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Abstract

Using the 6j-symbols and the R-matrix for the quantum group S{,(2, C) at roots
of unity we construct local algebras of observables and fields with braid group statis-
tics on the lattice Z. These algebras are closely related to the XXZ-Heisenberg model
and the RSOS models thus exhibiting the quantum group symmetry of these mod-
els. Our discussion relates the theory of integrable lattice models to the Doplicher-
Haag-Roberts theory of superselection sectors. The construction of these algebras
is a variant of the path space construction of Ocneanu and Sunder which replaces
the usual tensor product construction of lattice models in statistical mechanics and
extends previous discussions by Pasquier. Our construction is based on the the-
ory of coloured graphs on S% and the associated Wigner-Eckhart theorem obtained
previously by the authors.

1 Introduction

Lattice models of quantum statistical models are usually based on the concept of the
tensor product and variants thereof like the antisymmetric (=fermionic) and symmetric
(=bosonic) tensor product (see e.g. [1]). Thus to each site z on a finite lattice A one
associates a Hilbert space h, (usually finite dimensional) and the Hilbert space associated
to A is then given as Hy = @, h,. As an example for the Heisenberg model one takes
hz = C? and for the Hubbard model one takes h, = C+C%+C = C* which is the Fockspace
for two spin 1/2 particles (spin-up and spin-down). In this last case Ha = A,ea b= and in
both cases it makes sense to speak of global SU(2) invariance for lattice models given in
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terms of local Hamiltonians and where on each h, one has the canonical representation
of SU(2).

The aim of this article is to provide a general set-up for one-dimensional lattice models
which is based on the so-called path space formulation. This is similar to Baxters [2]
formulation of the eight-vertex model in terms of the SOS-model. Using the quantum
group SLy(2,C) (3] at roots of unity (¢ = exp ™, 3 < r € N*) Pasquier [4] introduced this
concept (see e.g. Ocneanu [5] and Sunder [6] (see also [7])), for lattice models of quantum
statistical mechanics. The path space we will use is the set of all paths in the Bratteli

diagram obtained by tensoring the “good” representations of SL,(2,C) (see e.g. [8]) with

1
2

Thus to each “interval” I C Z we will associate a finite dimensional Hilbert space V;

the fundamental spin 7 representation.
with basis elements labelled by paths of length |I| 4+ 1, where |I| denotes the number of
lattice points in /. Intuitively to each lattice point there is associated one copy of the
fundamental representation. For generic ¢ not a root of unity and up to multiplicities this
formulation is essentially equivalent to the tensor product formulation. In particular this
basis replaces a basis in the tensor product representation labelled by magnetic quantum
numbers. For ¢ being a root of unity, the case we will consider, the path space V; has a
dimension smaller than 2/l is the dimension of the corresponding tensor product version.
To each V; we will associate a *-subalgebra of End(V}), the so-called observable algebra A;
localized in I. By construction it is the linear space of elements in End(V}) whose matrix
elements with respect to the path basis are given in terms of invariants of planar coloured
graphs (with colours indexed by the “good” irreducible representations of SL,(2,C)) on
the boundary S? = @D3 of the unit ball. Such invariants in terms of partition functions
were obtained in [9] as generalizations of the combinatorial Turaev-Viro approach to
topological quantum field theory using the 6; symbols of SL,(2,C) [10].

These constructions of V; and A for varying I are related in the following way. There
is a canonical bilinear map o : Vi, x Vi, = Vj,uy, for neighboring intervals I, and I,.
This map O replaces the tensor product and is not injective since dimV},- dimVy, >
dimVp,ur1,, which is again related to the fact that we work at roots of unity. Furthermore
this map O induces a map from A; x Ay, into Ay, also denoted by ©. In particular
O leads to an injective *-homomorphism ¢y of A into Ap for any I C I'. Now
erg, (Ar) and ¢, (Ag,) commute wherever I and I, are disjoint subintervals of I. Thus
our construction exhibits all the properties required for local observable algebras on a
lattice. In particular one may introduce dynamics in the form of models given by local
Hamiltonians. Moreover, motivated by the theory of superselection theory of Doplicher,

Haag and Roberts [11] (see also [12]) we construct a local endomorphism associated to
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the fundamental representation and whose index of inclusion is given by the square of the
g-dimension d,(3) of the fundamental representation.

Furthermore we may even construct field algebras F; which are *-subalgebras of
End(V}) and which contain A;. F is the analogue of the algebra in the tensor product for-
mulation with a basis given by magnetic quantum numbers generated by irreducible tensor
operators T” of spin j. More precisely this analogue looks as follows. Recall that such
operator T7 are completely determined by their reduced matrix elements < k,||T? ||k, >
due to the Wigner-Eckhart theorem for SU(2) by which

<kramT|T;31|k39ma>=C(kr J k,

o & & ) < k||T Ky >

Here m,,m and m, are magnetic quantum numbers, k, and k, are total angular mo-
mentum (s = source, r = range) and C is the resulting Clebsch-Gordon coefficient. In
our context F; is indeed generated by elements v;(k,, k) replacing these reduced matrix
elements. As a x-subalgebra of Fj, the algebra A; may then be viewed as the algebra of
invariant operators, i.e. those for which j = 0. In fact the Jones index of the inclusion
A C Fj is essentially given by ¥°; dg(]), i.e. the sum of the squares of the g-dimension
squared of the representation space for the spins j.

Moreover, the inclusion map ¢y (I C I') extends to an inclusion map from F; into
Fp, such that the tensor product construction for the A;’s extends to the F;’s. Also there
is a family of traces tr; on these field algebras compatible with these inclusion maps. This
allows one to discuss the thermodynamic limit, i.e. the inductive limit, of these algebras,
which then carries a trace. This in turn makes a GNS construction possible.

Our path space formulation finally allows a discussion of quantum group symmetry,
thus providing an alternative to the discussion given by Mack and Schomerus (13]. In
fact, we construct an algebra which we cail a path Hopf algebra, where the tensor product
operation ® is replaced by O, but which otherwise exhibits all properties usually valid
in Hopf algebras.

This article is organized as follows. In Section 2 we briefly review the theory of planar,
coloured graphs as given in [9] and which we will need in what follows. Section 3, where we
introduce the spaces V; and the local observable algebras Ay, is a review in our language
of well known results as far as index theorems (see e.g. Wenzl [14]) and the tensor product
construction (see e.g. [15]) is concerned. Thus 3 serves as an introduction of techniques
which will be used in the following chapters. In Section 4 we introduce the field algebra.
In Section 5 we make a further generalization by introducing so-called generalized field
algebras, which in Section 6 will allow us to introduce these path Hopf algebras and to
discuss the associated quantum group symmetry. These (generalized) fields also exhibit
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a structure which may be considered to be a path space version of what is called the
concept of auxiliary space by the St. Petersburg school (see e.g. [16]). In Section 7 we
discuss the thermodynamic limit. Finally in Section 8 we show how to construct models
by defining local Hamiltonians, exemplified in the definition of RSOS models in this path
space formulation. In particular we give the order parameters for the RSOS model.

2 The theory of coloured graphs on S* revisited

In this section we briefly review the theory of coloured graphs on the boundary M of
a compact oriented 3-manifold M given in terms of the 6j7-symbols and the R-matrix of
the quantum group S51,(2,C) at roots of unity (¢ = exp(iw/r), r € N+ 2) (see [9]). We
will only need the case M = D? (the unit ball in R3) such that M = S? (the unit disc).
Let |G| be the topological space associated to a 1-dimensional simplicial complex G (see
e.g. [17]). By assumption on G, every vertex ¢® € G is contained in the boundary of
n = n(0®) 1-simplexes with 3 < n < 4 and we will say that ¢° is an n-vertex. Again by
assumption every 4-vertex o is given an additional structure by pairing the 4 1-simplexes
meeting at o° into two unordered pairs. The 1-simplexes in an pair are called opposite to
each other. In addition one of the pairs is given the name “above” and the other pair the
name “below” as depicted in (1.1). We say that the pair “below” undercrosses the pair

X .

By abuse of notation we continue to denote by |G| this topological space with this

“above”.

additional structure. By definition a coloured graph |G|; is such a space |G| and a
map z : o' — z(o') from the set of nonoriented 1-simplexes in G into the set Z =
{0,3,1,2,...,2 =1} (r € N+ 2) with the following property: If two 1-simplexes o{ and
o, are opposite to each other at a 4-vertex then z(o!) = z(0}) (compare Fig. (2.1)).

By definition a coloured graph on 5? is a pair (|G|, ¢) where ¢ is a homeomorphism of
|G| into S? with the following local property near a 4-vertex o°. In a neighbourhood in 52
of p(0?), the images of the two open opposite 1-simplexes in one pair are separated by the
images of the closed 1-simplexes in the other pair (compare again (2.1)). Two coloured
graphs (|G|z, ¢) and (|G|z, ¢') are called homotopic if there is a homotopy ¢; (0 < ¢ < 1)
of the maps ¢ and ¢’ such that (|G|, ¢;) is a coloured graph for all 0 <t < 1. Using
the 6j-symbols and the R-matrices of the quantum group S{,(2,C) at roots of unity
(¢ = exp(im/r), r € N+ 2) and by a generalization of the state sum of Turaev and Viro

[10] one may associate complex numbers Z(|G|., ) to coloured graphs (|G|z, ) on S2.
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These numbers are homotopy invariant. To simplify notation we will identify |G| with its
image ¢(|G|) in 5% and we will call |G| a planar graph. Furthermore we will even use the

symbol |G|, to denote its state sum. Thus one has in particular

CLEZ(CL)=@ (2.2)
Jj)ksz(Jj)k)= o (2.3)

m o m 1 [ m n '
_ _ G|t a c
a b= 2 (a b) = 4e0a ] b d (25)
Here w? is up to a sign the g-dimension
' . sin 2(25 + 1)
w) = (2 +1)-g = (-1)¥4(5) = (-)¥ — 5 )

sin T
For later purpose we make the convention that w; = 1%|w;|. Hence the w; are real for
integer j and purely imaginary for half-integer j.
The fusion matrix is for ¢, 5,k € T)

i _[1 fk<i+4j, j<i+k i<jt+k r-2>i+j+kez
Nie = . (2.7)
J 0 otherwise.

The expression (2.4) is the 6j-symbol and (2.5) is the R-matrix (see [18]) with
¢ = (-1)°¢""*) (a 1) (2.8)

The 67-symbol is normalized such that it has the symmetry

to7 k| |7 v k| _ |1k 3|_ m n
Emn_lmfn_fnm_fjk (2.9)
and is nonvanishing exactly when N}, = N}, = Ngn = N, = 1. One has
Y New? = wlw}. (2.10)

With respect to the state sum the following local rules are valid:
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(2.12)

(2.14)
/
2.1
NP2 (2.15)
c
Also for a local colouring near a 3-vertex of the form
c
a b (2.16)
one has the fusion rule in the sense that the partition function vanishes unless N2 = 1.
Finally for a local part A of |G|, with n “external legs” of colours ji,...,j, one has a
Wigner-Eckhart theorem in the form
o s B P
ML [, e

( 4 ) 2211); n| 12

e Jn (2.17)
4 )
. For n = 2 one has j; = j; and the weight factor is

%, For n = 1 the single colour j, has to be zero. Note that the first relation in (2.12)
may be derived from (2.17) and (2.3). Furthermore we have

with the weight factor w? = [T}23 w?
Wi

¢ >d a b c| X
Cc = 2.18
a b d € f a f ( )
such that (2.13) may be rewritten as
e Nd d

9.19
a |5F P\ (2.19)
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Note that (2.19) alternatively follows from the second relation in (2.12). Relation (2.13)

is called a Fierz transformation in the present context.

3 The local observable algebra

In this section we will associate to each interval [ = {z;,z;+1,...,2y =z, +|I| -1} (z;=
initial point, z;=final point), of |I| lattice points in Z a finite dimensional *-algebra A,
which will be a subalgebra of End(V}), where V; is a finite dimensional vector space over
C. Aj will be the linear space spanned by elements A whose matrix elements will be given
in terms of (partition functions of) certain coloured graphs. First we recall some well
knows fact on the braid group. Let B be a braid in the braid group B of |I| elements.
This means B is a graph containing only 4-vertices (in the sense of (2.1) and satisfying
the rules (2.11)) with 2|/| external legs whose colours are all 1/2, where |/| of these legs
point upward and |I| legs point downward. We depict this as follows

Unless stated otherwise, in what follows vertical legs will always carry colour 1/2 (they
are depicted by thin lines whereas lines of arbitrary colour are depicted by thick lines).

The multiplication of two braids is given putting them on top of each other

Definition 3.1 The linear space spanned by these braids (with coefficients in C) is the
braid group algebra B;

Lemma 3.2 The braid group algebra By is generated by the unit braid

Iy Ty

1=
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and the simple braids

Ty z—1 T 41 Iy T r-1 =z r+1 .2

(3.4)

withz; <z <zy-—1.

Next we introduce the path space representations of the braid group algebra B;. We

start with a construction of vector spaces V; for any interval I.

Definition 3.3 The basis of the path space Vi is given by the symbols |a) with the path
1

a = (az,_1,0z,..-0z,) (az € I) such that the fusion rule Ni,a,,, =1 (z;i — 1 < z < zy)

holds. We depict this graphically as

T; €Ty
lg) = lazi-1,..-85,) =wg \_ 33 -3} Y, (3.5)

Agi—-1 Qg - .- ax,—l az,

where 5
Y T e (3.6)

wﬂ-z, T=x;

This is the path space version of the usual tensor product C®2H! in the context of lattice
models in statistical mechanics (see e.g. [19]). (For later purpose we also allow I = 0,

with a = (a) and w, = 1/w,.) The “bra”-vector corresponding to (3.5) is depicted by

a.‘r,‘—l az,- DR ar!—l ar,
(QI = (a.r'—la"'ya.‘c | = Wy l [ (37)
| AR A PR T
I; Ty
and by definition the pairing is given in terms of a graph as
! ! / !
ar.—l ar. e ax,—l a:r:/
zy
/ 2
@ao=u: (ol ) == I e 9
r=r;—1
Ar,—1 Qg;, .. ax,_l ar!

where the second relation follows from iterative application of (2.12). This allows us to

introduce a scalar product on V; by

(V'|v) = Zﬁ;vg (3.9)
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for |v) = ¥,la)v, and |v) = ¥, |a)v, making V; a finite dimensional Hilbert space.
These spaces Vj form the ingredients for our path space approach and replace the tensor
product stuctures usually employed in lattice models (see e.g. [19], [1]). In analogy to
the usual tensor product, however, there is a bilinear map o : Vi, x Vi, — Vj,up, written
as v; X v2 = v; 0V, (v; € V,, 1 = 1,2) and defined on the basis vectors as follows. For

|Q1) = |a:c}—ls #EE ,az}) € V'h (3 10)
|g’~2) = lax?—lv . aax%) = er -
with 2} = z? — 1 and hence az, = azz_, we set
la, 0 a;) = |arll__1, Loy gl = Ag2yg, ,azi}> € Viur, (3.11)

if ay = al

up we have dim(V},)dim(Vy,) >dim(Vy,ur,). This inequality is related to the fact that the
tensor product of two "good” representations of s/,(2,C) contain "bad” representations.
This is also visible in the fact that

_y and |a; 0 a;) = 0 otherwise. Note that in contrast to the tensor product set-

(¢, 0a5la, 0g;) = Bat,y s (aila;){azlaz) - (3.12)
Concerning the dimension of the spaces we have

dimVy = Y (N3 (3.13)

a,b
In particular with [/ = U {zs+1}
dimV; < 2dim V; (3.14)
such that by complete induction

dim V; < const. 27! (3.15)

for all /. We can even say more. Since the Verlinde matrix S diagonalizes each fusion

matrix N! with eigenvalues Si4/Spq, we have (see e.g. [9])

dimV; = ¥ (M)m SaaSsa= Y. (S‘—’E‘f) : b (3.16)
abd SOd * d SOd ¢
with fs = 3, S.a. Since the largest absolute value of the eigenvalues of N'/2 is d,(1/2)
and since f;/; # 0 we obtain
lim IndimV; =1nd,(1/2) < In2. (3.17)

]| =20
|| even
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Note that the corresponding number in the tensor product formulation is In2, when the
space at each lattice site is C>. The above number may be interpreted as the entropy per
site at temperature T' = oo (see also [20]).

To each braid B € B; we associate an element of End(V}) also denoted by B. Its

matrix elements w.r.t. the basis |a) (i.e. Bla) = Y |a’){a’|Bla)) are given as

ay_y = G ag,
(| Bla) = wawg B (3.18)
Ar,—1 ar al‘!—l arf

— ! — !
where az,_y = a; _y,a:, = a; .

Definition 3.4 The subalgebra A; C End(V}) spanned by all graphs of the form (3.18)
is the algebra of local observables.

By the Wigner-Eckart theorem (2.17) the matrix multiplication of the elements in A; as
transformations on the vector space V; is compatible with the multiplication in the braid

group algebra By.

Lemma 3.5 The algebra A; C End(V)) yields a representation of the braid group algebra
B,
my B[ — A[ . (3.19)

Since we do not associate a numerical value to an open graph, in the following all relations
containing open graphs in By have to be understood in terms of relations in A; via
eq. (3.18).

Let A be an arbitrary planar graph with 2|/| external legs whose colours are all 1/2
(note that the colour 1/2 corresponds to the fundamental representation of S{,(2,C)). We
assume |[| of these legs point upward and that |I| legs point downward and depict this

also as follows

(3.20)
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Lemma 3.6 Such graph A can be written as a linear combination of braids. Therefore
we may tdentify the linear space spanned by all such planar graphs A with the braid group
algebra B;.

The proof of this lemma will be given in Appendix A. Note that By = C if |I| = 1.

Theorem 3.7 A; is spanned by the coloured graphs of the form
J

Ll #=8 |
x’_z / b’, bf
Il zi—-1 "z, zy-2
€4y :( I1 wb',wb,) (b:.—n b, b2 (3.21)
F -1 1"

with b = (bz,_,,bzyy. .. bz, ), & = (b

2oy Ozir -0 bz,_y) and b, = by, or alternatively

by the elements of the form

[ N R
Ty b b b
Ir r+1 x,—l Ty
Eplp = ( H wb;wb,) b 44 beyos bD (3.22)

e T T T 1

with b, = b,,. We have the orthogonality relations

Ir I,r I.r
eé’éey"é" = JQ,Q'” eéléﬂ (3.23)
and the completeness relation
Y ep =1;. (3.24)
b

Stmilar relations are valid for eg,';. The center of Ay is spanned by the minimal projectors

Ir Il
R ICYE D DT (3.25)
b;f:] b_.‘l_gl=_1
such that A; decomposes as
.A[ = @A{.j , Where .AI.J' = pf.A[ . (3.26)
3

The proof is a trivial consequence of the Wigner-Eckhart theorem. Note that the factors
in front of eqs. (3.21) and (3.22) are real by the fusion rules and eq. (2.6).

Example 3.8 The matriz elements of eg,‘; are given by

Ty ' ’ /
a az—1 bz_1l|la a . b
d'lela) = waw, wywy, | 0 Teml Teml %2 Ba-1 Yz 3.27
b’ ;=8 x 0z | 1 b a 1 v a'
- - I-_—I"‘"l 2 I T 2 I I



Karowski and Schrader 203

with by, = 1 = b, . The matriz elements of the elementary braids rI are obtained from
(2.5) as
Ty
n.nI _ Ga,_19a,4, 1/2 Ay 4z
(Q lr.rlg) - (y 1;'1_1 5a. ,a )wa wag qa:qar 1/2 ax+l a,z . (3.28)
y#z

The algebra A is also a *-algebra, whose involution of a graph A in A; by definition is
given by associating to A* the graph obtained by mirroring the graph A along an arbitrary

horizontal axis, such that for example a 4-vertex

\/ ' d b d (3.29)
1s mirrored into and vice versa. )
i/ N\ i/ N\ j

Extending this antilinearly to all of A;, it is easy to see that with respect to the scalar
product on V; introduced above, A* is indeed the adjoint of A.

N

Obviously, we have 61{; = ebb’; and by definition (r;)~' = (r;)*. In particular the algebra

Example 3.9 (|/]| = 3):

A; C End(V}) defines a *-representations of A; aud also of the group algebra of the braid
group By for |I| elements.

Remark 3.10 [t is easy to see that B € By C B given by a braid is unitary BB* = 1;.

Hence we have a unitary representation of the braid group.

Moreover, Aj is also a C*-algebra, since the identity transformation 1; of End(V}) belongs
to Ar and is given in terms of the graph (3.3). In particular (see e.g. [7] proposition II.1)
A; is (isomorphic to) a direct sum of full matrix algebras. We will characterize these full
matrix algebras in Section 4.

In the following part of this section we analyse the inclusion properties of the local
observable algebra under enlarging the lattice /. On the braid group algebras we now de-
fine canonical injective *-homomorphisms ¢y 1 : A = Ap whenever I C I’ and satisfying
trproep g =y for I CI'"C I" and ¢1 1 = id4, as follows. With ' = {z,..., 2} such
that z; < z; and z; < z; and for a graph A € A; (and extended by linearity to all of A;)

we let

(3.31)
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1.e. ¢ 1(A) is A with z; — z} vertical lines with colour 1/2 added to the left and 2, — z;
vertical lines with colour 1/2 added to the right. If we denote the corresponding maps on
the observable algebras by the same letter, then in particular the maps ¢,/ ; are isometric,
when the algebras A4; are viewed as C*-algebras (see e.g. [7], prop. I1.4). With this
construction we have that A; and A;, commute whenever [, and I, are disjoint in the
sense that ¢ys j,(Ay,) and ¢y f,(Ag,) are commuting subalgebras of Ay for any I' D I, U ;.
For graphs A; € Aj, and A; € Ay, this is written pictorially as () to the left of I5)

ﬁ H
.'(‘A') | (3.32)

For later purposes we will rewrite the construction (3.31) in another way. Write I' =
Lulull with [; = {z},...,2; = 1}, Il ={z;+1,...,2}}. Then we write (3.31) as

L]',I(A) = 11} OAOI]; (333)

and more generally we introduce a multiplication o : A;, x A;, = Apul,, with I} and [,
forming neighboring intervals, on graphs A; € A;, (i = 1,2) and extending bilinearly as

AroAs=( A ) ( A ), (3.34)
] ]

This operation ” 0" replaces the tensor product of operators and is compatible with the

corresponding operation on the vector spaces V. In fact by the Wigner-Eckhart theorem

we have
(a1 043|410 Azla; 0ay) = bary (a}11A1]a,){a;|A2]a,) (3.35)

for |a;),|a}) € Vi, (i = 1,2), generalizing eq. (3.12). Obviously the product ¢ is associa-
tive, compatible with the x-operation and

(A1B1) 0 (A2B;) = (A10 A2)(B10 B,) (3.36)

holds for A, B, € A, and A,, B, € Aj,. This tensor product construction in the path
space picture is of course well known ([15]) using the juxtaposition of braids.
We also note there is a trace try on Ay, given on graphs by

- — try(A) = zm . 2|1I . (3.37)
Wy Wy /2

try :
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with tr;(17) = 1. Note that the second relation in eq. (3.37) follows from the homotopy

invariance of the partition functions of such coloured graphs on S%. More explicitly

try(A) = > 2U| Zwax _wl (a|A| a), A€AL (3.38)
w wln a
This trace is faithful, i.e. the quadratic form defined by the trace via (A, B) =tr;(AB)
(A, B € Ay) is non degenerate. This follows easily from eq. (3.23) and the fact that
il
Ir b’j
tri(ey,) = i Sy (3.39)

1/2

Note that by eq. (2.6) and the fusion rules wzr_lwzr’ /w'f!/]zl > 0. Therefore we have that

tr;(A) > 0 for A > 0 with strict inequality if A # 0 since tr;(-) is faithful.

Note that we have compatibility of these local traces in the form
trp(l,[r,[(A)) = tI‘](A) (340)

forall Ae Ayand I C I'.

Motivated by the concept of superselection sectors in algebraic quantum field theory
we turn to a construction of certain local endomorphisms. They will be denoted by
pz (z € z) and will be maps from A; into Aj with I = I U {z; + 1}. The construction of
p=- goes as follows. If z & I we set p;(A) = A0 1,41y = ¢j(A). If z € I we define p,
on graphs A € A; (and extend by linearity to all of Aj) by

z; Iy i T I;+1 T, oz xf-i-l

Note that if z = zy 4 1 then

pz(A) = Aol{x} .

Obviously the first relation in (2.11) implies
p=(1r) =1; and p;(AB) = p.(A)p(B). (3.42)

Also one has

po(A%) = po(A)" (3.43)
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such that p, is a *-homomorphism. The map p, has a left inverse ¢, : A; = A; given by
a partial trace in the form

(3.44)

on graphs B € Aj. Indeed, it follows directly from eqs. (2.2) and (2.11) that ¢,(p.(A)) =
A for all A € A;. Since ¢, is a left inverse or p, the operator E; = p. 0 ¢, : A;j = A;
defines a conditional expectation on each A;j with range p.(Ar). More precisely on graphs
A€ A; E.(A) takes the form

1
and it fulfills for A,C € p;(As) and B € A;
E.(ABC) = AE,(B)C . (3.46)
E. is compatible with the trace tr; in the sense that

tr7(Eo(A)) = tr;(4) (3.47)

holds for all A € A;.
Again by the braiding relations (2.11) for any graph A € A; and z € I we also have

pz(A) = (ri,[r-{»l,z!])-l LI,I(A) ri,[:r:-f’l,:r,] = (":I:,[::+1,::,])—l (Ao l{z,+1}) r:r!:,[x-}-l.z‘f] (3.48)
with . .
. 1.1 i :
I — UFLFTS I rz,c if Zi g T <y 3.49
Tz fz+1,2] { 1; it @=gp+1 ( )

such that ri.[.r+l.:r;] € By C Aj is unitary for z € I.

Theorem 3.11 For all I with |I| > r —2 and all z € Z the Jones index of the inclusion
pz(A1) C Aj of finite dimensional C*-algebras satisfies

[ As: p:(AD) | =] Af 0 ,(Ar) |= wi)y = d2(3). (3.50)

Also tr; is a Markov trace for this inclusion.
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Proof: The first equality follows from the general theory of the Jones index for multimatrix
algebras, since by (3.48) and (3.49) p.(As) and A;O1(;,41) are related by an inner
automorphism in A;j. We present two proofs of the second equality.

a) We determine the inclusion matrix and consider the projectors (3.25)

b;,:,

which are either zero or minimal central idempotents of Ay such that the A;; = p;AI
are either zero or full matrix algebras for all j € Z. If |I| > r — 2 then for all j € T they
are nonvanishing exactly when 27 + |/| is even. This follows easily from the fusion rules.
Furthermore by eq. (2.12)

Ll e ]
bl
eéi;ol{,r,_l} = H Wt W, B
r=zxi+1 =
R
et J .- 1 1
- 1/2 B’
— H wbrzwbx Z Nb B wfx })
r=z,;+1 E g%kl ! =4
A B
_ 1/2 Ir
- Z sz’ xf-HeEl-)’ (3.51)
b
II+1
with
é = (b:r:.'+11"- bI; 11b ~J:f+1)

]
-

~

' ’
= (b::.-i-la £ 1bz, 1 :pb-‘r;+l)

I

Since the minimal central idempotents of A; O 1(;,41) are the q}. = pJI» O 1{z,41}, (with 5
as above) relation (3.51) shows that the inclusion matrix A for the pair A; 0 1(;,41) C A;
is given by (j,7 € I, 25 + |I| even and 2j + |I| odd)

1

12

I !.(Alol{zl“})quz and qf iAI ip'i are equal and spanned by

In fact both algebra.s q;p

the elements 65'5 with b;, =7 = b, and bx,+1 =j =10, ., when N—2 = 1. By rearranging

Iy

the indices such that the integer mdlces come first and the halﬁnteger indices next when

;), 3) Now the index of the

inclusion equals ||A]|2 = ||AY]|2 = [|VZ||? (see [7], prop. 1.2.4) and the claim follows since

|| is odd (and vice versa if |I| is even), we have N7 = (
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IN?|| = |w,| In fact in e.g. [9] it was shown that |w?| is the largest eigenvalue with
eigenvector {( 1)**w?}.e7 for the fusion matrix N (compare eq. (2.10)).

b) For the second proof we introduce a quasi basis (see e.g. [21]). We recall that in
the context of C*-algebras a quasibasis serves to introduce the notion of an index. In the
context of type //; von Neumann algebras the analogue is the so called Pimsner-Popa
basis [22] (see e.g. [7]). Therefore this proof will become important in Section 7 where we

perform the thermodynamic limit / — Z. First we construct a quasi basis for the map
E.: Aj - Aj when ¢ = 25+ 1 (and |I| > r — 2). We define

Ir
I,+1(b;,»b) Wi/2Wy, Eyp, (3.53)
with a suitable but fixed b’ satisfying the fusion rule I’Ii’zr.+l Nbl,j:,:“ = 1. Then for any
b satisfying a similar fusion rule and any b4, = bfv +1 With || + 2b,, even we have

v£!+l( z;»0) # 0. Now for any graph A € A; the following equality holds

S (=DM L (0L, 0) B (] 4 (8, 0) ) = A (3.54)

by b

which follows from the graphical representation of its left hand side using egs. (3.23) and
||

(3.45) and the fact that w1 /2We, equals its complex conjugate times (—1)

(3.55)

The relations (2.10) and (2.12) imply the first equality and the second one after summation

over b;l (see also (3.24)). Finally, we may sum over all b by using again (2.12) to obtain

q. (3.54) for all graphs A in A; and hence by linearity for all A € A;. Thus the

x,H(b'x,, b) and their adjoints (modulo a sign) form a quasibasis. On the other hand an
easy calculation using again eqs. (2.10)and (3.24) shows that

S (=0l (B, 0) 0l (6, 8) = wi 1 (3.56)

b b
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To cover the general case z; < ¢ < z; we set (see eq. (3.49))

'Ui(b;!,l_)) = (r.lI',‘,[I+l,I!])_l v:,i—l(b’rf’b) r:‘,[1‘+1,.‘r!] (357)

Then again these elements and their adjoints (modulo a sign) form a quasibasis with a
relation analogous to eq. (3.56). It remains to prove that trj is a Markov trace w.r.t. this
inclusion. Let A; _ be the algebra obtained from the fundamental construction, i.e. the
algebra of endomorphisms of A;, viewed as a right p,(.A;) module. Then A;, is spanned
linearly by elements of the form A, E,A, where A, and A, are graphs in Aj, which we
may give the graphical representation in the form (see (3.45))

(AAs

A1E; A3(A3) = A1E.(AxA;) = r— )] - (3.58)

Jones’ fundamental construction and the Markov trace may be demonstrated in the con-
text of this section very nicely. For simplicity we take again ¢ = z; + 1 and write
Ap =N, A;j =M, Aj, = A; = L,ie. N, M and L are algebras of observables on
lattices of |I|, |I| + 1 and || + 2 sites, respectively. Then N C M C L yields Jones’
fundamental construction, i.e. the first step of a Jones tower. The construction L =
Endy (M) = M ®n M considered as a right N-module may be depicted as

— M (3.59)

The conditional expectation £ = E, is expressed by the Jones projector

U

N €L, (d=wj,) (3.60)

for A€ M by

E(A)e = eE(A) = eAe:% (A )J . (3.61)
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The trace tr; defined by eq. (3.37) for any I gives the traces tr’¥, tr™ and tr’ on N, M
and L, respectively. This yields a Markov trace of modulus [M : N] = d? for the inclusion
N C M, sincefor Ae M

trf(A) = trM(A)

d*trl(eA) = trM(A). (362)

The first equation follows from eq. (3.40) the second one is obvious from

d*trl(eA) = d?d-1-24- = g~ = tr™(A) (3.63)

For the quasi basis v, = v£:+1(b;;’é) of eq. (3.53) the relations (3.54) and (3.56)
Yon tnev, = 1F and ¥, u,v, = d?1M with u, = (=1)lv* may be depicted as

We may even continue Jones’ construction one step further N ¢ M C L C K and
introduce the Jones projector €’ for the inclusion M C L. The Temperly-Lieb algebra

property is easily seen from

[ o
eere — ‘ |/}‘J - || : I —e ; eleer= ‘ \J] = || I : - el (365)
[

b=

Remark 3.12 If |I| < r — 2 the inclusion matriz is again given by Nj.%j. Now however
(in addition to the above restriclions on j and j) j € T is restricted by 0 < 2j < 2|I| and
7 by 0 <25 < Min (2|I| + 2,r — 2) whenever |I| > 1. If |I| = 1, then as an additional
restriction the value j = 0 is excluded, such that j can only take the value 1/2. Thus for

small |[| the indez is not wy,,. In particular for |I| =1 the indez is 2.

4 The local field algebra

In this section we will construct local field algebras. For this purpose we will extend and

thus generalize the concept of local observables as discussed in the previous section. We
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will be guided by the concept of superselection sectors in algebraic quantum field theory.
Indeed, the idea is to introduce structures at infinity. In the present context of the one-
dimensional lattice Z we will choose the left infinity —oo, the construction for +0o being
analogous. Moreover, in the next section we will introduce structures at both infinities
simultaneously.

Note that if V;(k) and Vi(k~,k*) denotes the linear space spanned by all |a) with
fixed az,_; = k and a;,_; = k™ ,a;, = k*, respectively such that

Vi=@Vik) = @ Vi(k k") (4.1)

keT k—,kt€eT

then the endomorphism associated to a graph A by eq. (3.18) leaves each Vi(k) and
Vi(k~,k*) invariant. We denote these element of End(V;(k)) and End(V;(k~,k%*)) by
A(k) and A(k™,kt)), respectively, and depict them as

A(k)=

with k, k= and k% fixed. Here the rule (3.18) has to be used for defining matrix elements
of the corresponding graphs. In particular we have

A=Y A(k)= Y A(k™, k%) (4.3)

k= kt

with A(k)A(K') = 0 for k & and A(k=, k*)A(k~" k*') = 0 for (=, k*+) £ (k=" k*").
Example 4.1 The projectors onto the spaces Vi(k) and Vi(k~,k*) are depicted by
um= k||| ueen = k| || R (4.4)

By definition these endomorphims A(k) and A(k~, k%) fulfil A(k)|a) = 0 if k£ # a,,—1 and
A(k™,k*)|a) = 0if (k=,k*) # (az,-1,0z,), respectively. Moreover the algebras A;(k) and
A;(k~,k*) defined as the linear hulls of all these endomorphisms yield *-representations

nr(k) and m(k~, k%) of A; (or By). For later convenience we also introduce the algebra

Ar = @ Ai(k) = @ mi(k)(Ar) - (4.5)
k

k

It is easy to see that (see 3.25) m(k)(p!) # 0. Hence the representation m;(k) of A; is
faithful. Note that 1;(k) are the unit operators in A;(k) and that 1; = 3", 1,(k).
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If we combine this decomposition with that of A given by (3.26) we obtain the minimal

projectors
I I Sk é ;
pj(k) = II(k)pJ-.= z H wfx k y 7 . (4.6)
A b r=r,+41 | I I B B
:]=J
Lemma 4.2 The decomposition of the vector space Vi
Vi=@Vii(k), where Vi;(k)=pl(k)V;=piVi(k) (4.7)
k.j

is invariant and trreducible under the action of the observable algebra A;. The corre-
sponding decomposition of the algebra is

Ay =@ Ar;(k), where Ap;(k) = pl(k)A;r = pl A(k). (4.8)
kg

The algebras A; ;(k) are *-subalgebra of A;, all of whose elements leave each V7 ;(k) (k,j €
T) invariant. (In fact they are zero on V; ;:(k') with (k, j) # (K, j’).) Moreover, the A; ;(k)
yield *-representations of the braid group algebra B; and also of the local algebra of observ-
ables A;. (By a similar construction as above the algebras A; ;(k~, k%) = 1,(k™, k"‘)pJI-AI
can be obtained using the projectors 1;(k~,k%).)

Since we view each A ;(k) as a subalgebra of End(V};(k)), we indeed have an inter-
pretation of A ;(k) as a representation of A; in the “sector” where the charge at minus
infinity is £ and the charge on the lattice I is j. These structures reflect some of the
basic ideas of the theory of superselection sectors in algebraic quantum field theory [11].
However, the situation in the path space formulation here is somewhat different from that
in the tensor formulation which is usually used in this context. The quantum number
J corresponds to the superselection charge, whereas the quantum number k is the ana-
logue of the “magnetic” quantum number which counts the multiplicities. In the following
we investigate this structure in detail and introduce fields which change these quantum
numbers.

Let now 9 (k,, ks) be a planar graph with 2|/| + 2 external legs, half of them pointing
upwards and downwards respectively. All external legs are supposed to carry the colour
1/2 except the two left ones, whose colours will be denoted by k, and k, respectively. k,

will be called the source colour of ¥(k., k,) and k. the range colour:
ri If

Y(kr, ks) = /Wi, w,
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To each such graph v (k,, k;) we first associate a linear map from Vj, into Vi, also

denoted by ¥(k,, k,), whose matrix elements w.r.t. to the basis |a) are given by

(gllw(kﬁkS)lg‘.) = WaWq! /W, W, 1/) ) (410)
ks

aJ:.—l

Qg

f
Ay, - a,:!_l

where k, = d ks = ar,_1,0;, = a;I and w, = ]']ﬁ;;} w,,. We extend ¥(k,,k;) to

r,—1"
a linear map from Vj into Vj, again denoted by (k,, k), by setting (k. k,) equal to
zero on all Vi(k) with k& # k,. Let F; denote the linear hull in End(V}) of all linear

transformations obtained in this way.
Lemma 4.3 The field algebra F; is a C*-algebra.

Proof: Consider two graphs ¢!(k!, k!) and ?(k?, k%) with sources and ranges k!, k! and

r’’’s

k%, k? respectively. It suffices to consider the case k? = k! since otherwise
Y1k, kY2 (k% k2) = 0. In analogy to the discussion in section 3 it follows easily from

r»’ts ri s

the Wigner-Eckart theorem that we have the correspondence

kl

r

(kL ky) VA(KEKD) = e Jopwpw, K, (4.11)

k?

such that indeed F; is an algebra. Analogously the *-operation is given on graphs as in
section 3 by mirroring along a horizontal axis with the same rules at 4-vertices as in (3.29).
In particular the source and range of (z,b(kr,ks))‘ are k. and k; respectively, concluding

the proof of the lemma.

Example 4.4 Graphs in F; of the form

¢j(krska) =/ Wk, W, (412)
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will be called field operators. Note that ¢j(k,,k,) vanishes unless j is an integer. Using
(2.183), it is easy to see that the linear hull of such operators is F. In particular for x € I

we set

k.

(ke ks)(z) = /e, wk, L (4.13)

T

We will discuss the commutation relations for these operators in the nert section.

The map try: Fy = C

(—1)%k 8y,

5w o) e

try :

with 32 = ¥, d,(k) = ¥k |w?| defines a trace, which again is easily seen to be faithful
and which extends the trace on A. Cyclicity is easy to see from (4.11) and the fact that
(=1)%k+ = (1) holds by the fusion rules. Also for any ¥ € F; one has

werl] = i e 5= 1)y, (alyla) - (4.15)
1/2 &

Note that again by the fusion rules (—1)2“1--'w3,!w1—/2;” > 0. In particular try is positive

on positive elements i € Fr since the trace is nondegenerate. Also (see (4.4))

d,(k
tr;(l;(k)) = 55/2) g (416)
Now the linear map Ej: F; — A; C Fj defined on graphs in F; by
(=1)*dy,s, .
Er: 61/2 Xk: k (4.17)

and extended by linearity to all of F; is obviously a conditional expectation with range
Aj. Also Ej is compatible with the trace in the sense that tr;(Er(vy)) =tr(v).

Theorem 4.5 Let |I| > r — 2. Then the Jones index of the inclusion A; C Fy is given
by
[Fr - A] Z Z d2 (4.18)
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where w? was defined in (2.14) and ¥ denotes the restriction that |I|+2j has to be even.
The Jones index of the inclusion A; C F; 1s given by

(1 Ar] = (Z(—l)’*w:Y - (= d.,(k)f -5 (4.19)

k

Note that w? is (up to (—1)*) the g-version of the dimension of the irreducible represen-
tation of SL,(2,C) labelled by a such that w? is the q-analogue of the order of a finite
group. Hence apart from the factor 1/2 relation (4.18) is what one would expect.

Indeed the observable algebra is the quantum symmetry invariant subalgebra of the
field algebra (see the discussion in section 6). The analogue in mathematics is well known
to be provided by Galois theory. Note that the factor 1/2 reflects the fact that the
fields defined by eq. (4.9) do not connect integer and half-integer representations. For an
extended field algebra containing also such fields (which map between lattices of different
size) the factor 1/2 in eq. (4.18) is absent.

Proof: To prove (4.18) we proceed as follows. The minimal central idempotents of F; are

obviously of the form

zy—2 k ‘l-)l
Pl=wly I wi ! b (4.20)
kb z=zx,—1 k —|—|

indexed by [ € 7. Hereb = (bs,—1,...,bz,). Since [I| > r—2, these P/ are all nonvanishing.
The minimal central idempotents of A; are of the form

k § %9 k | Ty I
; ; zj-2 5 ‘ b , 21‘,—2 5 3 b
qe; = w; D [ we, I s =wipow [ wy, U (4.21)
b z=z; | Lb T=Ti k | I

indexed by k and j. These q,{j are nonzero exactly when 2j + || is even. Therefore the
algebras P/q{.F1P/qf; and P,’q,fv./iIP,Iq,{j are both equal and spanned by the elements

¥
1 ,
J

Thus the inclusion matrix A is again given in terms of the fusion matrix in the form

(4.22)

[C L o

My = N and (AN, = Y (VINY),, (4.23)
7€T
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where 5’ refers to the above restriction on 7. Now the theorem follows from e.g. Corollary
4.4 in [9]. Since the largest eigenvalue of the matrix N7 N7 is w} and since the matrices
NN for different j all commute, the norm [|AX|| is equal to " w?. Now it is easy to
see (c.f. e.g. [9]) that 3°jw} =1/2%; w} and hence the claim (4.18) follows from (2.14).

To prove (4.19) we construct a quasibasis as follows. Fix an interval [ with |I| > r—2.

We set _
k, Ij

J

<o
-

Uf(bjliﬁij) == /31/4wg'wgw!w? l (424)

ks

Here b = (by,-1,...,bs,), k = (kr,ks), | and j may vary. Also, for given b,k,! and
j satisfying the usual fusion rules, b’ = (b;i,...,b;f) is a fixed path chosen such that
the corresponding fusion rules are satisfied making vr(b,/,k,7) # 0. Then for any graph
YP(k) € F; with source k, and range k, using (4.17) and the fact that by the fusion rules and
eq. (2.6) the factor in eq. (4.24) equals its conjugate complex times (—1)2+%r = (-1)%
we have

> (=1)Pui(b, LK, 5) Br(vi(b LK, ) (k) = (k) (4.25)

biE g

which can be seen from the graphical representation

Ky L - ky R
b
;2
)i

> Nikk, Ok, k Okrk !

blj k' k

I
&

b

1o~
-
<.

(4.26)
Here the normalization factors are Ny = wpwiwfwi, N2 = wiwiw} and N3 = wiwj.
Hence by the completeness relation eq. (4.25) holds for all graphs ¢ (k) € F; and therefore
by linearity for all ¥/(k) € F;. Thus the v;(b,{,k, 7) and their adjoints (modulo a sign)
form a quasibasis for the conditional expectation E; : F; — ./:11. The corresponding index

follows from the calculation

> (=1)¥vj(b, L,k 5) vr(b, |,k j) = B 1 (4.27)

bl.k,g
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which again can be seen from the graphical representation

kel | ---
b
; b
d b ks | | J
3 2
‘ b
g2 ) (—1)2k'w§,w;w,2wz ’;r R L Z(—l)zk'wlzc, v wfw; I » =81
bk e ke bil,ks bl T
b
ke[ T71
(4.28)

Here the last equality follows from the completeness relation (2.12) and arguments used
in the proof of Theorem 3.11.

Remark 4.8 By the first proof we have also established the relation
[F1 = mra(Ar) = Ai(k)] = wi. (4.29)
It is easy to check that tr; is not a Markov trace w.r.t. the inclusion Ji[ C Fr.

Remark 4.7 The fields ;(k., k;) € Fr introduced above are similar but not to be confused
with the fields usually called projected fields, vertex fields or exchange fields. The later are
of the form

(4.30)

where j, and j, denote the total spin (charge) of the states in the corresponding Hilbert
spaces. QOur fields ¢ ;(k,, k;) are analogues of tensor fields 1;(m) (m = magnetic quantum
number associated to the spin j) in the sense that in the path space picture k, and k;

replace m.

(Qflwi(krs ks)lQ) =

versus (m'|j(m)|m)

m,'-

m;-,

with the graphical representation in the tensor picture for j(m). The spins (charges)k,
and k, at —oo are not necessarily equal to the j, and j. of eq. (4.30) since there is also a

charge at +oo.



218 Karowski and Schrader

5 Generalized fields

As announced in the previous section, we will work in the context of sectors defined by
colours at —oo and +o0.

Analogously to section 4, let Vj(k=,k*) C V}, k=, k* € I (see eq. (4.1)) be the linear
space spanned by all symbols |a) with ¢ = (k7 = @g,—1,...,a;, = k%) such that the
fusion rules N!/2 =1 (z; —1 < z < z;) hold. Again the case I = ¢ is allowed. By

Qrdzr41

construction V; is the direct sum of all Vj(k~, k")

Vi= @ Vi(k™,k%). (5.1)

k+ k-€T
Let now M be a planar graph with 2|I| 4+ 4 external legs, half of them pointing upwards
and half of them pointing downwards. The four corner legs have the colours k;, k}f, k7, k}

respectively, all other 2|/| legs having colour 1/2:

M(k_ k_'k+ k+) - \/wk;-wk’—wk’fwk;l-

roylvg sy e 5y Yg

(5.2)

To such a graph we associate a linear map from Vi(k;,k}) into V;(k[, k}) whose matrix

s1'"s e ks

elements w.r.t. to the basis |a) is given by

ax,-—l ar. a-'b"f—l a;l
k- k+
(a'|M(k”, k] ; k,*,kj)lg) = WaWg! /Wi Wi~ Wi+ Wy M , (5.3)
k; kf
Az,—1 Ay, - a,,)._l a'""‘!

where k™ = a;, _\,k; = az-1,kF = 0, k} = a;,. We extend this to a linear map from
V7 into itself by setting it to zero on each Vi(k~, k) with (k~, k%) # (k;,k}). The linear

hull of all such linear transformations form a x-algebra, denoted by F and contained in
EndVI.

With these generalizations of the discussion in section 4, we are now prepared to
introduce new concepts. These concepts are path space formulations of what is called the
concept of auxiliary spaces by the St.Petersburg school used in the context of the quantum

inverse problem [16]. This will put us into a position to associate algebraic objects called
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generalized fields to planar graphs which also have several horizontal lines, i.e. which are
of the form

(5.4)

For these objects we will extend the notion of the path tensor product ©. Having given
an algebraic meaning to such objects, we will be able to discuss the concept of quantum
group symmetry and to construct concrete models like the RSOS model in the path space
picture.

To motivate our procedure we start with coloured graphs of the form

(5.5)

having two horizontal lines, one with colour 7' pointing to the left and one with colour
J pointing to the right. Again in addition there are |I| lines with colours 1/2 pointing
upward and downward respectively.

By definition the object (5.5) associates to each quadruple (k™, k%) = (k7, k7, kF, k)
the element in F; given by the graph

Xjij(k™,kT) = VW Wi Wit Wit (5.6)

We now generalize to graphs with |I| vertical lines with colours 1/2 pointing upward
and downward respectively. In addition there are m horizontal lines pointing to the left

with colours 3’ = (j1,...,7,,) and n horizontal lines pointing to the right with colours

J=0n-s7n) '

(5.7)

The case I = ¢ is allowed. To each such graph and to each m + n + 2-tuple (', k)
&’ = (ké:k:,k;,,k;:k;)
k = (ko=kki,....5n=k})
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we associate the element in F; given by

|

en

co
S’

Im

where we have introduced the normalization factors

m=1 n—1
QIJE = /wkéwk;" H wk:, ﬁ)ﬁ = Wiy Wi, H Wk, (59)

1=1 1=1

(for n = 0 : W = 1 see eqs. (4.2).) Here k' gives the colours on the left vertical line, read

from top to bottom. The convention for £ is similar.
Example 5.1 a) m=n, [ =0

€= . (5.10)

which is the “horizontal” unit braid. As a matriz element with respect to Vy we have

(for k' and k fulfilling the fusion rules)
(a’lez(E” &)Ia) == Jkrkéa’koéakn (5.11)
(see also eq. (3.6)).

b) m =n =1, I arbitrary
sl ¥ (512

L} is defined similarly with the horizontal line overcrossing all vertical lines. For

I = {1} as matriz elements we have

kaﬂ»n)* iokh K

(Q’|L3’:(E,E)|Q) = Okt Sagk! Oa ko Oa, ky /W) Wi Wy Wk, (

Qk;Qko 1/2 k‘l kg '
(5.13)
C) m=n= 2, I = @
™ , RAYa
Rju'z = i ) i (Rjzix) = (5'14)

Y
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As a matriz element with respect to Vy we have (for k' and k fulfilling the fusion

rules)

hoa ki
jg a' ’C;

Ga'Ga’

" ' —
(a'|Rjy 55 (K, K)a) = Barky aky Oarko Sak, Wiy Wiy i Gk

(5.15)

The linear structure on F allows us to view such X given by eq. (5.7) (for fixed m,n
and /) as elements of a linear space G"" which is spanned by these X’s. Again by the
Wigner-Eckhart theorem it is easy to see that GI*" is finite dimensional. Now G7*" may
be viewed as a linear subspace of G*™ whenever m < m’,n < n'. Indeed, by the rule
(2.15) to any X € G"™ we may add m’ — m and n’ — n additional horizontal lines with
colour 0 to the left and to the right respectively by hooking them somewhere up to X
(through a 3-vertex) without changing the associated elements of F;. Therefore it makes

sense to introduce the filtered linear space
gr=yor (5.16)

This linear space is actually an algebra with a product e which is compatible with the

filtration in the sense that
°: g;nmx ® g}nznz - g;nx-#mn n1+nz_ (5_17)

Indeed for graphs X, € G;"'™ and X; € G"*" of the form (5.7) the product is given as

(5.18)

The symbol e means both a “path tensor” product w.r.t. to the horizontal (auxiliary)

space and a matrix product w.r.t. to the vertical space V;. As a relation in F; (see
eq. (5.8)) we have

(X10X2)(K\ ok, kyok;y) = Xi(ky, ki) Xa(k), ks) (5.19)

where k ok, = (kig,...,kin, = k20,...,k2p,). By construction G7*=°"=% may be identified
with the observable algebra A; (compare eq. (4.3)). Also G; is a x-algebra respecting the
filtering in the sense that G/""* = GI"". Indeed this *-operation is the obvious extension

of the *-operations considered in the previous sections, such that as a relation in F;

(X(K' k)" = X" (K", k") (5.20)
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where X~ is the graph X reflected w.r.t. a horizontal line and k™ is the path £ in reserved
order.

Example 5.2 With the choice I =0 in we may write Fzample 5.1 as

F =€ o 06 (5.21)

2 n In

Let now I, and I, be two neighbouring intervals. We extend the map ¢ of section 3
to a bilinear map from G, x Gy, into Gy, as follows. Let X; € g}j‘-"-‘ with horizontal

colours (j},7,) (1 = 1,2). If n; = my and j, = 5| we set

(5.22)

and zero otherwise. The symbol “®” means both a path tensor product “0” as in

eq. (3.34) w.r.t. the spaces Vj, and V;, and a matrix product “.” w.r.t. the horizontal
(auxiliary) space. It follows directly that (X; ® X32)* = X; ® X; and

(X eX]) O (X20X)) = (X, © X2)e(X! © X3) (5.23)

with X; € g™, X| € Q'Kl:n" provided n; = my, n| = m}. Again by the Wigner-Eckhart
theorem, as a relation in ﬁ[luh and with the conventions used in (3.35) we have in terms

of matrix elements

(g 0 @|(X1 © Xo)(K, k)la; 0a5) = 3 _(a)| Xy (K, K")lar)(ap| Xa (K", k)laz).  (5.24)

kll

We will write this in a suggestive way as

(X1 0 Xa)(E, k) =) Xy (K, k") o Xa(k", k) (5.25)

&N
Example 5.3 ) Using Fxamples 5.1 a) and c) we can write
Ri; - R}, = €jo€; = ¢}, (5.26)

Note that 3; € is the unit operator in Gg" w.r.t. the horizontal multiplication “”.

b) The commutation relations of the local fields ¥j(z) € G]° defined by eq. ({.13) read

vi(z)eyi(y) = Rij - (¥i(y)evi(z)) forz >y (5.27)
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or graphically

I = X . (5.28)

J J

y =z Yy =z

or in terms of matriz elements of the fields Y(k)(z) € F; and the "R-matriz”
Ri;(k'\k) € Fo

(a'[wi(koky) () ;(kik3) (y)le) = ):Ru K k)(a'|i(kok1)(y) i(kik2)(z)la) (5.29)

where k' = (k§ = ko, ki, k) = k). and k = (ko = al,_,, ki, k2 = az,—1) The sum is

over k; and the R-matriz is

kg ko
(L i k! ki —1pu ko Gk2 ki J ke
R;; (k' k) Wk Wk, "1 k 1 Wit W, P ki ok | (5.30)

/

For x < y the R-matriz R is replaced by R*.

c¢) The commutation relations of the LJ-i of Example 5.1 b) read

Rij- (L¥eL¥) = (L¥eL¥)- Ri;. (5.31)

6 Quantum symmetry in the path space formulation

In this section we will exhibit the notion of quantum group symmetry U(R) = U,(sl(2,C))
in the present path version context on the lattice I. The corresponding tensor version has
been given by Faddeev, Reshetikhin and Takhtajan [23] (see also [24]).

Definition 6.1 The set UF(R) is a -subalgebra of F; with unit 1;. It has the generators
Li (K,k) € Fi

where k' = (kg, K;), k= (ko,k1), Ky € T, Ni/i #0, Ni/\ # 0. For all colours j of the
horizontal lines they correspond to the elements LT € G} (see (5.10)).
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Example 6.2
u=colr + e Ly (K, k) +co(L; 0L} ) (Y1) € UJ(R) (6.2)
with ¢, € C and [ = (lo, 11, 12).
The generators L7 satisfy the Yang-Baxter equations (cf. eq. (5.14))
Rij - (LTeLf) = (LfeLy)-Rij , Ri;j-(LTeL;)=(LyeL})- R (6.3)

or in terms of graphs

=11 = |-|“‘ : . .
CEEITEY sk debs
>&|z|s -1z >

\

which may also serve as defining relations for the generators of U7(R). As usual we
sometimes write these relations also as ngL;ka — Lf:inng and Ry LY LT = LT LI Ry,.

The algebra UJ(R) has to be considered as the path version of the algebra of linear
functionals on the algebra A(R) of g-functions on the quantum group SLy(2,C) (see [23]
for the tensor version of this construction). The algebra UF(R) is a “path” Hopf algebra
with the following structure:

e The algebra product m : UP(R) x UP(R) — U?(R) is given by the product in F;
(see eq. (5.19))
m(LE (K, k), L7 (L,1) = (LFeLT)(K'el', kel) (6.4)

which vanishes for k] # [} or ky # lo. Graphically as a relation in G; this means

Liel; = ° : (6.5)

L - —] -

e The coproduct is a map A : UJ(R) = Uj(R)oUL(R) C Uj,,(R) with two
neighboring intervals I; and I, (I; < I3) and [, U I, an interval of length |I,| + |3

The coproduct for the generating elements is

Al=101 and A(LF(K,k)=(L¥o L})(K,k) =) Ly(K,DoLi(k).
1
(6.6)
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As a map of G5 = Gy,ur, the second relation reads ALT = LJ* ©) L;h, and graphically

we have

am=tor=1 & Aa(|-])=1]=] [-], (6.7)

and correspondingly for L}.

The counit is a linear map € : UJ(R) — C. It is given for the generating elements
by
e(1) =1 and e(LE(K,k)) = SNy, (6.9)

|=

or graphically as a map of Gy — Gy e.g.
_ 5w j
c(Lj)zc(—IT,—)z P =cJ'-. (6.10)
The counit fulfills by egs. (6.6) and (6.9)

(coid)(A(L*(K, k) = (id o e)(A(L*(K, k) = A(L*(K', k))- (6.11)

The antipode is an antilinear map S : U} (R) — U7 (R), it is given for the generating

elements by

S(1)=1 and S(LE(K,k)) = ——2L*(k", k™) (6.12)

where k" is the inverted path as in eq. (5.20). We depict this graphically as a map
of Gr = G

_ P [ was 3 Jass
S(Ly) = Cl—l) ¢ SEIN= e (6.13)
The usual relation for the antipode m(S ® id)A = 1 ® € in the tensor picture now
becomes a relation in G; in the path space version of the form
S(LF) - L¥ =1x¢(LF) = 1x ¢} (6.14)

g

or graphically

C j

f;‘) ETRN (6.15)
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where the symbol x* denotes another “path tensor product”, whose meaning is
obvious from its matrix elements

5]

' k'
. Wk -
(gll] XVe ( )la) = wa:wawk,wkﬁ e @& = 6_'26£'56‘1§]k;6’1=fk1 . (616)

2

Thus 1x7€} is again not the usual tensor product 1 ® ¢} because of the condition
az, = k;. Note that in egs. (6.14) and (6.15) on the right hand side a ”double”
product appears, with respect to both the vertical and the horizontal spaces:
1 G x g1 — G} Tt is defined for graphs X;:;» and Y;»; € G}', in terms of fields
in F g

(Xjejm - Yiuj) = Xk, E")Yjni (K", E), (6.17)

X

and extended bilinearly. As opposed to egs. (5.22) and (5.25) there is no “path
tensor” product w.r.t. Vi on the r.h.s. but only an operator product w.r.t. V;. Of
course, if the horizontal colours of X and Y do not match appropriately, the product
vanishes. The equations (6.14) and (6.16) suggest to write the matrices of the
antipodes of the generator as inverse matrices

S(LF) = (L™ . (6.18)

The usual relation in the tensor picture for the antipode
m(id @ m)(id ® S ® 1d)(A ® i1d)A = 1 now becomes a relation in G; in the path
picture

L¥-S(LF)-Lf =L7 (6.19)

J

or graphically

é :E = == (6.20)

The path Hopf algebra UF(R) is also quasi triangular. The fundamental R-matrix

Riz

VooV = VoV (11, = |I12|, I3 < I}, |I;U I]| = |l1| + |I2|) braiding the

spaces Vj, and Vi, fulfills

Ri2812 = ARy (6.21)

or in terms of graphs for L}

el = - T e

I I
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The Casimir elements in U} (R) are given by

1 o
C; =tra(S(L7) - L)) = w_ ‘ i (€I (6.23)
where the horizontal trace tr, is defined by
- 1 w%o
tea(S(L7) - L) = = Ek: W (S(L7)- L)k k) (6.24)

The commutation relations [L¥, C;] = 0 are obvious, e.g.

[Li7,Cil = ( ‘_| ) — C;b =1 (6.25)

T Tl

Similarly, it follows that all observables in .A; commute with the Casimir operators. Note
that (for finite I) the Casimirs are also observables,i.e. in A;.
Next we discuss properties of special elements in U7(R), which will be used for trans-

formations of states and fields.

Definition 6.3 The ¢-symmetry algebra L is a *-subalgebra of UT(R). It is generated
by the elements )

Lj=5(L7) L} = Q (U €I) (6.26)

o
where the product of the two factors is the double product of eq. (6.17) w.r.t. both the

vertical and the horizontal space.

For simplicity we list the properties of the L;’s in terms of relations in G, G1,u1, and Gp.

e The algebra product is given by

m(L,-, LJ) = L,‘OLJ' 5 (627)

Note that for L;’s the double product of eq. (6.17) makes sense

=]

L,‘-Lj=6,'j :|_|) . (6.28)

| I
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e The coproduct is A(L;) = A(S(Lj)- L) = A(S(L;)) - A(L]) or graphically

J

[ ][] 4

ALy = C

. (6.29)
7 I I

Note that, as opposed to relation (6.8) A(L;) is not equal to L; ® L;. In order to
express this relation in terms of L; only one has to use the fundamental R-matrix
Riz: Vi, 0V, = Vi o Vi braiding the spaces V, and V], (see also eq. (6.21))

A(L) = R; LiRiaLa (6.30)

(The tensor version of this structure is some times denoted by “braided tensor

algebra” [25].)

1

o The counit is given as a map of G; — Gy by €(L;) = ¢; (see also Example 5.1a).

e Analogously to eq. (6.18) we introduce the inverse of L; as

I
L7'=8(L})- L = (T|? : (6.31)

J

Note that as opposed to relation (6.18) LJ-_1 is not the antipede S(L;) = S(S(L}) -
LT)y=(S(L})"-S*(L7)")", where X" means the transposed matrix: X* (&', k) =

X(k, K).

¢ Finally, note that the Casimir operators of UJ(R) defined above may be written as
CJ' :trh(LJ-).

In the second part of this section we investigate the transformation properties of states
and field operators under the acticn of the quantum symmetry algebra £;. First we discuss
the transformation properties of states in V; under the symmetry transformations. The
state space is the span of all states |@;; k', k) obtained from graphs with |/| legs of colour

1/2 pointing upward and one leg of colour j pointing downward

= lgk k= " " (6.32)

! ;
with matrix elements w.r.t. the basis {|a}}

a

: v/ 1 N\ &
(Qld)_]v k 3 k) = Wy . (633)
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Especially, the states |¢;(b); k', k) with

¢ib)= | ... | (6.34)

span the space Vj, since they are related to the states |a) by a unitary transformation (a
product of Fierz transformations (2.13)).

Analogously to Section 5, where we introduced generalized fields X € G (see egs. (5.4)-
(5.8)) as maps X : (k',k) — X(k',k) € F; we introduce generalized states |¢) which define

a linear space W} and which are given as maps
|6) : (K, k) = |65 K, k) € Vi (6.35)

given by eq. (6.32).

For a state |¢;; k', k) and a generalized state |¢;) given by eq. (6.32) we call the colour
J € I the g-spin of the state. This notation makes sense. Indeed, the generalized states
|¢;) are eigenstates of the Casimir elements C;

(20 +1)(25 + 1))
(20 +1)(25 + 1)

Cilé;) = l¢;) (6.36)

This equation follows as a relation in W} from
d=bh —
¥ ]ees = > = 2L 6.37
: J J
J

where S;; = (—1)**2w'sin Z(2i + 1)(2j + 1)/sin T is the Verlinde matrix (see e.g. [9]).
We have the relation (compare eq. (3.25))

pl = S0; 3 SjiwiCi. (6.38)

Indeed the right hand side projects onto the states with g-spin equal to j, because S;;
is an orthogonal matrix. The states |¢;; k', k) yield the decomposition of the state space
(4.7)
VI = @ V[lj(k’,k) with V[J(k’, k‘) = pJ[-VI(k",k)
k' g k
(see also eqs. (4.1) and (4.21)).
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Analogously to Section 5, we also introduce the vector spaces W} (for [ = 0,1,...) as
the span of maps |¢;) : k — |¢;;k) € V associated to graphs with |/ legs of colour 1/2
pointing upward and ! lines of colours j = (j1,...,Ji) pointing downward

eVi. (6.39)

5E=(k0,---,kt)*-+l¢j;k)=w£

We set W; = U, W/} as a filtered vector space. The generalized fields act as operators on
this space: G'" x W} — W*H*" defined graphically by

(6.40)

Definition 6.4 The transformation law for generalized states in W under the q-sym-
metry algebra L; is given by

=l D
|¢) — Lil¢) or “ u (6.41)

for all L;. This means that the g-transformation law for states in V; is given by

|6;0) — Li(K', k)|¢; 1) (6.42)

Definition 6.5 A generalized state |¢p) € W is g-invariant, if it is an eigenvector for all

elements L;, more precisely, if
Lilg) = |¢)x"€; (6.43)
with the notation of eq. (6.15). In terms of matriz elements of a state in Vi this means
that
(alLi(K', k) |3 1) = (al¢; )Sybas ko Nis i, - (6.44)

Theorem 6.6 A state in V; (or a generalized state |¢p) € W;) is invariant, if and only if
its g-spin is zero.



Karowski and Schrader 231

Proof: Let |¢) be equal to |¢;=) of relation (6.32), then L;|¢o) = |¢o)x"€!, which is of

the form
)
u - \ . (6.45)

Conversely, let |¢;) be invariant. Using trye! = 1 we obtain
Cilg;) = tra(Li)|o;) = tra(|¢5) X&) = |8;)

which implies combined with eq. (6.36) that the q-spin j is zero.
The transformation law of fields in F; under the action of L¥ € UJ(R) follows from

the following commutation rule
L¥ey; = A* - (g;0Lf). (6.46)

Thus for the field of Example 4.4 X is equal to the R-matrix, e.g.

L;eY; = Ri;- (¢;eL]) (6.47)
or in terms of matrix elements
! a
a a
k(’J(z . \ko K ’_
k; k iR Jkl k6 kg k! ko
— Z w&ntbku k; ki’ 1 \ " (6-48)
E”E” g.’
k) kY K 77 - ky
k;’e o b & k2

=

Definition 6.7 The ¢-transformation law for fields in F; under the q-symmetry algebra
L is given by

= ¥ = Ly - L (6.49)
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forall L; € L;. A field is invariant if
Pl = el (6.50)
for all L;.

Theorem 6.8 @) The firedpoint algebra Tf’ of all fields invariant under the g-sym-
metry is equal to the algebra of observables A;.

b) The L;-average of a transformed field ¥ is an observable:

# Zw?trh(zbf') = d;09;- (6.51)

c) Any field may be decomposed into its irreducible components by

¥ =3¢ where ;=73 w!So;S;itra(¥™). (6.52)

d) The “volume” of the orbit gbf’ is the g-dimension (27 + 1),:

S (=1)*wiSw? tra(v)*) = (25 + 1), ¥;. (6.53)

ik
Proof: Using egs. (2.11), (2.17) and (6.47) we find
bra(¥;") = tra(Ryi - Rij) - ¥; = w25/ So; ¥; (6.54)

where again S;; = (—1)%+%(sin Z(2i + 1)(2j + 1))/(wsin Z) is the Verlinde matrix (see
e.g. [9]). Part a) of the theorem follows since 5;; = S0 &> J = 0 & oy € A;. The parts
b), ¢) and d) of the theorem follow from the orthogonality of S;, and S,y = w?/w. The
graphical interpretation of eq. (6.54) is

mm |
9 - B -8 K e
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7 The thermodynamic limit

Let A be the C*-algebra defined as the norm closed inductive limit of the family A; w.r.t.
the inclusions ¢y ; (I C I') (see eq. (3.31)). By construction viewing the A; as C*-algebras,
one also has isometric injective x-homomorphisms ¢; : Ay = Awithepowp = (I C 1)
and Uy ¢r(Ag) is dense in A. Furthermore the compatible (see eq. (3.38)) traces tr; on
A extend by continuity to a faithful trace tr on A such that trj(A) =tr(¢;(A)) for all
A € A;. For simplicity, in the following we will sometimes identify A € A with its image
A=(A) € A

Let A the von Neumann algebra obtained as the weak closure of A with respect to the
representation obtained from the trace tr by the GNS construction. This means that the
resulting states |A) with A € (J; A; form a dense set in the vacuum sector of the Hilbert

space and the matrix element of an operator B € |J; A; is

(A|B|C) = tr(A*BC) = (A,B,C € Ay). (7.1)

Lemma 7.1 The other superselection sectors are obtained by application of field operators
(see below). The weak limits of the minimal idempotents of the A are proportional to the
unit operator, more precisely with p| = 1/2(pl + pJI-U{x’“})

d? _
w-}i_}rr%ﬁjz—w—’zle.ﬂl (7 € 1), wzzgdf. (7.2)

Proof: Let C!' € A be the central elements of Ay (see eq. (6.20)). Then with A, B € A;
for 1 Cr

; - (2(2i + 1)), "M
<A|Cil |B) = ?I/{;l_,z = (’m) (AIC,-IIB). (7.3)

The claim follows since ((2(2¢ 4+ 1)),)/(2,(2t + 1),))N = dio + (=1)Vdi,j2-1 for N = o0
and p!' = So; ¥ Sjiw?Cl — 52,1 with C] defined as p!.

Also p, extends to an isometric injective *-homomorphism from A into A, also denoted
by p. and ¢, extends to a left inverse of p, on A, also denoted by ¢.. Finally the
conditional expectation E, on each Aj extends to a conditional expectation on A with

range p.(A).
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In analogy to the definition of A let p.(A) be the weak closure of p,(A) w.r.t. the
representation obtained from the trace tr by the GNS construction.

Theorem 7.2 The indez [A : p.(A)] of the inclusion p;(A) C A of C*-algebras equals
wfﬂ as does the indez of the inclusion p.(A) C A of type I, von Neumann algebras, both
of which are factors. tr is the unique tracial state on both p.(A) and A.

Proof: We now fix I with |I| > r — 2 and with z € I and set (see proof of Theorem 3.11)

va(bl,,,b) = 1;(vI(, b)) € A. (7.4)

ryr= _ri)_

These vr(b;!,l_)) and their adjoints (modulo a sign) form a quasibasis in A for the condi-

tional expectation E, = p,¢, satisfying

3 (=15 (0, (B, ) 0a (B, B) = w1 (7.5)

bt b

If’_

concluding the proof of the first part of the theorem. In fact for any I’ D I it is easy
to see that the elements vi’(b’z!,l_)) = L;,’I-(vi(b;,,fg)) € Aj and their adjoints (modulo a
sign) form a quasibasis for the conditional expectation E, = pyo0¢, : A;, = Aj, satisfying
a relation similar to (3.56). The claim now follows from the continuity of E. and the fact
that by construction the set Uy ¢p/(Ar) is dense in A.

We turn now to the proof of the second part. By the graphical definitions it follows di-
rectly that the maps p, and ¢/ ; are compatible in the sense that p (¢ 1(A)) = ¢ji jp-(A))
for all I C I' and all A € A;. In particular ¢, ; maps p;(A;) into p-(Ar). We claim that

J o U (7.6)
p=(A1) = pu(Ar)

is a commuting square in the sense of Popa [26] (see also e.g. [7]). In fact for all I C I
the map ¢rp : Ar — Aj on graphs A € Ap

o (A ) = e

wf/z)

is a left inverse of ¢y ;. More generally ¢ (¢ 1(A)Bep (A')) = A¢ri(B)A" holds for
all A,A" € A; and all B € Ap, Also tri(¢;r(A)) = trp(A) for all A € Ap. Therefore
Epr=pjo¢rp: Ay — Ap is a conditional expectation with range ¢y ;(.Ar) compatible
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with the trace in the sense that trj(Ep j(A)) =tri(A) holds for all A € Ap and for
all I C I'. Also the restriction of Ej ; to pz(Ap) is the conditional expectation for the
inclusion ¢f ;7 : pz(Ar) = pz(Ar) whenever z € I. Again this follows easily from the
graphical definition of p., proving the claim. Now Theorem 7.2 follows from Theorem
3.11. and a well known result by Wenzl [14] (see also [7]).

In fact, what remains to be shown is that the inclusion matrices for the inclusions
epr t A = Ap and g2 po(Af) = pz(Arp) are primitive (see e.g. [7], p. 12) whenever
|[I| > r —2 and |I'| — |I| > r — 2. This will in particular prove that A and pz(A) both
are factors. Now it is easy to see that pf.'t.p,](pf/lm_f)pﬁ and p;-:l,[!_[(pg)Aij'](pf)pJI-: are
equal and nonvanishing for any j, 7’ wit 25+ |I| and2j’ + |I'| even (compare the discussion
leading to eq. (3.52)). Hence all entries of the inclusion matrix are equal to one, thus
establishing the primitivity in the first case. The second inclusion is treated similarly.

The canonical injective *-homomorphisms ¢;,; may be extended to F;, F; and G;.

The map
g Fr—Fpr (ICT),

which restrict to maps from A; into A, are defined on graphs (and extended linearly)

g \
k,

Here 2/, — z vertical lines with colour 1/2 have been added on the right and z; — z; lines,

as follows:

again with colour 1/2, on the left. We have local commutativity of the local field and
observable algebras in the sense that ¢y, (¢) and ¢1,1,(A) commute in F; (I DO I, U I,)
for all ¢ € Fy,, A € A;, whenever I, N I; = (. Obviously we have compatibility with the
trace (see eq. (4.14))

tT‘p(Lp'](lfj)) = tT‘](I,[)) (79)
for all ¥» € F; and with the conditional expectation Ey (see (4.17)) with range A;

Lrr O E[ = Ep OLp I (I (_: I'). (7.10)

Analogously we have a canonical injective *-homomorphisms ¢/ ; : Fr = Fop. Finally

these maps induce injective *-homomorphisms from G; into G respecting the filtering,
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also denoted by the same symbol. They are given on graphs X € G'" as (compare (7.8))

Ly s (711)

with z; — z; vertical lines added to the left and ', — z lines added to the right, each with
colour 1/2.

Let F, A(C F) and A(k) be the inductive C*-algebra limits of the families F;, A;
and A(k) with respect to the inclusion maps ¢/ ; respectively. By construction we have
injective isometric *-homomorphisms ¢; : Fy — F satisfying ¢y o ¢y = ¢y (I C I') and
mapping A; into A such that |J; tr(Fr) and Uy u(.ﬁ;) are dense in F and A respectively.
In particular since ¢y ;(17(k)) = 1p(k), the elements 1(k) = ¢;(1;(k)) are well defined
and satisfy 1(k)1(k’') = du1(k), 17(k) = 1(k) and 3 1(k) = 1. The element 1(k) is
the unit in A(k) and in the center of A. Analogously U; ¢;(As(k)) is dense in A(k),
A(k)AK) = 0 (k # k') and A = @, A(k). By the compatibility property (7.9), the
family of traces tr; defines a faithful trace tr on F. Again via a GNS construction this
trace gives rise to a representation of F. Let F, A and A(k) be the weak closures of
F, A and A(k), respectively in this representation. In particular all A(k) commute and
A=, A(k). Also tr extends to a tracial state on F.

Now

Fi = Fr
U U (7.12)
A 25 Ay
is a commuting square in the sense of Popa. Indeed, the linear map ¢;, : Frr — Fi
(I' 2 I) given for graphs ¢ € F» by (compare (7.7))

=

ks|

b1 Y ) > .

(w} ,)l1-11

is a left inverse for ¢;+ ; and more generally ¢; p/(cpr 1 (¥1) ¥ 1 1(¥2)) = V1 ¢1,1(3) 32 holds
for all ¥,¢, € Fj,¢0 € Fp. The resulting conditional expectation Epj = ¢pjodpp:
Fr — Fpo with range ¢ j(Fr) is again compatible with the trace in the sense that
trp(Ep () =trp(y) holds for all ¢ € Fr. When restricted to A, @7 is the left
inverse for the bottom inclusion in (7.12). Again by arguments similar to those given in
the proof of Theorem 4.5 this leads to
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Theorem 7.3 The indez of the inclusion A C F of C*-algebras is given by
2
[F: A= (Z dq(k)) = B (7.14)
k

B is also the Jones indezx for the inclusion A C F. A and F are type 11, factors and tr
is the unique tracial state on F. A is not irreducible in F and A is not a factor.

We note that this index also appears in the context of certain subfactors studied by
Choda and Ocneanu [27]. In fact, there is an alternative way of introducing a field algebra
and which is more closely related to this work. It is obtained by introducing an algebra at
infinity in the following way: Replace the path space V; by the path space V° spanned
by symbols of the form [y, by, az,-1, - az, ). Here N is chosen to be equal to r/2 — 1.
The colours ay are again subject to the usual fusion rules and the colours b satisfy similar
fusion rules, i.e. Nl,,lh/izax‘_l =] = HJ’;V:']‘ N,:{,'ZH. The field algebra F7° is then the linear
span of all graphs ¢ considered as endomorphisms of V;° of the form

9 [ d)l I)
it g g (7.15)
N |1

with N + |I| horizontal and vertical legs respectively. Our previous .A; is obviously
isomorphic to the subalgebra of F7° spanned by elements of the form

”. s (7.16)

Note that F7° is generated by elements of the form

(7.17)

where the color j is arbitrary (due to the choice N = % —1). Those elements with 7 = 0
span an algebra A7 C Ff° containing A;. The corresponding part 3., may be viewed
as an observable at infinity. Now the inclusion A% C F7° in the thermodynamic limit
|I| = oo is essentially the situation considered by Choda and Ocneanu (apart from the
fact that in our case N stays fixed). At the moment, however, we do not see the physical

relevance of this construction.
Proof of Theorem 7.3: To prove the first part we introduce the quantities

v(b Lk j) = ulvi(b, Lk, 7)) € F. (7.18)
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where [ is an arbitrary fixed interval with |I| > r — 2. Then these elements and their
adjoints (modulo a sign) form a quasibasis w.r.t. the conditional expectation F : F —
A given as the inductive limit of the E;. Indeed, it is easy to see that the elements
vp(b Lk, j) = epg(vi(b, Lk, 7)) (with v(b,l,k,7) = ¢p(vie(b,l,k,7))) and their adjoints
(modulo a sign) form a quasibasis in Fj» w.r.t. the conditional expectation Ep : Fr — Ap
for any I' O I. The claim then follows from the continuity of E and the fact that by
construction Uy ¢p(Fr) and Up ep(Ayp) are dense in F and A respectively. Finally, the
v(b,l, k, 7) satisfy a relation similar to (4.28), thus concluding the first part of the theorem.
Since the conditional expectation E extends to a conditional expectation for the inclusion
A C F of von Neumann algebras the above quasi basis turns into a Pimsner-Popa basis
thus proving that 3 is also the index of the inclusion A C F.

To see that F is a factor and that tr is the unique tracial state we proceed as in the proof
of the preceeding theorem. The algebras Pty (P FrPFpl and PY oy f(PHFrep (PHpl
are equal and nonvanishing for all [,!’ € T and I C I’ provided |[| > r—2 and |I'| - |I| >
r — 2. Thus all the entries of the inclusion matrix for the inclusion tp i (Fr) C Fp are
equal to one. By similar arguments A is also a factor. To see that A is not a factor, note
that the elements 1(k) are also nontrivial central elements of A. Also since these 1(k)

commute with A and hence with A, A is not irreducible in F.

Remark 7.4 Let L*(F) be the Hilbert space obtained from the GNS construction. It con-
tains L*(A) in a natural way, where L*(A) is the corresponding GNS Hilbert space for A.
Let |2) € L*(.A) be the state corresponding to the unit element. Consider |Q;) = 1(k)|Q),
which is nonzero since (Qi|Q%) = tr(1(k)) = d,(k)/B"/? see eq. (4.16). These vectors are
pairwise orthogonal and |Q) = Y-, |%). Let L*(A(k)) be the closure of A(k)|Y), which
is also the closure of A|Q). In fact L*(A(k)) is obtained from the GNS construction
w.r.t. A(k) using tri(-) = tr(- 1(k))/to(1(k)). Then each L*(A(k)) is invariant under A
and we have the decomposition

LY(A) = @ L*(A(k))

kel

which is analogous to multiplicities w.r.t. magnetic quantum numbers in the tensor picture.

Finally we discuss the g-symmetry algebra in the thermodynamic limit / — Z. As
above let F be the C=-algebra limit of the families .7:'; and ¢; : .7:—1 — F the injective
isometric *-homomorphisms satisfying ;s 0 ¢y ; = ¢; (I C I') such that U ¢;(F;) is dense
in F. Also we have ¢;(L) € F for L € L;.

Lemma 7.5 The g-transformation ¢ — X for ¢ € F as an extension of relation (6.49)
s well defined.
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Proof: First note that the definition of the g-transformation of fields (6.49) is compatible
with the maps ¢+ 1 since by the definition of ¢y for ¢ € Ff, and L € £y, C .7:'12 the map
11, (W) = ey (e, (¥))432(B)) is independent of I5 for I} C I; C I3 C I4. Therefore
by ¢r, (%) = ¢z, (¥E) it yields a well defined map ¥ — ¥% € F for a dense set of ¥’s in F.
However, note that ¥~ cannot be written as Ly L™! by an L € F as for finite lattices in
relation (6.49).

Analogously to eq. (6.28) we may define £} as generated by the L! = L7 - S(L}) (as
a left version of L£; obtained by mirroring along a vertical line). For a field operator in
Yx € Fr of spin k we have

(QULiepl Q) o S5 = (7.19)

where the Sf]- are generating elements of matrix representations of the mapping class
groups of arbitrary genus, which have been discussed in [28] (see also [29]).

Note that the algebra of fields F is generated by elements of the form ¢ = AL' for
A € Aand L' € L} for any interval I. The transformation Aé"‘ = L} Ay L’l—1 is in general
nontrivial if the interval I is contained in but smaller than the support of A.

We conclude with the following remark. Usually the internal group symmetry and
the external space-time symmetry form a tensor product. Due to the nontrivial R-matrix
the situation is different for the q-symmetry. Nevertheless, we have the following cluster
property. If the fields w,/)_gf) are localized in I for 1 < i < n such that pairwise /)N =

@, then the vacuum expectation value of a product of fields factorizes

(@ TT19) o [T 8.0(Q10512). (7.20)
1=1 1=1

The seemingly unphysical feature, that factorization takes place for all nonoverlapping
supports of the fields, is due to the fact that the state given by the trace is an infinite
temperature state. For other states like ground states of a dynamical system given by a

local Hamiltonian we expect the usual cluster property.
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8 Applications and Outlook

In this section we will show how to describe models of statistical mechanics in our path
space picture by providing explicit Hamiltonians. In particular we will show how the
RSOS model of Baxter [2] fits into this picture.

It is convenient to slightly extend the above concepts and to introduce fields in Fp ; C
Hom(V,Vp) which map elements of V; into Vi for I # I’ We also introduce the

corresponding linear space Gy, such that Gy = Gy;. For example for [ = {z;,...,zs} and
I'={z! = z;+ l,...,zz}
T Ty oz Iy
il = == ] and Y (z)= —|— J ; (8.1)
.'L'l' I xf I" xj

Note that the local endomorphism of eq. (3.41) and its left inverse (3.44) may be written

in terms of these fields

pa(A) = o (¥ (z)edep(z)) (8.2)
$:(A) = o-(P(x)eAey™(z))
where 0 = ( € Gy° or (@'|0(k)|a) = WeW,WxbarabakyBaky N1L: = Wk, /Wabatabakyaky NoL*.
The fields ¢ and ¥~ fulfil “Cuntz-algebra” like relations:
o-(¢Y*ep)=1 and e *=4a-1 (8.3)
where & = ) € Gp%°.
The RSOS-Hamiltonian (for the gap-less case) acting in Vj is
Ty-1
H = J(oe0o) ( Y ¢r(z)eyt(z + L)ey(z + 1)01,1;(:1:)) (8.4)

T=x;

and can be written as a sum of Temperly-Lieb projectors

c|= N
H:Jzz: C Q =J; - (8.5)

T T

The Hamiltonian is obviously quantum group invariant [H,U}](R)] = 0. An example of a

symmetry breaking contribution to the Hamiltonian is provided by the local field ¥;(k)(z)
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of eq. (4.13) for j # 0 or by ¢(k)(z) = (¥*(z)e¥(z))(k) in the form

Hy =3 Dk, 2)vi(k)(z) or Hz=3_ Ja(k,z)p(k)(z) (8.6)

where J;(k, z) is an external (classical) field. Spontaneous symmetry breaking would be

present if the ground state |0) satisfies

(0]%;(k)(2)|0) # 0 or (0]¢(k)(<)|0) # O. (8.7)

Such a ground state |0) and also that of the Hamiltonian (8.4) which can be obtained
by the Bethe ansatz are usually very different from the ground state |§2) discussed in
Section 7 given by the trace. The latter one is typically an infinite temperature state. It
would be interesting to repeat the GNS construction and the discussion of Section 7 for
physically more interesting ground states.

Some further points which we intend to investigate elsewhere are:

e For RSOS-like models order parameters, phase structure and the spontaneous sym-

metry breaking mentioned above.

e Techniques developed in [30] may be used to transfer the results of this paper to

the case of periodic boundary conditions, i.e. to the lattice on a circle.

e In addition to the thermodynamic limit discussed in Section 7 the continuum limit

may be analysed using “cabling” techniques.

e Techniques of topological quantum field theory developed in [9] may also be used
to apply the ideas and results of this paper to lattices in two space dimensions.
Thereby one might obtain a formulation of the g-symmetry for quantum field the-
ories describing particles with braid group statistics in 2+1-dimensions.

A Appendix

This appendix contains the proof of second part of Lemma 3.6 and will be carried out in
several steps. It is a path space formulation of the fact that all representations may be

obtained by tensoring the fundamental representation.

Step 1. We first claim that any graph A € A9 is a sum of graphs in A} with no 4-vertices.

Indeed, we may successively eliminate all 4-vertices by (2.12) and (2.15)

\/ S Al
N T2 g (A1)
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With this identity the proof is complete.

Step 2. We claim that each A € A can be written as a sum of graphs with no 4-vertices
and with lines whose colours are = 1/2. We proceed by induction on the largest colour

and consider the local case

/ ¢ (A.2)

with k > max(z, 7,/,m). Without loss of generality, by (2.13) we may assume ¢ # 0,7 #
0,! #0,m # 0). Using (2.12) and (2.18) we have

i k=3 ]
p q —
2
k’ 1 k' 1
= P (A3)
This gives
. -1 -1 (i k-3 [
Nk S 1 J k I m k& ) f
] e wily k-3 pl 3 k-3 9l | LT
s |1 k=11l m k=1 "\,
—wj_ (A.4)
I I
for any p, q for which
p k-3 3 ¢ k=3 3
‘k J i and k- m |

are nonvanishing. Now we use that fact that the 6j symbols are nonvanishing whenever
all the relevant fusion rules are satisfied. We claim this is the case for the choice p =
max(i, j) — 3, ¢ = max(l,m) — 7. It suffices to consider the case i < j and [ < m such
that p = 7 — %, qg=m-— % By assumption N}k = N!, = 1. It is easy to show that
i < j <k>1and N} =1 implies N;k—‘i =1 and N;% =1 with p = j— 1. The other two
fusion rules involving 1,k — 1, ¢,/ and m are verified similarly. By (A.4) we have (locally)
decreased the maximal colour and since by this procedure no 4-vertices are generated the

claim is complete.

Step 3. Let A € A; by any graph with no 4-vertices and with lines whose colours are all
1/2. By the fusion rule it therefore cannot contain any 3-vertices. A is formed of || lines
starting and ending at the top or the bottom and closed loops which are disconnected
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from the rest of the graph. Using eqs. (2.2) and (2.11) the loops can be replaced by
numbers. We claim that A may be written as a linear combination of graphs with all |/|
lines starting at the bottom and ending at the top. This will also conclude the proof of
Theorem 3.1. To prove this claim we proceed by induction on k(A), where k(A) < |I|
is the number of lines starting and ending at the bottom (equal to the number of lines
starting and ending at the top). For k(A) = 0 there is nothing to prove. Now let k(A) > 0.
Pick a line L, starting and ending at the bottom and L. a line starting and ending at
the top. By iterative application of (2.8), we may place a part of L; close to a part of L,

U L
(L (A.5)

We now use the skein relation (for lines with colour 1/2) in the form

2 e

depicted as

and insert it into (A.5).

Example A.1 (|| =3,k(A) =1):

S

In the general case we have written A as a linear combination of two elements A,
and A; in A; with k(A;) = k(Az2) = k(A) — 1. This concludes the proof of the theorem,
since the procedure again does not generate closed loops. The following remark is a

reformulation of a well known result (Kaufmann [31])

Remark A.2 After step 2 we have written any graph as a linear combination of graphs
A with no 4{-vertices and with lines whose colours are all 1/2. Such graphs may be written

in terms of generalized Temperly-Lieb operators. Let ¢y, be the graph

Con= (.../—~-..) (A8)

consisting of n lines with colour 1/2. Then the linear hull of expressions of the form

A= ((chy, O1m;) 0+ Oy OLma)) 1k ((€n ©10,) 0 -+ O (enyy O1ny))  (A9)
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span A; where Y m; = Y n; = |I| and K = Ti_even ™Mi = Yiceven Ni- As an example we

oo
f_$ l == (c;ollocgoll)lg(aolz) . (A.10)
)

have
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