

px(li) 1/ and px(AB) px(A)px(B).

Also one has

Px(A') px(A)"

(3.42)

(3.43)
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such that px is a »-homomorphism. The map px has a left inverse 4>x : Aj —? Ai given by

a partial trace in the form

/ i, I/+K Xi x Xf

4>x B

\
"Ì/2

B (3.44)

/
on graphs B £ Aj. Indeed, it follows directly from eqs. (2.2) and (2.11) that <bx(px(A))

A for all A £ Ai. Since 4>x is a left inverse or px the operator Ex px o <px : Aj —> Aj
defines a conditional expectation on each Aj with range px(Ai), More precisely on graphs
A £ Aj EX(A) takes the form

X, X Xf + 1

/ X{ x/ + 1 s

\

1

Uì/2
(3.45)

/

and it fulfills for A, C £ px(Ai) and B £ Aj

EX(ABC) AEX(B)C

Ex is compatible with the trace tr/ in the sense that

trj(Ex(A)) tij(A)

(3.46)

(3.47)

holds for all A £ Aj.
Again by the braiding relations (2.11) for any graph A £ Ai and x £ I we also have

Px(A) (r'Xi[xJrhxi])-x tjj(A) r'Xilx+lXi] (r'xix+ltX)])-1 (Aol{x,+i}) rlt[x+liX)] (3.48)

vith

< riA- - x+l ¦ ¦ ¦ r'x, if Xf < X < Xf
r,[*+I'*'l \l; ifx X; + l (3.49)

such that rx ,+1 x £ B\i\ C Aj is unitary for x £ I.

Theorem 3.11 For all I with \I\ > r — 2 an<f all x £ Z the Jones index of the inclusion

Px(Ai) C .4; of finite dimensional C'-algebras satisfies

[ Aj : px(Ai) } {Aj : titI(A,) ]= w\/2 </2(i).

Also trj is a Markov trace for this inclusion.

(3.50)
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Proof: The first equality follows from the general theory of the Jones index for multimatrix
algebras, since by (3.48) and (3.49) px(Ai) and At ol{x.+i) are related by an inner

automorphism in Aj. We present two proofs of the second equality.

a) We determine the inclusion matrix and consider the projectors (3.25)

p/= E 4(h,k)

which are either zero or minimal central idempotents of Ai such that the AixJ p\Ai
are either zero or full matrix algebras for all j £ I. If |/| > r — 2 then for all j £ X they

are nonvanishing exactly when 2j + |/| is even. This follows easily from the fusion rules.

Furthermore by eq. (2.12)

e'b;rbol{xl+i} u *>b'U>b,
x=x, + l

b'

b

I •¦• I

r'/2TT «V«*. T N}'\ wj
xJxA ' jf^ »»/*»/?• "'I

E K'\ 4v
_*-< bIfb,l + 1 b,b

I L J L

(3.51)

ith

k (bXi+i,...,bXl_l,bx/,bxl+i)
b- (bx,+i,---,b'xii,b'xi,bxi+l).

Since the minimal central idempotents of AiO l{r,+i} are the qj p1, O l{x.+i}, (with j
as above) relation (3.51) shows that the inclusion matrix A for the pair Aiol{x,+i) C Aj
is given by (j,j £ T, 2j + |/| even and 2j + \I\ odd)

Xh N-f. (3.52)

In fact both algebras q'p-(Ai Ol(x.+i})q'p- and q'p-Ajq'p- are equal and spanned by

the elements e-,'£ with bXj j b'x and 6r/+i j b'x +1 when N-2 =1. By rearranging
the indices such that the integer indices come first and the halfinteger indices next when

|/| is odd (and vice versa if |/| is even), we have N? J. Now the index of the

inclusion equals ||A||2 ||A'||2 ||/V2||2 (see [7], prop. 1.2.4) and the claim follows since



20X Karowski and Schrader

\\N2\\ \w\\. In fact in e.g. [9] it was shown that |ic2| is the largest eigenvalue with
2

eigenvector {( —l)2ctc2}c6x for the fusion matrix N" (compare eq. (2.10)).

b) For the second proof we introduce a quasi basis (see e.g. [21]). We recall that in

the context of C*-algebras a quasibasis serves to introduce the notion of an index. In the

context of type Hi von Neumann algebras the analogue is the so called Pimsner-Popa
basis [22] (see e.g. [7]). Therefore this proof will become important in Section 7 where we

perform the thermodynamic limit I —¥ Z. First we construct a quasi basis for the map
Ex : Aj -r Aj when x x; + 1 (and |/| > r — 2). We define

v'xl+i(bXl,k) wU2wKfel;rb (3.53)

with a suitable but fixed 6' satisfying the fusion rule Flxix.-t-i Nb/b, 1. Then for any
b satisfying a similar fusion rule and any 6r/+i b'x +1 with |/| + 2bX/ even we have

vxf + i(b'xr-) ^ 0' Now for any graph A £ Aj the following equality holds

E(-ì)UAxl+i(bxl,b))'Ex(vÌl+i(b'xl,b)A) A (3.54)

M
which follows from the graphical representation of its left hand side using eqs. (3.23) and

(3.45) and the fact that Wi/2u>(,^ equals its complex conjugate times — l)'7'

I

E 2 2 2
™b'wbwVr E

ÌK,

^_y

xl X/+1

E
I A

x/x, + l

zl X/ +
(3.55)

The relations (2.10) and (2.12) imply the first equality and the second one after summation

over b'x (see also (3.24)). Finally, we may sum over all b by using again (2.12) to obtain

eq. (3.54) for all graphs A in Aj and hence by linearity for all A £ Aj. Thus the

i>ll+i(b'x ,b) and their adjoints (modulo a sign) form a quasibasis. On the other hand an

easy calculation using again eqs. (2.10)and (3.24) shows that

E (-AAxl+i(b'xi,b))'vii+i(b'xi,b) wt/2ij (3.56)
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To cover the general case x, < x < x; we set (see eq. (3.49))

4{b'Xf,k) (ri,[l+1|X/])_1 v'Xl+i(b'X/,b) rlit+liXf] (3.57)

Then again these elements and their adjoints (modulo a sign) form a quasibasis with a

relation analogous to eq. (3.56). It remains to prove that tr/ is a Markov trace w.r.t. this

inclusion. Let Aj x
be the algebra obtained from the fundamental construction, i.e. the

algebra of endomorphisms of Aj, viewed as a right px(Ai) module. Then Ajx is spanned

linearly by elements of the form AiExA2 where Ai and A2 are graphs in Aj, which we

may give the graphical representation in the form (see (3.45))

(AT)
AiExA2(A3) AiEx(A2A3)

ÇE

U r-
r-

(3.58)

Jones' fundamental construction and the Markov trace may be demonstrated in the context

of this section very nicely. For simplicity we take again x xj + 1 and write

Ai N, Aj M, Ajx Aj L, i.e. N, M and L are algebras of observables on

lattices of |/|, |/| + 1 and |/| + 2 sites, respectively. Then N C M C L yields Jones'

fundamental construction, i.e. the first step of a Jones tower. The construction L

EndJv(M) M ®/v M considered as a right /V-module may be depicted as

J---I I I---I I I

L(MN) L(M)N f M

CID
Cm (3.59)

ÇhT)

The conditional expectation E Ex is expressed by the Jones projector

e=d
u
n

£ L, (d w\

for A € M by

12)

u

(3.60)

E(A)e eE(A) eAe -^ A (3.61)

n
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The trace tr/ defined by eq. (3.37) for any / gives the traces tr^, trM and trL on N, M
and L, respectively. This yields a Markov trace of modulus [M : N] d2 for the inclusion

N C M, since for A € M

tTL(A) trM(A)
d2txL(eA) irM(A).

The first equation follows from eq. (3.40) the second one is obvious from

A
d2irL(eA) d2d-W-2d-1 r^^A d"1'1" *

(3.62)

C A
Ky

^A CA
CaJ

^J--f \-J
UM(A) (3.63)

For the quasi basis vn vj. +1(b'x ,b) of eq. (3.53) the relations (3.54) and (3.56)
J2n unevn 1L and 2"2n unVn (PlM with un — l)'''f * may be depicted as

E1

1

(«-

C ^
1

I---I I

il y A^A
I---I i

c/2i'2lM (3.64)

We may even continue Jones' construction one step further N C M C L C K and

introduce the Jones projector e' for the inclusion M C L. The Temperly-Lieb algebra

property is easily seen from

e e ee
AZ

(3.65)

Remark 3.12 If \I\ < r — 2 the inclusion matrix is again given by N? Now however

(in addition to the above restrictions on j and j) j £l is restricted by 0 < 2j < 2|/| and

j by 0 < 2j < Min (2|/| + 2,r - 2) whenever |/| > 1. // |/| 1, then as an additional
restriction the value j' 0 is excluded, such that j can only take the value 1/2. Thus for
small \I\ the index is not w\,2. In particular for \I\ 1 the index is 2.

4 The local field algebra

In this section we will construct local field algebras. For this purpose we will extend and

thus generalize the concept of local observables as discussed in the previous section. We
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will be guided by the concept of superselection sectors in algebraic quantum field theory.

Indeed, the idea is to introduce structures at infinity. In the present context of the one-

dimensional lattice Z we will choose the left infinity —oo, the construction for -f oo being

analogous. Moreover, in the next section we will introduce structures at both infinities

simultaneously.
Note that if V,(/c) and Vi(k~,k+) denotes the linear space spanned by all \a) with

fixed aX|_! k and aXi_i k~ ,ax /c+, respectively such that

v. 0v/(fc)= e v,(k-,k+)
k€l k-,k+el

(4.1)

then the endomorphism associated to a graph A by eq. (3.18) leaves each Vj(fc) and

Vi(k~,k+) invariant. We denote these element of End(V/(A:)) and End(Vi(k~,k+)) by

A(k) and A(k~,k+)), respectively, and depict them as

A(k) A(k-,k-> k+ (4.2)

with k, k and k+ fixed. Here the rule (3.18) has to be used for defining matrix elements

of the corresponding graphs. In particular we have

A J2A(k)= Y A(k-,k+) (4.3)
k k-,k+

with A(k)A(k') 0 for k jt k' and A(k~, k+)A(k~', k+') - 0 for (k~,k+) / (k~',k+').

Example 4.1 The projectors onto the spaces \f(k) and Vi(k~,k+) are depicted by

li(k) l,(k-,k+)= k- k+ (4.4)

By definition these endomorphims A(k) and A(k~,k+) fulfil A(fc)|a) 0 if k ^ ar,-i and

A(k~,k+)\a) — 0 if (k~,k+) / (aXl_i,ar/), respectively. Moreover the algebras Ai(k) and

Ai(k~,k+) defined as the linear hulls of all these endomorphisms yield »-representations

ni(k) and ni(k~,k+) of Ai (or Bi). For later convenience we also introduce the algebra

Â,=®Ai(k) ®n,(k)(Ai (4.5)

It is easy to see that (see 3.25) ni(k)(p'A ^ 0. Hence the representation ni(k) of Ai is

faithful. Note that li(k) are the unit operators in Ai(k) and that 1/ J2k 1/C0-
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If we combine this decomposition with that of Ai given by (3.26) we obtain the minimal

projectors

p'i(k) ii(k)pi]- y n b,
t x=x, + l

b

I 3 (4.6)

Lemma 4.2 The decomposition of the vector space V/

Vl 0 Vi,i(k) where Vu(k) jj(k)Vi p]V,(k) (4.7)
k,l

is invariant and irreducible under the action of the observable algebra Ai- The

corresponding decomposition of the algebra is

Âi ÇBA,Ak), where Ai^k) p](k)A, p'^k). (4.8)
k,]

The algebras Ail3(k) are »-subalgebra ol Ai, all of whose elements leave each ViyJ(k) (k,j £

X) invariant. (In fact they are zero on Viy(k') with (k,j) / (k',j').) Moreover, the AitJ(k)
yield »-representations of the braid group algebra Bi and also of the local algebra of observables

Ai- (By a similar construction as above the algebras Ai,3(k~, k+) li(k~ ,k+)p'JAi
can be obtained using the projectors li(k~,k+).)

Since we view each Aij(k) as a subalgebra of End(V/j(A:)), we indeed have an

interpretation of AitJ(k) as a representation of Ai in the "sector" where the charge at minus

infinity is k and the charge on the lattice / is j. These structures reflect some of the
basic ideas of the theory of superselection sectors in algebraic quantum field theory [11].

However, the situation in the path space formulation here is somewhat different from that
in the tensor formulation which is usually used in this context. The quantum number

j corresponds to the superselection charge, whereas the quantum number A; is the

analogue of the "magnetic" quantum number which counts the multiplicities. In the following
we investigate this structure in detail and introduce fields which change these quantum
numbers.

Let now ip(kr, k3) be a planar graph with 2|/| + 2 external legs, half of them pointing
upwards and downwards respectively. All external legs are supposed to carry the colour

1/2 except the two left ones, whose colours will be denoted by ka and kr respectively. k3

will be called the source colour of ip(kr,ka) and kr the range colour:

X, Xf

kr

if)(kr,k,) - y/wkrwkt

X, Xf

i> (4.9)
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To each such graph i/)(kr,ks) we first associate a linear map from Viiks into Viikr also

denoted by ip(kr,ks), whose matrix elements w.r.t. to the basis \a) are given by

(a'\lp(kr,ks)\a) WaWa'y/Wk/Wk, (4.10)

ax,-i a a ¦ 'ux, • • • ux/ —1

where kr a'Xi_x,k, ar,_i,or/ a' and w& rix'=xl waI- We extend if(kr,ka) to

a linear map from Vj into V/, again denoted by 4>(kr,ks), by setting ip(kr,ks) equal to

zero on all Vi(k) with k ^ ks. Let Ti denote the linear hull in End(V/) of all linear

transformations obtained in this way.

Lemma 4.3 The field algebra Ti is a C*-algebra.

Proof: Consider two graphs «/>'(&*,/c1) and if2(k2,k2) with sources and ranges k\,k\ and

k2,k2 respectively. It suffices to consider the case k2 k\ since otherwise

ip1(kl,kl)ip2(k2,k2) 0. In analogy to the discussion in section 3 it follows easily from

the Wigner-Eckart theorem that we have the correspondence

ip^k^k]) ip2(k2,k2) 5kìkì^wkiwkìwkì k]

kl ...|

V
V-1

kl
A

if2

ki |

(4.11)

such that indeed T\ is an algebra. Analogously the »-operation is given on graphs as in

section 3 by mirroring along a horizontal axis with the same rules at 4-vertices as in (3.29).

In particular the source and range of (ip(kr,ks)) are kr and ks respectively, concluding
the proof of the lemma.

Example 4.4 Graphs in Ti of the form

ipj(kr,k,) y/wkrwkl (4.12)
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will be called field operators. Note that il'j(kr,ks) vanishes unless j is an integer. Using

(2.13), it is easy to see that the linear hull of such operators is Ti- In particular for x £ I
we set

kr

4>j(kr,ks)(x) y/WkrWk, (4.13)

We will discuss the commutation relations for these operators in the next section.

The map tr/ : Ti —r C

kr

tr/ r ib >->
(-ir-Skrk,

ß1/2(wU2 |2|/|
k. r i> (4.14)

with ßlt2 J2kdq(k) J2k \wl\ defines a trace, which again is easily seen to be faithful
and which extends the trace on A. Cyclicity is easy to see from (4.11) and the fact that
(—l)2*" —l)2Ar holds by the fusion rules. Also for any ip £ Ti one has

tr,W Ä^^(-1)2a',_,</^la)P wi/2 i.
(4.15)

Note that again by the fusion rules (-l)2"*i-'tu^ wi/2 > 0. In particular tr/ is positive
on positive elements ib £ Ti since the trace is nondegenerate. Also (see (4.4))

tr/(l/(A))
d,(k)
ßiA

(4.16)

Now the linear map F/ : Ti —> Ai C Ti defined on graphs in Ti by

Ei

kr

ks

r V
ßl/2 k

k
V

0 (4.17)

and extended by linearity to all of Ti is obviously a conditional expectation with range

Aj. Also Ei is compatible with the trace in the sense that tr/(F/(V>)) =tr/(i/>).

Theorem 4.5 Let |/| > r — 2. Then the Jones index of the inclusion Ai C Tj is given

by

[T,:À,] yi'«>]=E'dl(j) \™2 ' (4-18)
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where w2 was defined in (2.11) and J2' denotes the restriction that \I\ + 2j has to be even.

The Jones index of the inclusion Ai C Ti is given by

F> -M (E(-1)2^) =(E^w) =ß- (4-19)

Note that w2 is (up to —l)2j) the q-version of the dimension of the irreducible representation

of SLq(2,C) labelled by a such that w2 is the q-analogue of the order of a finite

group. Hence apart from the factor 1/2 relation (4.18) is what one would expect.
Indeed the observable algebra is the quantum symmetry invariant subalgebra of the

field algebra (see the discussion in section 6). The analogue in mathematics is well known

to be provided by Galois theory. Note that the factor 1/2 reflects the fact that the

fields defined by eq. (4.9) do not connect integer and half-integer representations. For an

extended field algebra containing also such fields (which map between lattices of different

size) the factor 1/2 in eq. (4.18) is absent.

Proof: To prove (4.18) we proceed as follows. The minimal central idempotents of Ti are

obviously of the form

#=»?£ n
k,b x=x, — l

(4.20)

indexed by I £ I. Here b (6Xl_!,... ,bXf). Since |/| > r—2, these P' are all nonvanishing.

The minimal central idempotents of Ai are of the form

b x=x,
^E^f'S< l

1.6 x=x,
1 k (4.21)

indexed by k and j. These q[. are nonzero exactly when 2j + \I\ is even. Therefore the

algebras Pi q{jTiP/qlj and Pt qljAjPfqL are both equal and spanned by the elements

(4.22)

k 1 |

I
] b'

3 b

k 1 |

Thus the inclusion matrix A is again given in terms of the fusion matrix in the form

Xlt{k:) N/k and (AA%, E'(^%< (4-23)
iei
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where J2' refers to the above restriction on j. Now the theorem follows from e.g. Corollary
4.4 in [9]. Since the largest eigenvalue of the matrix ArjArj is w* and since the matrices

N'N1 for different j all commute, the norm ||AA'|| is equal to Yl'jW*. Now it is easy to

see (cf. e.g. [9]) that £j w* 1/2Ej w) and hence the daim (4-18) follows from (2.14).
To prove (4.19) we construct a quasibasis as follows. Fix an interval / with |/| > r — 2.

We set
feri i

'y
I

vi(b, l,k,j) ß^4w^WkWiw2 I "b

h I -:- I

(4.24)

Here b (bXi-i, ¦ • • ,bxA, k (kr,ks), I and j may vary. Also, for given b,k,l and

j satisfying the usual fusion rules, 6' (b'x.,... ,b'x) is a fixed path chosen such that
the corresponding fusion rules are satisfied making vi(b,l,k,j) ^ 0. Then for any graph

ip(k) £ Ti with source ks and range kr using (4.17) and the fact that by the fusion rules and

eq. (2.6) the factor in eq. (4.24) equals its conjugate complex times — l)2l+2kr —l)2j

we have

E (-l)23v',(b,l,k:,j)E,(v,(b,l,k!,j)ib(k)) m) (4-25)
b.l.k',]

which can be seen from the graphical representation

A
E Ni6krk,ôk,kr6k'k

b,l,],k',k

3

I

k'a

kr'

E^
k A)

E^3
b.l

k

As

AA

kr 1 |

I
6

6

kr 1 1

é
k, VT |

(4.26)

Here the normalization factors are /Vj w^iW^wfw2, N2 w2wfw2 and N3 wfw2.
Hence by the completeness relation eq. (4.25) holds for all graphs ip(k) £ Ti and therefore

by linearity for all ip(k) £ Tj. Thus the vi(b,l,k/,j) and their adjoints (modulo a sign)

form a quasibasis for the conditional expectation Ei : Ti —r Ai. The corresponding index

follows from the calculation

E(-l)2jt>,(M,*>J>KM,*,J) =/31, (4.27)
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which again can be seen from the graphical representation

/3'/2 E (-i)2M-»2 t

J

/?1/2E(-i)2*r<E—à
1 V

b

Wt W{ '

b,l,k,
'

L.

/31/.

(4.28)

Here the last equality follows from the completeness relation (2.12) and arguments used

in the proof of Theorem 3.11.

Remark 4.6 By the first proof we have also established the relation

[T, : n,,k(A,) A,(k)} w4k. (4.29)

It is easy to check that tri is not a Markov trace w.r.t. the inclusion Ai C Ti-

Remark 4.7 The fields ij)j(kr, k3) £ Ti introduced above are similar but not to be confused

with the fields usually called projected fields, vertex fields or exchange fields. The later are

of the form

pA3p'3ì J2wl,wì
b'b

KJJ (4.30)

where j, and jr denote the total spin (charge) of the states in the corresponding Hilbert

spaces. Our fields ibj(kr,ks) are analogues of tensor fields ibj(m) (m magnetic quantum
number associated to the spin j) in the sense that in the path space picture kr and ks

replace m.

(<L'\ib}(kr,k,)\a) '{AAA) versus (m ]V>,(m)|m) m-K + (4' 3D

"lx, mxr

with the graphical representation in the tensor picture for ibj(m). The spins (charges)ks

and kr at -co are not necessarily equal to the j, and jr of eq. (4-30) since there is also a

charge at +oo.
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5 Generalized fields

As announced in the previous section, we will work in the context of sectors defined by
colours at —oo and +00.

Analogously to section 4, let Vj(fc~,/c+) Ç V/, k~,k+ £ T (see eq. (4.1)) be the linear

space spanned by all symbols \a) with a (k~ o0l—1,... ,ax. k+) such that the

fusion rules N^2 1 (x,- — 1 < x < if) hold. Again the case / <j> is allowed. By
construction V/ is the direct sum of all Vi(k~,k+)

Vi= 0 V,(k-,k+).
k+,k-t=I

(5.1)

Let now M be a planar graph with 2|/| -f 4 external legs, half of them pointing upwards
and half of them pointing downwards. The four corner legs have the colours k~ ,kf ,k~, kf
respectively, all other 2|/| legs having colour 1/2:

M(kr ks ; k+,k+) y/wk-wk-wkirwkt
k:

M (5.2)

To such a graph we associate a linear map from Vi{kt ,kf) into V,(/cr ,kf) whose matrix
elements w.r.t. to the basis \a) is given by

a

k:

(a'\M(kr ,k, ;fc+,fc+)|a) w^w^^/wk-wk-wk+ wk+

k7

ax,-i

a aX/-1 a

M

1

kt

ax,-i x>

(5.3)

where k~ a'x_l,k~ aXl-i,kf a'x ,k~f ax/. We extend this to a linear map from

V/ into itself by setting it to zero on each Vi(k~,k+) with (k~,k+) ^ (kf ,k+). The linear

hull of all such linear transformations form a »-algebra, denoted by Ti and contained in

EndV,.
With these generalizations of the discussion in section 4, we are now prepared to

introduce new concepts. These concepts are path space formulations of what is called the

concept of auxiliary spaces by the St.Petersburg school used in the context of the quantum
inverse problem [16]. This will put us into a position to associate algebraic objects called
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generalized fields to planar graphs which also have several horizontal lines, i.e. which are

of the form

(5.4)

For these objects we will extend the notion of the path tensor product o ¦ Having given

an algebraic meaning to such objects, we will be able to discuss the concept of quantum

group symmetry and to construct concrete models like the RSOS model in the path space

picture.
To motivate our procedure we start with coloured graphs of the form

xi',j X (5.5)

having two horizontal lines, one with colour j' pointing to the left and one with colour

j pointing to the right. Again in addition there are |/| lines with colours 1/2 pointing
upward and downward respectively.

By definition the object (5.5) associates to each quadruple (k~~,k+) (k~,k~,kf,kf)
the element in Ti given by the graph

K

Xjij(k ,k+) y/wk7wk7wk+wkt ~tÇ X Jrj
kj

kt
(5.6)

We now generalize to graphs with |/| vertical lines with colours 1/2 pointing upward
and downward respectively. In addition there are m horizontal lines pointing to the left

with colours f (j[,..., j'm) and n horizontal lines pointing to the right with colours

j (jl,---,Jn)

h

Xj'j (5.7)

An

The case I <j> is allowed. To each such graph and to each m + n + 2-tuple (k!,k)

a ""0 'V ^1 • • • ^m "¦»

IS. — (^0 "V M, • • • ^n ks
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we associate the element in Ti given by

Xj'j(tf,k) WkiWk k!

A, \A

An

(5.8)

where we have introduced the normalization factors

m-l
"**'= \zwKwk'm n *"*;•) ** vwkowk„ nw*. (5.9)

i=i

(for n 0 : to* 1 see eqs. (4.2).) Here kf gives the colours on the left vertical line, read

from top to bottom. The convention for k is similar.

Example 5.1 a) m n, I

ei= 3, (5.10)

which is the "horizontal" unit braid. As a matrix element with respect to Vj we have

(for kf and k fulfilling the fusion rules)

(a'\t;(k:,k)\a) Sk,k6a,k<>Sakn (5.11)

(see also eq. (3.6)).

b) m — n — 1, / arbitrary

(5.12)

Vf is defined similarly with the horizontal line overcrossing all vertical lines. For

/ {1} as matrix elements we have

(of\Lf(k!,k)\a) Sa,okioSaokit($„,^ £,, *, ^wk,o w/t; w/t0wkl
Qk'^k,

1k\ qk0

c) m — n 2, I

R,
Ji

R"u2 (R323lY -
3i

Ì2.

J ^O ""1

1/2 ki ko

(5.13)

(5.14)



Karowski and Schiuder 221

As a matrix element with respect to Vg we have (for k' and k fulfilling the fusion

rules)

(a'\RJU2(k',k)\a) Saik'6aki5alko5ak2wkiwkl
Qk'.qk,

ji a kt
j2 a' k[

(5.15)

The linear structure on Ti allows us to view such X given by eq. (5.7) (for fixed m,n
and /) as elements of a linear space Ç™" which is spanned by these A"s. Again by the

Wigner-Eckhart theorem it is easy to see that Qfn is finite dimensional. Now Qfn may
be viewed as a linear subspace of Qf " whenever m < m', n < n'. Indeed, by the rule

(2.15) to any X £ G™" we may add m' — m and n' — n additional horizontal lines with
colour 0 to the left and to the right respectively by hooking them somewhere up to X
(through a 3-vertex) without changing the associated elements of T\. Therefore it makes

sense to introduce the filtered linear space

H U Or (5.16)
rn,n

This linear space is actually an algebra with a product • which is compatible with the

filtration in the sense that

• : £/""" ® dp"2 -+ Ç^+m2n,+n2_ (5 1?)

Indeed for graphs Xi £ Ç?/1'"' and X2 £ (J™2"2 of the form (5.7) the product is given as

Xi»X2 CZn (5.18)

The symbol • means both a "path tensor" product w.r.t. to the horizontal (auxiliary)

space and a matrix product w.r.t. to the vertical space V,. As a relation in Ti (see

eq. (5.8)) we have

(*i»Xa)(à>&&i»Aa) Xi(kf1,kl)X2(y2,k2) (5.19)

where k_i»k2 (ki0,.. kini k20, ¦ ¦ ¦, k2n2). By construction Ç™=0n=0 may be identified

with the observable algebra Ai (compare eq. (4.3)). Also Gi is a »-algebra respecting the

filtering in the sense that Qf' ÇJ"1. Indeed this »-operation is the obvious extension

of the »-operations considered in the previous sections, such that as a relation in Ti

(X(kf,k))' X'(k!",k') (5.20)
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where X* is the graph X reflected w.r.t. a horizontal line and k' is the path k in reserved

order.

Example 5.2 With the choice I 0 in we may write Example 5.1 as

«2 4,—•< (5-21)

Let now /t and /2 be two neighbouring intervals. We extend the map o of section 3

to a bilinear map from Gi, x 0i2 into Gi,ui2 as follows. Let X, £ Q™'n' with horizontal
colours (j',j) (i 1,2). If ni m2 and j j' we set

Xi 0 X2 A Xi £1 X2 L_ (5.22)

and zero otherwise. The symbol "©" means both a path tensor product " o " as in

eq. (3.34) w.r.t. the spaces Vj, and Vj2 and a matrix product "•" w.r.t. the horizontal

(auxiliary) space. It follows directly that (Xi 0 X2)* X* 0 X2 and

(X^X'J O (X2*X'2) - (AT, 0 -Y2).(A; 0 X2) (5.23)

with A, £ QJ!'ni, X[ £ Gj'"' provided nt m2, n\ m'2. Again by the Wigner-Eckhart
theorem, as a relation in Ti,ui2 and with the conventions used in (3.35) we have in terms

of matrix elements

<fiiOflil(*i QX2)(M,k)\&loa2) Yi&\Xi(£,V')ki)(g!2\X2(V\k)\a2). (5.24)
k"

We will write this in a suggestive way as

(XiQX2)(k!,k) E*i(£'>£")oX2(£",fc) (5-25)
*"

Example 5.3 a) Using Examples 5.1 a) and c) we can write

R,rR), e}.e) c2,. (5.26)

Note that J2je] is the unit operator in Ç™ w.r.t. the horizontal multiplication "¦".

b) The commutation relations of the local fields ib,(x) £ G}° defined by eq. (4-13) read

ibi(x)»ibj(y) Rij ¦ (ipi(y)»ipi(x)) for x > y (5.27)
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or graphically

i

j — (5.28)

y x y x

or in terms of matrix elements of the fields ip(k)(x) £ Ti and the "R-matrix"

R,Ak',k)£Ti

(a'\MKK)^)UKK)(y)k) E^OKal^oMM^WWIu) (5.29)

where k (k'0 k0,k[,k2 k2). and k (k0 a'x,_l,ki,k2 aXl-i) The sum is

over ki and the R-matrix is

Rij(k!,k) wk>iwkl k[ L 9*0 9*2
Kl Wk> Wk,

ik\qk,

K j k2

K\ I rCQ
(5.30)

For x < y the R-matrix R is replaced by R'.

c) The commutation relations of the lA of Example 5.1 b) read

R,r(Lf.Lt) (Lt.Lf)-RtJ. (5.31)

6 Quantum symmetry in the path space formulation
In this section we will exhibit the notion of quantum group symmetry U(R) Uq(sl(2,C))
in the present path version context on the lattice /. The corresponding tensor version has

been given by Faddeev, Reshetikhin and Takhtajan [23] (see also [24]).

Definition 6.1 The set Uj(R) is a *-subalgebra of F/ with unit 1/. It has the generators

Lf(k!,k)£Ti

L} (bf,k) wk:ibk Lj(k',k) w^w^ (6.1)

where kf (k'0,k[), k (k0,ki), A£', £ I, Njk, / 0, Nfâ / 0. For all colours j of the

horizontal lines they correspond to the elements Lf £ Ç}1 (see (5.10)).
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Example 6.2

u col/ + ciLj(k!,k) + c2(L-.L+)(/',/) € t/?(Ä)

with cn £ C and [ (l0, h,l2).

The generators Lf satisfy the Yang-Baxter equations (cf. eq. (5.14))

Rii ¦ (Lf.Lf) (Lf.Lf) ¦ Rij Rij ¦ (Lf.Lf) (Lj.Lf) ¦ RtJ

or in terms of graphs

(6.2)

(6.3)

t i

iA- I

which may also serve as defining relations for the generators of U\(R). As usual we

sometimes write these relations also as Ri2L2Lf Lf L2 R\2 and Ri2L2L~ L~ L2 RX2,

The algebra ///(/?) has to be considered as the path version of the algebra of linear

functionals on the algebra A(R) of q-functions on the quantum group SLq(2,C) (see [23]

for the tensor version of this construction). The algebra UJ(R) is a "path" Hopf algebra
with the following structure:

• The algebra product m : Ui(R) x (//(/?) —>• f//(fi) is given by the product in Ti
(see eq. (5.19))

m(Lt(kf,k),Lf(L',L)) (Lt»Lf)(k!»l_',k»L) (6.4)

which vanishes for k[ / 1'0 or ki / /0. Graphically as a relation in Gi this means

/,-•/,- (6.5)

• The coproduct is a map A : Uf(R) -r Uph(R)oUph(R) Ç U?lUh{R) with two

neighboring intervals T and /2 (T < /2) and Ii U /2 an interval of length |/i| + |/2|.

The coproduct for the generating elements is

Al loi and A(Lf(kf,k)) (LfQLf)(k!,k) J2Lf(£d)oLf(l_,k).

(6.6)
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As a map of Gi —> Gi,ui2 the second relation reads ALf Lf 0 Lf, and graphically
we have

A(l) lol l « a(|---|)=|-'-| |-" I (6.7)

A(L-) LjQLj «. a(-|ttt|-)= -|~|-|ttt|- (6.8)

and correspondingly for Lf.

The counit is a linear map t : Uj(R) —r C. It is given for the generating elements

by

e(l) l and e(Lf(k!,k)) 6k,kNk\)ki

or graphically as a map of Gi —? Gt e.g.

(6.9)

,(/,;) e(-|--|-)= 1 =e). (6.10)

The counit fulfills by eqs. (6.6) and (6.9)

(e0id)(A(L±(fe',fc)) (idoe)(A(L±(fc',È)) A(L±(fc',fc)). (6.11)

• The antipode is an antilinear map S : Uj(R) —> ///(/?), it is given for the generating
elements by

5(1) 1 and S(Lf(kf,k)) Wk[Wk° Lf(k',kf')1
wk'0wkl

3
(6.12)

where k* is the inverted path as in eq. (5.20). We depict this graphically as a map
of Gi -4 Gi

S(LJ) - ^P - S(Lf)
3 I • ¦ ¦ I

C—
3

(6.13)

The usual relation for the antipode m(S ® id)A 1 0 e in the tensor picture now

becomes a relation in Gi in the path space version of the form

or graphically

S(Lf)-Lf ly?e(Lf) \y?t)

c-3 ,,X

(6.14)

(6.15)
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where the symbol xn denotes another "path tensor product", whose meaning is

obvious from its matrix elements

Wie
(a'|lx""ej-(fc',fc)|a) waiwawk<Wk—L [

lüfc. v.
k Sa'aSkJkßa' k[&a„tki - (6.16)

Thus 1 xn e] is again not the usual tensor product 1 ® ej because of the condition

ax fci. Note that in eqs. (6.14) and (6.15) on the right hand side a "double"

product appears, with respect to both the vertical and the horizontal spaces:
• : G}1 x G)1 —r G}l- It is defined for graphs Xyyi and Yyij £ G}1, in terms of fields

in Ti
(Xyyi ¦ >>,-)(*', fc) £ Xj,j„(k>, U')Yj:j(W, fc), (6.17)

i"
and extended bilinearly. As opposed to eqs. (5.22) and (5.25) there is no "path
tensor" product w.r.t. V/ on the r.h.s. but only an operator product w.r.t. V/. Of

course, if the horizontal colours of X and Y do not match appropriately, the product
vanishes. The equations (6.14) and (6.16) suggest to write the matrices of the

antipodes of the generator as inverse matrices

S(Lf) (Lfy (6.18)

The usual relation in the tensor picture for the antipode

m(id ® m)(id 0 S ® id)(A ® id)A 1 now becomes a relation in Gi in the path

picture

Lf ¦ S(Lf) - Lf Lf (6.19)

or graphically

J _ i-l^-i-. (6 20)
3

c

The path Hopf algebra U*(R) is also quasi triangular. The fundamental R-matrix
7c,2 : V/,oV,2 -r V,i0Vn (|/;i2| \Ih2\, T2 < /J, |/2U/i| |/i| + |/2|) braiding the

spaces Vj, and V/2 fulfills
7c12A12 A217l12 (6.21)

or in terms of graphs for L •

,— _J...J ij-i

h h
(•••r
/i h

(6.22)
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The Casimir elements in UP(R) are given by

C3 trh(S(Lj) ¦ Lf) ± ("I •¦•!") (j£l) (6.23)
w3 n i

where the horizontal trace tr/, is defined by

trh(S(Lj) ¦ Lf) -12 4wj) • L+)(*,*) (6.24)
j fc *i

The commutation relations [/,f,Cj] 0 are obvious, e.g.

J •>[ |

[£r,<?;]= Ç ~ ") - v~p =°- (6-25)

'I I 71 — I-
Similarly, it follows that all observables in Ai commute with the Casimir operators. Note

that (for finite /) the Casimirs are also observables,i.e. in Ai-
Next we discuss properties of special elements in Uf(R), which will be used for

transformations of states and fields.

Definition 6.3 The q-symmetry algebra Ci is a *-subalgebra ofUp(R). It is generated

by the elements -n

r\-\->
L,=S(L-)-Lf= V ••• (j£l). (6.26)

Jl I

where the product of the two factors is the double product of eq. (6.17) w.r.t. both the

vertical and the horizontal space.

For simplicity we list the properties of the L,'s in terms of relations in Gi, Gi,ui2 and Gt-

• The algebra product is given by

m(Li, Lj) L;.Lj (6.27)

Note that for Lfs the double product of eq. (6.17) makes sense

C.I-.3
L,-L3=o,3 | _ | J (6.28)
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• The coproduct is A(L3) A(S(LJ) ¦ Lf) A(S(LJ)) ¦ A(Lf) or graphically

fl-l-l-PA(L3)
>\ I

(6.29)

Note that, as opposed to relation (6.8) A(L3) is not equal to L3 0 L}. In order to

express this relation in terms of L3 only one has to use the fundamental R-matrix
7?.i2 : Vj, o Vr2 —r V/' o Vj' braiding the spaces Vj, and Vj2 (see also eq. (6.21))

A(L) K2,lLiKi2L2 (6.30)

(The tensor version of this structure is some times denoted by "braided tensor

algebra" [25].)

• The counit is given as a map of Gi —> Gt by t(L3) e' (see also Example 5.1a).

• Analogously to eq. (6.18) we introduce the inverse of L3 as

< 0
Lf1 S(Lf) ¦ L- CT^A- (6.3i;

Note that as opposed to relation (6.18) L, ' is not the antipode S( L3) — S(S(LJ ¦

Lf) (S(Lf)tr ¦ S2(Lf)tr)tr, where Xtr means the transposed matrix: A"r(fc', fc)

X(k,kf).

• Finally, note that the Casimir operators of UP(R) defined above may be written as

C3 =tvh(Lj).

In the second part of this section we investigate the transformation properties of states

and field operators under the action of the quantum symmetry algebra £/. First we discuss

the transformation properties of states in Vj under the symmetry transformations. The

state space is the span of all states \f>3;k',k) obtained from graphs with |/| legs of colour

1/2 pointing upward and one leg of colour j pointing downward

CO -+ \è3;k',k)= "'[(A
17

with matrix elements w.r.t. the basis {\a}}

(6.32)

{a\é3;k',k) - w« (6.33)
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Especially, the states \é3(b); k', k) with

Hk) | | (6.34)

span the space V/, since they are related to the states \a) by a unitary transformation (a

product of Fierz transformations (2.13)).

Analogously to Section 5, where we introduced generalized fields X £ Gi (see eqs. (5.4)-

(5.8)) as maps X : (fc', fc) h-> X(kf, fc) £ Ti we introduce generalized states \<b) which define

a linear space Wj and which are given as maps

\é):(k',k)^\ó;k',k)£V, (6.35)

given by eq. (6.32).
For a state \<p3; fc', fc) and a generalized state \é3) given by eq. (6.32) we call the colour

j £ I the q-spin of the state. This notation makes sense. Indeed, the generalized states

\4>j) are eigenstates of the Casimir elements C,

((2i + l)(2j + 1)),
Ci]4>i) l^)(2i + l),(2J + l),

• (6.36)

This equation follows as a relation in Wj from

<^D tÔ_s„ ^r±) "
«$ "s°> Cp

where S,3 (-l)2'*2^-1 sin ^(2z + l)(2j + l)/sin f is the Verlinde matrix (see e.g. [9]).

We have the relation (compare eq. (3.25))

p'3=So3Y,Sltw2C,. (6.38)
t

Indeed the right hand side projects onto the states with q-spin equal to j, because S,3

is an orthogonal matrix. The states \ey,k',k) yield the decomposition of the state space

(4.7)

V, 0 Vl,j(k',k) with Vi,3(k',fc) p)V,(k',fc)
k',j,k

(see also eqs. (4.1) and (4.21)).
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Analogously to Section 5, we also introduce the vector spaces W\ (for / 0,1,...) as

the span of maps \<b3) : fc i-> \cf>3;k) £ Vj associated to graphs with |/| legs of colour 1/2

pointing upward and / lines of colours j_ (ji,..., jt) pointing downward

I ••¦ I

t 3 ¦k=(ko,-.-,ki)^>\è3;k) wk
Anna

k

£ Vi (6.39)

We set Wi Ui Wj as a filtered vector space. The generalized fields act as operators on

this space: Qfn x W\ -» Wf+l+n defined graphically by

AP
X

(6.40)

Definition 6.4 T/ie transformation law for generalized states in Wi under the q-sym-

metry algebra C; is given by

\4>)^L,\<p) or ^j\
I

ci-P
1

1 • • • 1

*
1

(6.41)

for all Li. This means that the q-transformation law for states in V/ is given by

\é;Q^L,(k!,k)\é;l) (6.42)

Definition 6.5 A generalized state \4>) £ Wi is q-invariant, if it is an eigenvector for all
elements Li, more precisely, if

Li\<b) \<t>)x-tl (6.43)

with the notation of eq. (6.15). In terms of matrix elements of a state in V/ this means

that

(a|L.(fc',fc)|^;/) (amWa^Ni,^ (6.44)

Theorem 6.6 A state in V/ (or a generalized state \<b) £ Wi) is invariant, if and only if
its q-spin is zero.
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Proof: Let \<f>) be equal to \4>}=o) of relation (6.32), then Li\<b0) |<^o)x"'et1, which is of

the form

dzi i i\m
(6.45)

JA
Conversely, let \<j>3) be invariant. Using tr^e' 1 we obtain

C,\<f3) trh(L,)\è3) Ml*;)*1«,*) |^>

which implies combined with eq. (6.36) that the q-spin j is zero.

The transformation law of fields in Ti under the action of Lf £ UP(R) follows from

the following commutation rule

Lf.if3 X± ¦ (tpj.Lf).

Thus for the field of Example 4.4 A is equal to the R-matrix, e.g.

(6.46)

Li »ip3 Rij ¦ (ipj'L,

or in terms of matrix elements

a'
\k0

_ \
j

rk
(6.47)

k\

Ewä"

o fi '

¦ ¦ ¦ Nfco

Of ' n i~i

fc;
E wa»tî>t» fc/

.'«ZD h
a"k"

\
\

fc'/\
fc'/

fc2' A-Î'

0 fco

(6.48)

B=B\ki
}k2

Definition 6.7 The q-transformation law for fields in Ti under the q-symmetry algebra

Ci is given by

d=l?
V3 ^ ib^ L,ib3 ¦ Lf1 : -CJJ * fGQ (6.49)

OAT
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for all L, £ Cj. A field is invariant if

iPL- ^x^ej (6.50)

for all L,.

Theorem 6.8 a) The fixedpoint algebra Ti ' of all fields invariant under the q-sym-

metry is equal to the algebra of observables Ai-

b) The Ci-average of a transformed field if1" is an observable:

±-2^w*tTh(ibf') 6]0lbj. (6.51)

c) Any field may be decomposed into its irreducible components by

0 E^i where tbj £ wfSojSji tih(ibL') (6.52)

d) The "volume" of the orbit ib3 ' is the q-dimension (2j + 1),.'

^(-lfXWtr,^) (2j + \)qib3.
ik

Proof: Using eqs. (2.11), (2.17) and (6.47) we find

trh(ibf") tih(Rji ¦ Rij) ¦ ibj u>~2S,3/So3 ibj

(6.53)

(6.54)

where again S,3 — l)2,+2j(sin -(2i + l)(2j + l))/(wsin-) is the Verlinde matrix (see

e.g. [9]). Part a) of the theorem follows since S,3 — 5,o O j — 0 -*4- ip, £ At. The parts

b), c) and d) of the theorem follow from the orthogonality of S,3 and StU w2/w. The

graphical interpretation of eq. (6.54) is

G rs

A$
qE\

i ¦ ¦¦ i

7&AQ -| tW (6.55)

J
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7 The thermodynamic limit
Let A be the C'-algebra defined as the norm closed inductive limit of the family Aj w.r.t.
the inclusions trj (I C /') (see eq. (3.31)). By construction viewing the Ai as C*-algebras,

one also has isometric injective »-homomorphisms t/ : Ai —> A with i/< o *•/',/ H (I Q /')
and (J, ti(Ai) is dense in A. Furthermore the compatible (see eq. (3.38)) traces tr, on

Ai extend by continuity to a faithful trace tr on A such that tr,(A) =tr(t/(A)) for all

A £ Ai. For simplicity, in the following we will sometimes identify A £ Ai with its image

A i,(A)£A.
Let A the von Neumann algebra obtained as the weak closure of A with respect to the

representation obtained from the trace tr by the GNS construction. This means that the

resulting states \A) with A £ (J/ Ai form a dense set in the vacuum sector of the Hilbert

space and the matrix element of an operator B £ (J/ Ai is

(A\B\C) tr(A'BC) mCB)
,\ ¦¦¦ i,(AO

(A,B,C£A,). (7.1)

Lemma 7.1 The other superselection sectors are obtained by application offield operators

(see below). The weak limits of the minimal idempotents of the Ai are proportional to the

unit operator, more precisely with p' l/2(pj + pJ 'I/+1')

dì
w- lim p( 1£A (je I), w2 Y,d) - (7.2)

Proof: Let C\ £ Ar be the central elements of Ar (see eq. (6.20)). Then with A, B £ Ai
for / C /'

(A\Cf\B) (a-b)2/'
1/2 K^

(2(2t + l))t
2,(2»+ 1),

l''l-m
(A\C'\B). (7.3)

The claim follows since ((2(2* + l)),)/(2,(2i + \)q))N w Sifi A {-l)N6{<r,2-i for N -, oo

and p! S0j IZ, S3iW2Cf —> 5qj1 with Cj defined as p'.
Also px extends to an isometric injective »-homomorphism from A into A, also denoted

by px and ^x extends to a left inverse of px on A, also denoted by 4>x. Finally the

conditional expectation Ex on each Aj extends to a conditional expectation on A with

range px(A).
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In analogy to the definition of A let px(A) be the weak closure of px(A) w.r.t. the

representation obtained from the trace tr by the GNS construction.

Theorem 7.2 The index [A : px(A)] of the inclusion px(A) C A of C*-algebras equals

U)\i2 as does the index of the inclusion px(A) C A of type III von Neumann algebras, both

of which are factors, tr is the unique tracial state on both px(A) and A.

Proof: We now fix / with |/| > r — 2 and with x £ I and set (see proof of Theorem 3.11)

vx(b'xi,b) tj(vl(b'xrb)) £A. (7.4)

These vx(b'x ,b) and their adjoints (modulo a sign) form a quasibasis in A for the conditional

expectation Ex pxf>x satisfying

,2b'E(-lA' + '(Vx(b'xl,b))'Vx(b'xl,b) W*/21 (7.5)

concluding the proof of the first part of the theorem. In fact for any /' D I it is easy

to see that the elements v'x (b'x ,b) ij, j(vx(b'x ,b)) £ Aj, and their adjoints (modulo a

sign) form a quasibasis for the conditional expectation Ex pxo<f>x : Ap —> Ap satisfying
a relation similar to (3.56). The claim now follows from the continuity of Ex and the fact

that by construction the set U/' tr(Ar) is dense in A.
We turn now to the proof of the second part. By the graphical definitions it follows

directly that the maps px and t,/,/ are compatible in the sense that px(irj(A)) tp jpx(A))
for all / Ç /' and all A £ Ai- In particular tp j maps px(Ai) into px(Ar). We claim that

(7.6)
Aj
U

Px(Ai)

A,,
u

Px(Ar

is a commuting square in the sense of Popa [26] (see also e.g. [7]). In fact for all ICI'
the map 4>i,r : Ar —> Ai on graphs A £ Ar

Ji.i t->
(w\l2)W\Al\ ^J

(7.7)

is a left inverse of trj. More generally <bi,r(<-r,i(A)Birj(A')) Aèi.r(B)A' holds for

all A, A' £ Ai and all B £ Ar, Also tr/(<£/,/.(A)) tr//(A) for all A £ Ap. Therefore

Br,i tr,i°<t>i,r '¦ Ar —> Ar is a conditional expectation with range trj(Ai) compatible
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with the trace in the sense that trr(Erj(A)) =tr,<(A) holds for all A £ Ar and for

all / Ç /'. Also the restriction of Ej, / to px(Ar) is the conditional expectation for the

inclusion ip j : px(Ai) >-, px(Ar) whenever x £ I. Again this follows easily from the

graphical definition of px, proving the claim. Now Theorem 7.2 follows from Theorem

3.11. and a well known result by Wenzl [14] (see also [7]).

In fact, what remains to be shown is that the inclusion matrices for the inclusions

t-rj '¦ Ai —? Ar and tp j : px(Ai) —> px(Ar) are primitive (see e.g. [7], p. 12) whenever

|/| > r — 2 and |/'| — |/| > r — 2. This will in particular prove that A and px(A) both

are factors. Now it is easy to see that p''t,',,(pj.4,p{)p;' and Pj'iir,i(p3)Aiirj(p'Apy are

equal and nonvanishing for any j,j' wit 2j + |/| and2j' + |/'| even (compare the discussion

leading to eq. (3.52)). Hence all entries of the inclusion matrix are equal to one, thus

establishing the primitivity in the first case. The second inclusion is treated similarly.
The canonical injective »-homomorphisms trj may be extended to Ti, Ti and Gi-

The map

tr.i : Ti -, Tr (I C /'),

which restrict to maps from Ai into Ar, are defined on graphs (and extended linearly)
as follows:

tr.i

kr

:X *
k. 1 ¦•• 1 M l-l

(7.8)

Here x', — Xf vertical lines with colour 1/2 have been added on the right and X{ — x't lines,

again with colour 1/2, on the left. We have local commutativity of the local field and

observable algebras in the sense that ij,/,(V>) and i,,,2(A) commute in Ti (I D /i U If)
for all ib £ Ti,, A £ Ai2 whenever /i fl /2 0. Obviously we have compatibility with the

trace (see eq. (4.14))

trr(tr,,W) tri{ib) (7.9)

for all ip £ Ti and with the conditional expectation F/ (see (4.17)) with range Ai

irj o Ej Er o t,,,, (I Ç I') (7.10)

Analogously we have a canonical injective »-homomorphisms irj : Ti —, Tr- Finally
these maps induce injective »-homomorphisms from Gi into Gr respecting the filtering,
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also denoted by the same symbol. They are given on graphs A' £ G?" as (compare (7.8))

t-r,l

Jl Ä

r-T

Jn Jm

(7.11)

Jn

with x, — xj vertical lines added to the left and x', — xj lines added to the right, each with
colour 1/2.

Let T, A(d T) and A(k) be the inductive C-algebra limits of the families Ti, Ai
and Ai(k) with respect to the inclusion maps ijij respectively. By construction we have

injective isometric »-homomorphisms cj : Ti —, T satisfying tr o tj,j t, (/ C /') and

mapping Ai into A such that \JiLi(Ti) and \JiLi(Ai) are dense in T and A respectively.
In particular since t//i/(l/(fc)) l/'(fc), the elements l(fc) (/(l/(fc)) are well defined

and satisfy l(fc)l(fc') SkkA(k), l'(k) l(fc) and E1(*0 1- The element l(fc) is

the unit in A(k) and in the center of A, Analogously (Ji Li(Ai(k)) is dense in .4(fc),

.4(fc).4(fc') 0 (fc / fc') and Â ®kA(k). By the compatibility property (7.9), the

family of traces tri defines a faithful trace tr on T¦ Again via a GNS construction this

trace gives rise to a representation of T. Let T, A and *4(fc) be the weak closures of

T, A and *4(fc), respectively in this representation. In particular all A(k) commute and

A ©t A(k). Also tr extends to a tracial state on T.
Now

Tj ^ Tr
U U (7.12)
À '''¦' "aAi —y Ar

is a commuting square in the sense of Popa. Indeed, the linear map f>i,r '¦ Tr —? Ti
(/' D /) given for graphs if P Tv by (compare (7.7))

fcrl ^

o,,,' V 1-4
1

K/2)i''i-m

^i.
ib

k,\
ZTTA^Z

(7.13)

is a left inverse for t//,/ and more generally 4>i,r(tr,i(ipi) 4> tr,i(ib2)) — ipi 4>i,r(ib) ibi holds

for all ibi,ibi € Ti,4> £ Tr- The resulting conditional expectation Erj irj o d>jji :

Tr —> Tr with range ir,i(Ti) is again compatible with the trace in the sense that

trr(Erj(if)) =trr(ib) holds for all ip £ Tr. When restricted to Ar,f>i.r is the left
inverse for the bottom inclusion in (7.12). Again by arguments similar to those given in

the proof of Theorem 4.5 this leads to
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Theorem 7.3 The index of the inclusion A C T of C-algebras is given by

[T:A)={yidq(k)\ =ß. (7.14)

ß is also the Jones index for the inclusion A ÇL T. ~Â and T are type Hi factors and tr
is the unique tracial state on T. A is not irreducible in T and A is not a factor.

We note that this index also appears in the context of certain subfactors studied by

Choda and Ocneanu [27]. In fact, there is an alternative way of introducing a field algebra
and which is more closely related to this work. It is obtained by introducing an algebra at

infinity in the following way: Replace the path space Vj by the path space Vf° spanned

by symbols of the form |6i, • • • òw,ax,-i, ¦ • • aXj Here N is chosen to be equal to r/2 — 1.

The colours ak are again subject to the usual fusion rules and the colours bk satisfy similar
fusion rules, i.e. Nb ax,_, 1 n^Ll' Nbi. • The field algebra Tf° is then the linear

span of all graphs ip considered as endomorphisms of Vj° of the form

with N A \I\ horizontal and vertical legs respectively. Our previous Ai is obviously

isomorphic to the subalgebra of Tf spanned by elements of the form

Ça)I ••• I (7.16)

Note that Tf is generated by elements of the form

-L ¦ X
(AAACAAD
Y^T I ••• I (7.17)

where the color j is arbitrary (due to the choice N | — 1). Those elements with j' 0

span an algebra Af C Tf containing Ai- The corresponding part V'oo may be viewed

as an observable at infinity. Now the inclusion Af C Tf in the thermodynamic limit
|/| —> oo is essentially the situation considered by Choda and Ocneanu (apart from the

fact that in our case N stays fixed). At the moment, however, we do not see the physical
relevance of this construction.

Proof of Theorem 7.3: To prove the first part we introduce the quantities

v(b,l,k,j) n(v,(b,l,k,j)) £ T. (7.18)
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where / is an arbitrary fixed interval with |/| > r — 2. Then these elements and their
adjoints (modulo a sign) form a quasibasis w.r.t. the conditional expectation E : T —>

A given as the inductive limit of the F/. Indeed, it is easy to see that the elements

vr(b,l,k,j) tr,i(vi(b,l,k,j)) (with v(b,l,k,j) tr(vr(b,l,k,j))) and their adjoints

(modulo a sign) form a quasibasis in Tr w.r.t. the conditional expectation Er : Tr —> Ar
for any /' 3 /. The claim then follows from the continuity of E and the fact that by

construction [Jr tr(Tp) and [Jr tr(Ar) are dense in T and A respectively. Finally, the

v(b, l,k,j) satisfy a relation similar to (4.28), thus concluding the first part of the theorem.

Since the conditional expectation E extends to a conditional expectation for the inclusion

A C T of von Neumann algebras the above quasi basis turns into a Pimsner-Popa basis

thus proving that ß is also the index of the inclusion A C T.
To see that T is a factor and that tr is the unique tracial state we proceed as in the proof

of the preceeding theorem. The algebras P/, ir,i(P/TiP/)pj, and Pf, tr,i(P/)Tiirj(Pl,)p',
are equal and nonvanishing for all 1,1' £ I and ICI' provided |/| > 7- — 2 and |/'| — |/| >

r — 2. Thus all the entries of the inclusion matrix for the inclusion trj(Ti) C Tr are

equal to one. By similar arguments A is also a factor. To see that A is not a factor, note

that the elements l(fc) are also nontrivial central elements of A. Also since these l(fc)
commute with A and hence with A, A is not irreducible in T.

Remark 7.4 Let L2(T) be the Hilbert space obtained from the GNS construction. It
contains L2(A) in a natural way, where L2(A) is the corresponding GNS Hilbert space for A.
Lei \Q) £ L2(A) be the state corresponding to the unit element. Consider \Qk) l(fc)|0),
which is nonzero since (fU|fU) tr(l(fc)) dq(k)/ß1^2 see eq. (f. 16). These vectors are

pairwise orthogonal and |fl) Efcl^fc)- Let L2(A(k)) be the closure o/.4(fc)|n), which

is also the closure of A\Qk). In fact L2(A(k)) is obtained from the GNS construction

w.r.t. A(k) using trk(-) — tr(-l(fc))/tr(l(fc)). Then each I2(A(k)) is invariant under A.

and we have the decomposition

L2(A) ®L2(A(k))
kei

which is analogous to multiplicities w.r.t. magnetic quantum numbers in the tensor picture.

Finally we discuss the q-symmetry algebra in the thermodynamic limit / -, Z. As

above let T be the C-algebra limit of the families Ti and i, : Ti —, T the injective
isometric »-homomorphisms satisfying t,< o i,-, t/ (/ Ç /') such that (J/ t-i(Ti) is dense

in T. Also we have ti(L) £ T for /. £ Ci.

Lemma 7.5 The q-transformation ip -* ipL for ip £ T as. an extension of relation (6.J9)
is well defined.
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Proof: First note that the definition of the q-transformation of fields (6.49) is compatible

with the maps trj since by the definition of t,/,/ for ip £ Ti, and L £ Ci2 C Ti2 the map

i-i,,h(ib) -> t/,,/3((i/2,/i(0))''3,'2(L)) is independent of /3 for /, C /j C /3 C /4- Therefore

by t/, (ip) —, i/, (ipL) it yields a well defined map ip —, ipL £ T for a dense set of 0's in .T7.

However, note that i/;L cannot be written as Lip ¦ Z,-1 by an L £ T as for finite lattices in

relation (6.49).

Analogously to eq. (6.28) we may define L\ as generated by the L\ — L~~ • S(Lf) (as

a left version of £/ obtained by mirroring along a vertical line). For a field operator in

ipk £ Ti of spin fc we have

(n|Lft«#n> oc si (Cr)]) (719)

where the S£ are generating elements of matrix representations of the mapping class

groups of arbitrary genus, which have been discussed in [28] (see also [29]).

Note that the algebra of fields T is generated by elements of the form ip AL1 for

A £ A and V £ C\ for any interval /. The transformation A2 ' L[ A2 ¦ L[ is in general

nontrivial if the interval / is contained in but smaller than the support of A.

We conclude with the following remark. Usually the internal group symmetry and

the external space-time symmetry form a tensor product. Due to the nontrivial R-matrix
the situation is different for the q-symmetry. Nevertheless, we have the following cluster

property. If the fields ip3' are localized in /'"' for 1 < i < n such that pairwise /'*' fl /'' '

0, then the vacuum expectation value of a product of fields factorizes

(niniffloc
r>< r0"»

r-^l
1 ¦ ¦ ¦ 1_ — —( ¦/-<">

¦^X^

«n^owrin). (7.20)

The seemingly unphysical feature, that factorization takes place for all nonoverlapping

supports of the fields, is due to the fact that the state given by the trace is an infinite

temperature state. For other states like ground states of a dynamical system given by a

local Hamiltonian we expect the usual cluster property.
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8 Applications and Outlook

In this section we will show how to describe models of statistical mechanics in our path

space picture by providing explicit Hamiltonians. In particular we will show how the

RSOS model of Baxter [2] fits into this picture.

It is convenient to slightly extend the above concepts and to introduce fields in Tr,i C

Hom(Vi,Vr) which map elements of Vj into Vj« for / ^ /'. We also introduce the

corresponding linear space Gri, such that Gi Gn- For example for / {i„ ,Xf} and

/' {x[ x, + 1,...,X/}
X't Xf Xi X Xf

iJ
ip(x) and ip*(x) (8.1)

x, xf

Note that the local endomorphism of eq. (3.41) and its left inverse (3.44) may be written
in terms of these fields

px(A) a-(iP'(x).A.ib(x))
<px(A) o ¦ (iP(x).A.iP'(x))

(8.2)

where a Q £ Gt°2 or (a'\o(k)\a) w^w^w^J^S^nH2 wkJwa6a'aSako5ak2NlJk2.

The fields ip and ip' fulfil "Cuntz-algebra" like relations:

a ¦ (ip'.ip) 1 and ip.ip' a ¦ 1

where ö £ Gt20-

The RSOS-Hamiltonian (for the gap-less case) acting in V, is

X/-1
H J(o-.o) ¦ Y, 4>'(x)»ip'(x + l).iP(x + l).ip(x))

and can be written as a sum of Temperly-Lieb projectors

(8.3)

(8.4)

//
c

'E c ^E

U

n
(8.5)

The Hamiltonian is obviously quantum group invariant [H,UP(R)\ 0. An example of a

symmetry breaking contribution to the Hamiltonian is provided by the local field ip3(k)(x)
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of eq. (4.13) for j ^ 0 or by <p(k_)(x) (ip*(x).ip(x))(k) in the form

Hi=J2Mk,x)iP3(k)(x) or H2 Y,Mk,x)<b(k)(x) (8.6)
X X

where J,(fc, x) is an external (classical) field. Spontaneous symmetry breaking would be

present if the ground state |0) satisfies

(0|V>i(fc)(x)|0) ^ 0 or (0|<^(fc)(x)|0)^0. (8.7)

Such a ground state |0) and also that of the Hamiltonian (8.4) which can be obtained

by the Bethe ansatz are usually very different from the ground state |ii) discussed in

Section 7 given by the trace. The latter one is typically an infinite temperature state. It
would be interesting to repeat the GNS construction and the discussion of Section 7 for

physically more interesting ground states.

Some further points which we intend to investigate elsewhere are:

• For RSOS-like models order parameters, phase structure and the spontaneous

symmetry breaking mentioned above.

• Techniques developed in [30] may be used to transfer the results of this paper to

the case of periodic boundary conditions, i.e. to the lattice on a circle.

• In addition to the thermodynamic limit discussed in Section 7 the continuum limit

may be analysed using "cabling" techniques.

• Techniques of topological quantum field theory developed in [9] may also be used

to apply the ideas and results of this paper to lattices in two space dimensions.

Thereby one might obtain a formulation of the q-symmetry for quantum field

theories describing particles with braid group statistics in 2+1-dimensions.

A Appendix
This appendix contains the proof of second part of Lemma 3.6 and will be carried out in

several steps. It is a path space formulation of the fact that all representations may be

obtained by tensoring the fundamental representation.

Step 1. We first claim that any graph A £ A°i is a sum of graphs in A® with no 4-vertices.

Indeed, we may successively eliminate all 4-vertices by (2.12) and (2.15)

Eu'a2qk_ [
w i

(A.l)
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With this identity the proof is complete.

Step 2. We claim that each A £ Ai can be written as a sum of graphs with no 4-vertices

and with lines whose colours are 1/2. We proceed by induction on the largest colour

and consider the local case

(A.2)

with fc > max(i, j,l,m). Without loss of generality, by (2.13) we may assume i ^ 0,j ^
0,/ / 0,m ^ 0). Using (2.12) and (2.18) we have

±±
E

E
ifc'=fc-i

i fc è fc A< <*¦•>

This gives

j/ \m

fc-1
fc-1 !¦ fc - ì

2
K

2 k-k (A.4)

for any p, q for which

*-5 and fc- ì 1K 2 2

are nonvanishing. Now we use that fact that the 6j symbols are nonvanishing whenever

all the relevant fusion rules are satisfied. We claim this is the case for the choice p

max(i, j) — 1, q max(/,m) — |. It suffices to consider the case i < j and / < m such

that p j — 1, q m — \. By assumption N'k N^k 1. It is easy to show that

1Ai j < k > 1 and N'k 1 implies N'k_L 1 and N\ 1 with p j'— ~. The other two

fusion rules involving |, fc — l,q, I and m are verified similarly. By (A.4) we have (locally)
decreased the maximal colour and since by this procedure no 4-vertices are generated the
claim is complete.

Step 3. Let A £ Ai by any graph with no 4-vertices and with lines whose colours are all

1/2. By the fusion rule it therefore cannot contain any 3-vertices. A is formed of |/| lines

starting and ending at the top or the bottom and closed loops which are disconnected
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from the rest of the graph. Using eqs. (2.2) and (2.11) the loops can be replaced by

numbers. We claim that A may be written as a linear combination of graphs with all |/|
lines starting at the bottom and ending at the top. This will also conclude the proof of

Theorem 3.1. To prove this claim we proceed by induction on fc(A), where fc(A) < |/|
is the number of lines starting and ending at the bottom (equal to the number of lines

starting and ending at the top). For fc( A) 0 there is nothing to prove. Now let fc( A) > 0.

Pick a line L\, starting and ending at the bottom and Lt a line starting and ending at

the top. By iterative application of (2.8), we may place a part of Lf, close to a part of L<

depicted as

C\Lb

We now use the skein relation (for lines with colour 1/2) in the form

u
n

j
<7 -q

(A.5)

(A.6)

and insert it into (A.5).

Example A.l (\I\ 3,fc(A) 1):

WU

n
<7

m -q YA.
(A.7)

In the general case we have written A as a linear combination of two elements Ai
and A2 in Ai with fc(Ai) fc(A2) k(A) — 1. This concludes the proof of the theorem,

since the procedure again does not generate closed loops. The following remark is a

reformulation of a well known result (Kaufmann [31])

Remark A.2 After step 2 we have written any graph as a linear combination of graphs

A with no 4-vertices and with lines whose colours are all 1/2. Such graphs may be written

in terms of generalized Temperly-Lieb operators. Let c2n be the graph

e2n= (-..^--A (A.8)

consisting of n lines with colour 1/2. Then the linear hull of expressions of the form

•4 ((C, O lmi O ¦ • ¦ O (C'mu_, O lmM 1 A" ((C„, O In, O • ¦ • O (cnjv_, O lnw (A.9)
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span Ai where 2Ü m, J2ni' 1^1 and K 23,=even m> Hi=evenni- As an example we

have
^J I k_J

_>~a (c^oliOc;oli)l2(c4Ol2) ¦ill (A.10)

Acknowledgment: The authors have profited from discussions with V.F.R. Jones,
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