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Introduction

Let

with the chemical potential x> 0 and let u be a short range rotation invariant pair potential.
The corresponding Hamiltonian for the d-dimensional system of fermions with dispersion

relation e(k) and pair potential u is

4
f dk e(k) af a, , + %_/‘._1 dk; (2m)% 8 (ki +heo—ks—ko) Au(li k) af  al a a

1,0 k2|T

where, dk = %‘r and repeated spin indices are summed over {f,]}. In three dimensions,
Kohn and Luttinger [KL,L] made the surprising observation that for any purely repulsive
short range rotation invariant pair potential u the second order Bethe-Salpeter equation for
the Cooper channel always has a solution in some odd angular momentum sector. This result
suggests that the Fermi sea is unstable and further, that in the true ground state number
symmetry is broken and higher angular momentum Cooper pairs form. In [FKLT] we showed
that reflection invariance of the dispersion relation e(k) is essential for this instability.

We consider the two dimensional system with the special pair potential
A u(kl—k3) = /\
where, A > 0. That is, a purely repulsive delta function in position space. Let
N
Kn(s,t) = S APK™(s,t)
n=1

be the Bethe-Salpeter kernel (see, 1.1) for the Cooper channel up to order N, and let
Kn(s',t') be its restriction to the Fermi surface. Here, for each k = (ko, k) € R x (R*\{0}),

K o= (0, fkr)
and kp = (2m,u)% . In the Appendix we show that there is a solution of the associated
Bethe-Salpeter equation when Ky (s',t’), regarded as the kernel of an integral operator on
L?(Fermi surface) , has a strictly negative eigenvalue. By rotation invariance,

Kn(s',t') = 3 Anie () cos 246
£>0
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and therefore, the Fourier coefficients Ax¢(r), £ > 0, are the eigenvalues of Ky(s',t'). By
convention, 26 is the angle between s’ and ¢’ on the Fermi surface.

The kernel K™ (s,t), n > 1, is a sum of two particle irreducible diagrams. The
particle lines of a diagram represent the free propagator

oy = SO
tko — e(k)
The numerator f(|k|/€) cuts the ultraviolet end of the system off at €. In this expression,
f is a nonnegative smooth function that is identically one between 0 and 1, decreases
monotonically between 1 and 2 and is identically zero to the right of 2.

It is easy to compute the second order contribution K (?)(s,t) in the limit € — oo.

One obtains (Lemma I1.5), using the fact (Corollary 1I.2) that the the two dimensional

polarization bubble is constant for ky = 0 and |k| < 2kp,

m

2

K(2)(SI, tl) -

In particular, K(® (s’ t') is independent of the angle between any momenta s’ and t’' on
the Fermi surface. It follows immediately that As ,(») =0, £ > 1. Thus, in contrast to three
dimensions, one must compute at least the third order contribution K®)(s,t) to determine
whether there is an attractive angular momentum sector.

The third author [Si] evaluated K () (s,t) numerically and found that
Az1(n) < Aze) <0

for all 2 < ¢ < 100. The numerical results led us to the rather surprising conclusion that it
is possible to explicitly calculate all of the Fourier coefficients Az ¢(x), £ > 1, of K3(s',t') in

the limit € — co. We obtain (see, Corollary 11.8),
2
ey = - X2 (- (- gy + 75— Aa £ )]
for all £ > 1. In particular,
2
Azin) = — A2 (log2 - 3)

and for all £> 2
As1(n) < Azer) < 0
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Inw other words, a two dimensional system of fermions with dispersion relation e(k) = % —
and a purely repulsive delta function pair potential generates the dominant attractive coupling
A3.1(2) in the third order Bethe-Salpeter approximation for the Cooper channel. This result
suggests that the true ground state of our system is an ¢ = 1 superconductor.

To verify that the ground state is indeed an ¢ = 1 superconductor is not straight
forward. In another paper we intend to rigorously implement, with the aid of a computer, a
renormalization group analysis of our system around the Fermi sphere that shows that the

{ =1 sector of the whole model is attractive and even dominates the ¢ = 0 sector.

It is our pleasure to thank Franz Merkl for a number of useful suggestions.
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1 The Bethe-Salpeter Equation

Consider the many-fermion model with propagator
f(k|/€)
Clk)=——
(k) iko — e(k)

and interaction

4
Z [ (H e ) (2m) "1 8(ky + ko — k3 — ka)u(|k1 — K3|) Y, 0¥k, r Vs ¥ics 0

o,Te{t,l}

Here e(k) = '2k—|2 — p with g being the chemical potential. We use the smooth function
m

0 < f(z) < 1, which is identically one for 0 < z < 1 and identically zero for > 2, to impose

an ultraviolet cutoff at €. We will ultimately set the two-body interaction u(|k; — ks|) = 1,

that is, a delta function interaction in position space. We could equally well treat a model

having propagator C(k) =

Let

—zko =T and two-body interaction u(|k|) = f(|k|/©).

(Yopthorp') g = Bbpq 3y (21)%6(p — P')30,0:G ()
resp.
{ oz Voups Poit %;pg)ﬁ
= ﬁél)loﬂﬂo—?’mw’m(2”)‘15(?1 +p2—pj — pé)salaga;a; (L;&apl + pa, 21;_1’1)

be the one- resp. two-particle Schwinger functions at temperature T = ﬁ Diagrammat-

ically, G(p) is the sum of all Feynman diagrams (with appropriate signs and combinatorial
factors) having one incoming and one outgoing particle line, each with momentum p. The
energy-momentum conserving delta function is not included in the value of the diagram.
Similarly, S is the sum of all Feynman diagrams having two incoming particle lines with
momenta and spins p}, o] and p5, o5 and two outgoing particle lines with momenta and spins
P1,01 and pa, o2. The interpretation of the arguments s, ¢, t of So10200 0l (s, q,t) is as follows:
¢ = p1+ p2 = p + Py is the transfer momentum, s = B5F2 is the relative momentum of the
outgoing particles and ¢ = @ is the relative momentum of the incoming particles. The

diagrams need not be connected, though every connected component must have at least one

external line.
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- q/2
(p1,01) 7 | N (p1,01)
s )| |t
(p202) = = (ph,0})
g/

The two-particle Schwinger function is related to the vertex Falaw;a;(-’?, q,t) by

‘S’Ulvzcr ;(3 Qat)
=BG (s + 2)G(~ 5+ £) [0a0,t0 (2m)*6(8 — t)85,51 0,01 — Bsg,~20 (27)48(8 + t)3, 51 ot |
- G(s+3)G(- )Fm,a o (5,0, )G(t+ DG(—t+ 1)

Diagrammatically, I" is the negative of the sum of all connected Feynman diagrams having
two incoming and two outgoing particle lines. All four external lines are amputated by the

interacting propagator. I' is normalized so that in first order
Fmdzo' a, (5 q, ) = /\'U,(S - t)(sdlo; 50205 - /\'U(S + t)(sola;(saga;

The Bethe-Salpeter kernel I,,4,4/0:(5,9,t) is the sum of all diagrams from I' that

are two particle irreducible in the channel from (p{,p5) to (p1,p2). We have

Fa,oza a (‘5 q, )_ 1010'20 0 (S qvt)

2 O | Eo ey (s,a, WGk + 1)C( = k+ ) loropoe; (k. 0t)
ko€ % (2Z+1) o'y

- q/2 = q/2 ————g/2
s it = —— 1 - = ——-—
LT g =l T —gg\ T )BT )Y
- q/2 ~q/2 - q/2

If, for some ¢q, there exists a nontrivial solution 1 of the Bethe-Salpeter equation

walo?(s) - —iﬁ Z Z \/‘_ZF)—J 010’20”0”(3 Qak)G(k+ g)G( )d}a” ”( )

ko€ 5 (2Z+1) 0 cy

there will be a corresponding pole in I'. Kohn and Luttinger use the onset of such a singularity

to signal the formation of Cooper pairs and consequently the breaking of number symmetry.
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At the critical temperature the binding energy for Cooper pairs with momentum q = 0 is

go = 0. This corresponds to a nontrivial solution of the Bethe-Salpeter equation for ¢ = 0

and 8 = S..

walaz(s) = 2180 Z Z ]WICHUQU”U”(S 0 k)G( ) ( )'d)o"’ "( )

ko€ (2Z+1) o' 0y

Because the interaction is spin independent, I is of the form

101020{'7; (S,q, t) = Il(SaQa t)écno;dcrgai, + IZ(S’ q, t)éalaééaga;

By construction

Ia,_agcr o) (S 0 t) Iagala oy ( S, 0 t) Icrlo'goéo'; (S,O,—t)

Put K(s,t) = I,(s,0,t). From the second equation it follows that I2(s,0,t) = —K (s, —t) so
that
ICF]O’QU;U; (Su 0, t) = K(S t)éola ’50‘205 - K(S’ _t)5610§60'20'1

One checks that the four spaces of functions

{ Yo10:(5) = Go1700,rx(s) | x(s) = =x(=9) }, 7€ {1}
{ Yor02(8) = 3 (60110051 + 0a140051) X(8) | x(8) = —x(—5) }
{ Yo,05(8) = & (60110051 — 8y 18021) X(5) | x(5) = x(=3) }
are invariant under the integral operator with kernel I, and that the restriction of the Bethe-

Salpeter equation to each of these subspaces is

x()=-% > jWKSHG(t)\X() (L)

thB—(QZ-}-l

In (I.1), K(s,t) is the sum of all diagrams in I, g,5!04(5,0,¢) that have a fermion string
joining o1 to o). If x(s) is a nontrivial solution of this equation then at least one of the
two functions (04,1 + 8o51) (X(8) — x(—5)) and (64,1 — doyt) (X() + x(—)) is a nontrivial
solution of the Bethe-Salpeter equation.

Observe that Ip, s,00,(5:4:t) = Ioy0,0! 04 (125, Rg, Rt) forall R € SO(d). Therefore

K(s,t) = K(Rs, Rt) for all R € SO(d)
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Hence the integral operator with kernel K commutes with the action of SO(d) on the space

of x’s and it suffices to look for solutions of (I.1) in each angular momentum subspace. Write

o0
K (s,8) = 3 Kelso, sl to, It 8) - me (7, 1)
£=0
where for each £ > 0, 7, is the orthogonal projection from L?(S9~!) onto the subspace of all
spherical harmonics of degree ¢. For emphasis, we have made explicit the dependence of K,

on the inverse temperature 3. In the angular momentum sector ¢, equation (I.1) is

Xools)=—4 3 [ dhaKaloo.loloto 16 AIGOPxC ) (12

toEg—(2Z+])

The important feature of this equation is the fact that in the integral |G(t)|? =

?31_}%5 has a non-integrable singularity at kg = 0, |k| = kr = /2mpu. Hence it is reasonable
0

to expect that (1.2) should be, up to higher order corrections, equivalent to

1 ddt f(|t]/€)?
=5 Y [ Gt -

£ (2Z+1)

Here Ay = K,(0,kp,0, kp; 00). A more precise statement of this nature is given in Proposition

A.1 of the Appendix. Observe that

—1- Z fddt A _ ™y, 4 0 (L4)

d 12
0z 2m)4tt +e(t)? 2w
Therefore, whenever A, is small and negative, equation (1.3) has a solution with

B, ~ e27/ (mIAd)

If the original two-body interaction is attractive then Ay is negative even in first
order perturbation theory. Kohn and Luttinger [KL,L] observe that, for d = 3, even for a
repulsive two-body interaction, A, is negative in second order perturbation theory for some

sufficiently large £. We show
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Theorem. Let d = 2 and let the two-body interaction u(|k|) = 1 be a delta function in

position space. Then, the perturbation expansion of Ay s
Ay = —aXd+ 0!

with o > 0 for all sufficiently large €.

The Theorem is an immediate consequence of Lemma II.5 and Corollary I1.8. It

strengthens the results of [BCK] who show that A, < 0 for some sufficiently large /.



Feldman et al. 163

IT Evaluation of Diagrams

For the rest of this paper we restrict to d = 2. In this section we use explicit formulae
for the values of the polarization bubble
d3k 1 1
Wqo,|q|) = / . ;
(QO | ’) R3 (27l’)3 z(ko + QQ/Q) — e(k + q/2) Z(ko — qg/2) — e(k . q/2)

92—

q/2—

and the particle-particle bubble

d3k 1 1
R(qo,|ql; €) = [HSQ (27)3 i(ko + qo/2) — e(k + q/2) i(—ko + qo/2) — e(—k + q/2)

q/2 —

g3

with a d-function interaction to evaluate all second and third order graphs. Note that in the
definition of W, the fermion propagators have no ultraviolet cutoff, while in the definition of
R, they have a sharp ultraviolet cutoff at |k| = €.

For qo,7 € C, r # 0 let

T m
a(go,7) = ﬁ}; = mfm

If a(qo,7) ¢ [—1,1] the quadratic equation
2% — 2a(qo,7)2+1=10

has two different roots whose product is one, but which are not complex conjugates of each

other. Denote «(qg,r) the root with absolute value bigger than one. Then, by definition

1
— =0
a(QOaT) 20’(Q0,T)+ O!(qo,T)

and

z — 2a(qo,7) + % = (z - a(ro,r)) (1 - le(;_O";j)
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Proposition I1.1 If qo,7 # 0 orr > 2kp then

y
Wlgor) = — oo + 2 (a(qw )~ s FeCn) - ))
=5t e (ot~ )
b) 2
R(qO,T;¢)=%lﬂ (1—%) + %ln(1+r2—4ifne;o—4k%‘)

where In is the standard branch of the logarithm with cut along the negative real azis.

Since W (qo, ) is continuous in go we can evaluate W (0,r) as a limit W(qp,r). For
go =0 and 0 < r < 2kp, a(r,0) is a real number between 0 and 1. Consequently the roots of

22 — 2a(0,7)z + 1 = 0 are complex conjugates and limg,,_,o Re (a(qo, r)— ) = 0. This

1
a(qo,r)
implies

Corollary I1.2 For 0 < r < 2kp

Remark I1.3 Proposition II.1b implies that R(go,7; ) diverges as the ultraviolet cutoff
¢ — o0o. On the other hand W (qp,r) is well defined even in the absence of an ultraviolet
cutoff. Moreover, if f : R* — [0,1] is a smooth function which is one on the unit disk, then
for all € sufficiently large and |q| < € — kp
/ ek f((k+4q/2)/€) f((k —q/2)/€) W (. al)
(2m)? i(ko + qo/2) — e(k + q/2) i(ko — q0/2) —e(k — a/2) ’
To see this, evaluate the kg integral by residues to get
f d*k f((k+q/2)/€) f((k-q/2)/T)
(2m)2 i(ko + go/2) — e(k + q/2) i(ko — q0/2) — e(k — q/2)

d*k signe(k + q/2) B
L st TP T oD ooy (e + /2O (k- a/D/e)

f d’k signe(k + q/2)
e(k-+q/2)e(k—q/2)<0 (27)2 igo + e(k — q/2) — e(k + q/2)

[ da’“ 1 ! = W(qo, lal)
R? ( i(ko + qo/2) — e(k + q/2) i(ko — qo/2) — e(k — q/2) 1



Feldman et al. 165

In the transition from line two to line three, we used the fact that for e(k+q/2) < 0, we have
lk+q/2| < kp < €and kFq/2| < |k+q/2|+]|q| < € provided |q| < € — kp. Consequently,
on the domain of integration f((k + q/2)/¢€) = f((k — q/2)/€) = 1.

The formulae for R, W stated in Proposition II.1 are well-known [FHN,St]. We

include here a possibly nonstandard evaluation, by residues, of W. The evaluation uses

Lemma II.4 Fiz a € C with Ima # 0 or |Rea| > 1. Let a4 be the root of
22 -2z+1 = 0

determined by |ay| > 1. Then,

1
f dzAdy = m(ay —ai' — 2a)
z?+y2<1 r—a

Proof: By Stokes’ theorem,

1 dx dzx
/ dz Ady = —/ a2~ —/ ’
2 +4y2<1 r—a 2+y2<1 r—a T2 +y?=1 Tr—a

Substituting,

z = 3(z+ z 1

y = g(z—27")

i

B

dz = 1(1-2z7%)dz
our integral becomes

1 W [ e
/m2+y251 —" d.'L'/\dy 21 ]|z|=1 24271 -2a ‘ 2 lz|=1 22(22 —2az + 1)

or

1 72 — 1)2

f de Ndy = —2%/ z ( ) —< dz

z24y?<1 T — @ j21=1 22(2 — oy ) (2 — 0F7)
We have

(=13 _ 4 2y _
Res z2(zZ—2az+1) ‘z:O = 4z (Z—2az+1) ‘z:() = Za
(22-1)2 (e (af'—ay)? _ -1

Res zz(z—a_,_)(z—a;l) 1z=a;1 - 012(a;1—0+) - (a;l—a+) .y 4

Applying the residue theorem,

1 -
/ dr ANdy = w(a+—a+1—2a)
z2+y2<1 Tr—a
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Proof of Proposition II.1a): By rotation invariance, we may assume, without loss of

generality that q = (7,0). We first do the integral over kg, closing the contour in the upper

half plane.
W = s
(90:1al) = | o3 trovarrm —eterarm) a7

— dkyNdky + 1 dky Adko

2" 2 —igo+e(k+q/2)—e(k—q/2) " (2m)2 igo+e(k—q/2)—e(k+aq/2)
e(k+q/2)<0 e(k—q/2)<0
— dky Adk 1 dki Adk
- 21'r)5 / e(k —elk qz)—zqo + (2m)? [ e(k)—e%k+q2)+iqo
e(k)<0

— ] dk]/\dkg MR 1 | dklf'\d"c;

27'2 K2 <k, 2k-q—q2—i2mqo 2m? 2 <k 2k-q+q°—1i2mqo

/ dkyAdko _ f dk | Adks
- 27r 2rk; —r?2—i2m 21r5 2rk1+72—i2m
K2+k2<k2 T W K24+k2<kZ o

_ mk? dzAdy . mki- drAdy
- 2 2rkpr—12-i2mqq 27?2 2rkpz+1r?—i2mqo
z24y2<1 z24y?<1

_ mkpg _1_] dzAdy  _ mkp l] dzAdy
T 4n? r z—a(—qo,r 72 r r+a(qo,r
22 4y <1 (—go,r) 22 4y?<1 (qo.7)

By Lemma I1.4, since the roots of 22 —2az+1 = 0 are the negatives of the roots of z22+2az+1 =

0, we have
W (qo, |q|) = mke 1 ( (—90:7) = sroisy — 20(=40,7) + 2(g0,7) — grcry — 2a(Qo,r))

_ mkp 1 2 :
- ﬂthr r (_E—E . g a(QOaT) (Qo ) + a( QO’T) n a(—qo,r))

This proves the first line of Proposition II.1a). The second follows from the observation that
a(qo,r) and a(—qy,r) are complex conjugates, which implies that a(gp,r) and a(—qo,r) are

complex conjugates. [

Proof of Proposition II.1b): [FHN] show that

R(QO U Q:) 2 In 4(1‘0 B qu)(-'rﬂ ZqO)
. [—igo + VT4 — 1g0 VT — 1g0)?
where

(r — 2kp)(r + 2kr)

g =

4m
r €2 -k} +r?/4
© m

T(T + Qkp)

Iy = ——————

2m
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and the square root is chosen to have positive real part. Writing

a(qo,7) =a a(qo,T) = «
we have ;
: rkg [ T im Tkp
—dgp = — [——+1-—¢q | = —F(at1
T4+ do m (%F kFTQO) p ( )
2 2 2
To — = i —_ — = — _——_— —_——
0w am Ty m (a 4kp> m
: : ¢? rkr i €2 — k2%
Te—1q0 = To — 10+ — = —|la-— ]|+ —=
m m 4k m
so that the denominator
. . . . rkr
—zqo+\/:c+—zq0 \/:E_——zqo = —zq0+? a —1
k A A
— T_F a — L + a2 e 1
m ZkF

In the computation above we used
VaTTVaFi= Vo 1

and

a+vVat-1l=a
These are justified by the fact that a lies in the right half plane and consequently
signIma = signIm a? = signIm v/a? — 1 = signIm o = —sign qo

Observe that

r 1 2kp i 1 2kp P
_ I 3 S T .o ML
@ 2kp ro " i 2kp
ZkF T
g P ol
@ r 2k
P 2kp 2tm

167
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Therefore

4(xo — 1q0)(Tc — 1qo) _
[—iqo + \/-’L‘+ — 2qo \/E— - iqolz

( T ) To — 1qp
2kp\ 2 2
_ (1 . _F) (1 P )
ro m(zo — iqo)
2%kg\ > 2
- (1 = T—F) (1 + <
T 2
T‘kp (a = m) = kp
2 P
= {1~ %—F) 1+ 1¢
ro drkpa —r? — 4k%
9k 2 2
= (1 - —F> (1 + [iQ :
ro r?2 — 4k3. — 4imqy
and
m 2kp m 4¢2
R(qo,m;€) = —In(1-— e ;
(90,73 ¢) o ( ro ) " (1 tTEC 4k% — 4zmq0)
since
Re (2,’;? - l) =Re (Rea—1)>0
and
sign Im (ﬁ - %) = —signgo = —signlm (1 + ,-2—4k4%€j4irnq())

We now start the evaluation of Ay in low order perturbation theory. The first order

computation is trivial, because the only diagram which contributes is

s) g G = Au(s —t)

This is indepedent of s and t because @ = 1. Hence this diagram contributes to A, but no
Ap with £ > 0.
For a general interaction, the connected, amputated, second order diagrams that

are two particle irreducible in the particle-particle to hole-hole channel are
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and a fourth diagram, G54, which is the reflection of G9 about a horizontal axis. Clearly
G?(i(ss t) — G?b(_sv _t)
The second order contribution to K(s,t) is
K®)(s,t) = 2Gaq(5,t) — Gap(5, ) — Gap(—8, —t) — Gac(s,t)

It is computed as follows. In general, the sign of the combinatorial factor of a diagram
contributing to K is (—1)(—1)"(—1)# Fermion loops with the first factor coming from the
fact that K is the negative of the sum of all diagrams . ... In this case n = 2 and the number
of Fermion loops is 1 for Gy, and zero for Gy, and Ga.. For this model, as for quantum
electrodynamics (see, for example, [IZ chapter 6-1-2]) there are no symmetry factors because

diagrams have no symmetries that leave the external legs fixed. There is, however one spin

sum for each Fermion loop. Hence any n'® order diagram comes with the combinatorial factor

(_1)n+1(_2)# Fermion loops (Hl)

When there is a delta function interaction, the three diagrams collapse to

S T BT

so that

G?(L(Sa t) = ng(S, t) = G?c(_sst)

Lemma II.5 Let K®)(s,t) be the second order contribution to K (s,t). Then for so =tg =0
and |s|, [t| < kF
K@(s,t) = -2’3

s
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is independent of s and t.

Proof: The value of Go,(s,t) is

ek f(k+150)/¢) (k- 52)/¢)
G al\d, == 2 2
2a(8, 1) /IR3 (2m)3 (ko + L05%0) — e(k + 452) i(ko — ©5%0) — e(k — £52)

By Remark (I1.3), this is W (tg — so, |t — s|) for all |t — s| < € — kp. Corollary I1.2 yields the

claim. [

For a delta function interaction, the possible third order diagrams are

VAR SOYANC

G3c23> 8 (t G3d=8)n G

Lemma I1.6 The third order contribution to K(s,t) is

K(s)(31 t) = G3a(5~, - t} -+ G3a('-57t) - G3b(5,t) - G3b(_3$ _t) as G3C(Sa t) o= G3C(S! ‘_f)

Proof: We need a list of all four-legged graphs having three >< vertices that are
connected, amputated and two particle irreducible in the two-particle to two-hole channel.
We first draw only the external legs and the vertices to which they belong. The following

basic configurations are possible:
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> <
<

The configurations in the second line cannot be completed to two—particle irreducible dia-

\( N
b
/L} b

N\

grams because they each contain a vertex with two particle external lines and two hole internal
lines or conversely. The first two configurations in the second line cannot be completed to
amputated diagrams because they each contain a vertex having only one internal line. The

last configuration always yields a disconnected diagram.

Let us now consider the first configuration. If both internal legs of the upper vertex
are connected to the same vertex the resulting diagram is either disconnected or not ampu-

tated. If they are connected to different vertices one gets the following two configurations

AL AL

The remaining internal lines connect to form either two tadpoles, which do not yield ampu-

tated graphs, or a bubble.

For each of the two graphs, the momenta +s, +t may be assigned to the outgoing, resp.

ingoing, legs in four possible ways yielding G3,(%s, £t) and Gap(+£s, £t).
Similarly the second basic configuration above yields G3.(+s, +t) and Gzq(£s, t).

Observe that Gz4(s,t) = 0 because the tadpole renormalizes to zero exactly. There-
fore K(3)(s,t) is a linear combination of G3,(%£s, +t), G3p(+£s, £t) and G3.(*s, £t). By sym-
metry the coefficient of G3,(s,t) in the linear combination will agree with that of Gz, (-5, —t)

and so on. We now determine the coefficients of G34(s,t) and G3,(s, —t). We first find all
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graphs including interaction squiggles that collapse down to G3,(s,t) and then we determine

the combinatorial coefficient for each. To find the graphs with squiggles, just replace each

vertex >< by g or ,,'\’g . This gives

A T

By (II.1) the combinatorial factors for these diagrams are -2,1,1,1 respectively. The first three
combine to give G3,(s,t) a net factor of zero, while the last gives G3,(—s,1) a coefficient of

1. The remaining terms are computed similarly. [

Theorem II.7 Let s = to = 0 and |s|, |t| = kp. Denote by 26 € [0, 7] the angle between s
and t. Then, for sufficiently large ultraviolet cutoff €,

a) there are constants B¢, By depending on € such that

m? cos#

hl — ) s T 1;‘
G3a(s,t) = Bg + 4ﬂ208in9 + 0(1/€)
= B¢ — % (—1)%ap cos(2¢8) + O(1/€)
£=1
where
~m?[1 1 LS SN i)
W= o {+1 (42 €+3 f+4
b)
m2

G3b(8, t) =

(%)2(1 —1n2) 4+ O(1/€)
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c)

Corollary I1.8 Let sy = to = 0 and |s|, |t| = kp. Denote by 260 € [0, 7] the angle between s

and t and let

K®(s,t) = %0- + Z g cos(2£6)
£=1

be the Fourier series expansion of K (). Then,

m? [ 1 1 1 1 1
““‘F[ﬂ_(ul ‘e+2+e+3_£+4i'”)} +O0/%

with the error O(1/€) uniform in £. In particular,
a = -2 (In2 - 1) + O(1/¢)

and for all £ > 2 and sufficiently large €

)] < ap <0
There 1s a constant Bg such that
K@ (s,) = ™ - 20320 | pr 4 01/0)
a 472 cos ¢

9(6)
0.5

0.0 -

-0.5

-1.0
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Proof: By Lemma II.6 and Theorem IL.7 there is a constant Bj such that

= 0(1/¢)

o o]

‘K(s)(s, t) + Zaz cos(2£0) — By
£=1

This proves the first two claims. The last one follows from

ay>ay>--->0

The rest of this section deals with the proof of Theorem II.7. By scaling we may,
without loss of generality, choose kg = 1. Part ¢) of Theorem I1.7 is an immediate consequence
of G3c(s,t) = W(sg — to,s — t)2. See the proof of Lemma II.5. The proofs of the other parts
depend on the following lemmata.

For s,t € R* with |s| = |t| = kp = 1 define

1 1 1
A(QQ,T, 6) = _-/
la

21 Jiq)=r 190 — €(q—s) igo — e(q—t)

where 26 is the angle between s and t. Here the integral is over the circle of radius r in

IR? with respect to the standard length element.

Lemma II.9 Let so = to = 0 and |s|,|t| = kp. Denote by 20 the angle between s and t.

Then there is a constant const ¢, depending only on the cutoff function f, such that

G'3a(s,t) — const 5 — f dr/ dqo Al(qo,r,0)R(qo,1; C)H =0(1/¢)
0 —00 o0

(2m)?

[Gants.1) - (2;)2

[ ar [ dao Ao oW iann| = ow/e

Proof: We must compute the difference between

G (5. t) — £q Pk fage)  F(ara)/e)  f@-s)/e) f(@-t)/e)
3a(s,t) = (2m)3 (27)3 —iko—e(k) i(ko+qo)—e(ktq) igop—e(qs) igo—e(qt)
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and

o0 o0
) f dr f dgo A(qo,7,8)R(qo,7; €)

1 1
f @np / dqo f / (o)’ W=k Faa72) el F a7 Wt ao D) —ekTa7?) (@) o —e(@®
lal=r |ki<e

= d_2q§ 1 1
i x) Ik+q/2|5¢ 2‘” 271' —iko e(k) l(‘Cc)“+"f;m)—*”(1‘1'“1) igo—e(qs) igo—e(at)

For fixed € < oo the integrand of G3, is absolutely integrable and we may choose any order

of integration. Exchanging the angular q and gy integrals as well as the ¢y and k integrals
is justified by absolute integrability with respect to the exchanged variables for almost all

values of the non-exchanged variables. Evaluating the kg and q¢ integrals by residues

%Q 1
27r 2n —1‘00 —e(k) t(ko+qo) e(k+q) igo— e(q—e) iqo—e(qt)

- 1
= Detr-— + X4 e(k)+e(k+q)—e(q—s) E(k)+€(k+<1)—e(q—t)

1 1
+ X4 +-+ + X——+-| sTetTa—e@=9) c@=)-e@=D)

i 1
+ [ F Jmrs] e(k)+e(k+q)—e(q—t) e(a—t)—e(q—s)

where Xe, e, 5., 15 the characteristic function of the set of k and q for which the signs of
e(k),e(k+ q),e(q —s) and e(q — t) are €1, €2, €3, €4 respectively.
First consider the x__,, term. For this term we must have |k|,|k + q| < kp.

Consequently |k|,|q| < 2kfr so that

X——s+ [f/O)f((k+a)/€) f((a—5)/C) f((qa—t)/€) = Xjk+q/21<e] =0

For all other terms |q| < 2kp so that f(q —s)f((q — t)/€) = 1. In order for
f(k/O)f((k + q)/€) — X|k+q/2| to be nonzero, |k| must be bounded above and below by
const €. Consequently all x_ _.,., terms are zero. On this domain, the integral over k and q
of the x44__ term is bounded above by const /€2

So far, we have shown that

G3a(s,t) d"' deO (qo,7,0)R(q0,7;C)

_ d*q d’k_ f(k/@)f((k+q)/€)— X1k+q/"\<L ]
= '/IR;_) (2m)2 / 2m)? [X++ + [e(k)+e(k+q)—e(q—s)][e(q—s)—e(q—t)] +set| + ()(1/@:)
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The difference between then integral above and

d*q d’k F(&/E)* =X ki<
./W (2m)? /W (2r)? [X++-+ Zem)[c(a-s)-e(a-o] T 5 t}

is bounded by O(1/€). Finally, note that, for |q| < 2kr and k in the support of the difference
of cutoff functions f(k/€)* — x|x|<c, we have |k|, |k + q| > kF so that

d*q d?k f(K/€)*—xki<e
./mz (2m)? /]R (2r)? [X++-+ Zel)lela-s)—e(a-0] + 5 7 t]
f(k/‘x)z—kaKc

= d’k d’q
- /1112 (2m)2 jm2 (2m) [qu—8|<kpxlq—t|>kp - qu-—tl<k.vxlq—5|>kp] Ze(k)[e(a—s)—e(q-t)]

_ d’k 2 1 d* 1 1
- JR2 (2n)? (f(k/Q:) - X'kl‘(@) 2e(k) ~/IR3 (21:;13 1go—e(q—s) igo—e(q—t)

= [, #5(70/€ - xce) sl W (O.]t - s

=2 | &S0/ - Xped) iy

m2

== [ (0 = ) e+ O(1/€)

In the second last equality we used Corollary I1.2.

The proof of the bound involving (35 is similar but easier. [

Recall that, for gy, 7 € C, 7 # 0

rooim
= — —4q0
2 r

a(qo,7) =
If a(qo,7r) ¢ [—1,1] the quadratic equation

22 — 2a(go,7)z2+1=0

has two different roots whose product is one, but which are not complex conjugates of each

other. The root with absolute value bigger than one has been denoted a(go, 7).

Lemma I1.10 Let s,t € IR® with |s| = |[t| = kp = 1. Denote by 20 the angle between s
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and t. Then for each r >0, gy #0

A(QO r 9) — 4m2 (l’('!‘, QO) + O{(T, QU)_I 1
o r o a(r,qo) — a(r,q0)~! a(r,qo)? + a(r,qo) =% — 2 cos(26)
2m? i a(r, qo)

r a(r,qo) —a(r,q)~"! a(r,qo)? — cos?d

4 2 -1 1
_ 4m® a(r,qo) + a(r, q0) 7 3~ a(r, qo) 2" sin(2n6)
n>1

r Ct('f‘, QO) - a(r, QO)_I sin

Proof: Put a = a(r,q), @ = a(r,qy). We identify IR* with € in the usual way and
write qo = rz with |z| = 1. Without loss of generality we may assume that s and t are

complex conjugate, so that

s = e t=5 = e
With this notation
1 |
iqo — e(q—s) igy —e(q—t)
2 1 1
= 4m* — — ; e
2imgo — ((rz —s)(rz —8) — 1) 2imgo — ((rz —8§)(rz —s) — 1)
B 4m? 1 1
12 Sz—2a+s8Z sz—2a+5z
_4m? 1 1
2 §z—2a+§1; sz—2a+é
B 4m? 1 1
T E ) )
_ 4m? 1

" ) (- ) (- )

we apply the residue theorem in the region { 2zeC ‘ |z| > 1 } and get

1 1 1
A(QO-"E H) = = 2 =
27 Jiq=r 10 — €(q—8) iqo — e(q—t)
B 2m>? rdz 1
mr? lz|=1 12 (z — sa) (z - §a) (1 — S:a) (1 - ?zla)
—4m? 1 1
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_4am? 1 1 1 1
r §S—s a—a! |sa—5a"! sSa-sal
dm? a+a” ! 1

T a—a ! a?+a"?— (e + e120)
This proves the first formula. The second is an immediate consequence.

To prove the third, we use

i /Tr/f! P bln(?g) sin(2n€) B 1 w/2 ” (621'9 —2:9) (Pan() _ e—‘ZinG)
T Jo o +a-2—2cos(20) 27 )2 a? + a~? — (e? + e—2i9)
1 1 n o_ %
ey
ami Jiy=1 (2= a?)(z —a™?)

= 2"

Recall from Lemma I1.9 that we wish to evaluate the integrals

1 o0 o0
W / d'lf dQO A(QOsT' G)R(QO,T’Q:)
0 — 00

1 o0 o0
(2—71_‘)3] de dqo A(QO,THQ)W(QOJ')
0 —00

In Proposition I1.1 and Lemma I1.10 A(qo,7,6), R(qo,7;€) and W (qgo, ) have all been ex-

pressed as functions of a(qp, 7). We perform the change of variables

w = a(qﬂsr)v w = a(—qo,7)
Then
1 1 1 1 B 1
r= s |lwt+t—+T+=) = —(w+w)|w+ =
2 w w 2w w
ir ( 1 1 )
g = —|\w+ ——-—w— =
4m w w
so that

dr = L (w-l) dw+i_(m-é) dw
2w w 2w w
) ] 1 1 1

dgo = —l-(w-%l—@—;) dr + i(l (w——) dw—:(ﬁ—:) (ﬁ'ﬁ)
4am w w 4m \w w w w

T 1 1
dgo ANdr = i w— — w— — | dw A dw
dm|w|? w W
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Therefore, by Lemma II1.10

im 1 1\w+g 1 d
Algo,7,0) dgo Ndr = — (w——) (w- = ;i A
(40,7, 0) dqo w2 (w w) (w E)w—$ w? + w2 —2cos20
w? +1 !
_ 1- = ) dwAdw
e 2w?cos 26 + 1 ( Ez) v

Similarly, by Proposition II.1

1 1
W(QO,T)=~E+-m—(w——+?D—E)

m m 1 _ 1
:“ﬂﬂizaW+”%w‘5)
_m mw-l/@ __m mwf-1
2 2rw+ 1/w 2r  2m|wl?+1

Under the change of variables, the domain of integration { (90,7) € IR? | r>0 } becomes
Q={weC||lw>21l,w+w+w ' +w >0}
= {w€®||w|21, Rew >0 }

Neither A(qo,r,#)dgo A dr nor A(qo,r,0)W(qo,7)dgo A dr are absolutely integrable on this
domain. The same holds for A(qq,r,0)R(qo,7,€)dgo A dr. Therefore we add and subtract

counterterms that are later integrated separately.

Lemma II.11

a)

/ {A(QO,T,E’) (W(go,r) + &) - m? }dqodr=m2(1 —In2)

21TT‘(G.(QO,T)2 — 1)

b)
/[A(qo, r,0) — A(qo, 7, 7/4)] (R(go, 7, €) + o lnr) dgodr = O(1/€)

Proof: a) Since

dgo A dr 12( _l) (m_é) L ondm
ralo, =1 miuP \" " w %) (w+ 1) -4

= L 1 (1~i)dw/\dw

2
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the differential form

= < Algo,,0) (W(qo,r) + ) - e
W { (qo,7,0) ( (qo,7) + 27r) 2”r(a(qw)2-1) } dgo A dr
im? (|w]® -1 (w? +1) 1 1
= - l1- — |dwAdw
27 (|w|2+1 w* — 2w? cos 260 + 1 w2—1)( u‘ﬂ) e

is absolutely integrable on (2.

Since w 1is invariant under the involution w — —w

m m® !
/{A(QU>T39) (W(QO?T) i ﬂ) B 21rr(a.(q0,r)2—1) }dq‘)dr - /Qw - 5/{ weC | lw >1 }w

Writing w = p¢ with || =1 we get

/ zm / dp/ _ () p? =1 P2 +1 B 1
Icl=1 C P2+ 1 paC* — 2p%C2%cos20 + 1 p2C2 -1
Observe that for p > 1 all poles of the holomorphic differential form
4 o2y (] P2+ 1 o1
i 2 +1 piC  —2p2C2cos20+ 1  p2C2 — 1

lie inside the disk of radius p~! < 1, with the one exception of the pole at infinity. The

residue of this form at infinity is

1 (p*—1 i} — -2
p? \p? +1 — pA(pP+1)

Therefore
o0
]w == 2m2[ d—f: 21 = m?(1-1n2)
Q b & P+l
b) Put
m 2 4@:2
= a- - =]
F(qo, ) . In (r a(qo,r)) + ym n(T2—4imq0—4)
Then
m m r? — dimgo — 4
i - m 1
R(qo,7, €) + o Inr F(qo,7) + i In ( + i )
Using

2
< const In (1 + const u) for |w| > 1

Q:Z

2 — 4imqo — 4
In{1
n ( -+ 102 )

1
HA(qo,'r,B) — A(qo,r,m/4)]dgo A dr| < const ﬁldw A dw| for |w| > 1

|w
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and the fact that [A(qo,7,0) — A(go, 7, 7/4)]dgo A dr is L' on Q, uniformly in #, one sees that

& ‘ In€
< const F

2 _ 43 -4
[ [4a0:7.0) = Algo,r. /)] (1 + Lo ) Py

oo

Observe that F(go,7) is continuous outside { (r,0) | 0<r<2?2 } Under the
coordinate change (go,7) — (w, w) this set is mapped to { w € C | lw| =1,Rew >0 }, so
it lies at the boundary of €2. Since F'(go,r) has only logarithmic singularities, [A(qo,7,0) —
A(qo,r, m/4)|F(qo, 7)dgoAdr is absolutely integrable on € and its integral over 2 is continuous

in #. We show that this integral vanishes for 0 < # < 7/2 by writing

[ {Ata0.7.0) = Algo, .7/} ao, 7)o A
Ja
2im(w? + 1)w? cos 20 1\ dF
- D+ — | ——dw A du
/Q (w? + 1) (w* — 2w? cos 20 + 1) W di dw A d

2im(w? + 1)w? cos 26 ( ] ) }
s + — | F(qo,)d
f“ [(“’4 + 1)(w* — 2w? cos 26 + 1) w o (qo, 7)dw

Observe that % is a rational function of w and w. As in part a) it can be shown that the

first term 18 zero.

Put, for s > 1

B = {wE(E|Rew:0, |Imw}25}
U = {weC||w=s Rew>0}

By Stoke’s Theorem, the second term is

i / 2im(w? + 1)w? cos 260 (w 5 1 ) Flao.r) duw
— lim )+ — ¢
s\ Jrow, (wh + 1) (w? — 2w2 cos 26 + 1) w 1

We claim that F(qo.r) is an even function on I;. Indeed, for ¢ > 1 one has

(e 2 m 9 " .
I 2 Vil — _om (2N my T
v o W ) T o n( ﬂ:z’t) or BIH/2 £

and as w € ) goes to it one has £qo 0, so that

m 4¢? m m m .
li —1 = —Iln(-¢2Fi0) = — In (¢? —1
vt 4 <7-2 ~ dimgo — 4) 0 (- Fi0) = 7€) F 5
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Consequently, the integrand is odd on I; and

/‘ 2im(w? + 1)w? cos 20 &+
Ji. (w4 1)(w* — 2w? cos 26 + 1)

lim

a )F((I(},'I') dw =0

1
w

For wg with |wg| =1, Rewg > 0, Imwgy > 0

m 1 3 1 m ¢?
lim F(go,7) = —In (= (wy — — S ) N Y . A
Wi (g0, 7) 2 n(2 (wo wWo o 1 % w—g)) * 4 n((Rew0)2 -1 q:zO)

weN
m m m ¢? m
= — In(2|I 4+ —3 sy e —1
(27r 22| Tz 4 z) + (47r = ((Imwo)z) T3 Z)

m
= — [n2¢
27rn

Since (w? + 1)(w* — 2w? cos 260 + 1) has simple zeroes

2im(w? + 1)w? cos 26 1

li v+ — ) F(qo,r) d
Nl /;]S (w* + 1) (w* — 2w? cos 20 + 1) Wy w (90,7) dw

_ 2im(w? + 1)w? cos 260 1\ m
= I — ) —In2¢€d

S]\I‘]} v, (w*+1)(w* — 2w?cos20 + 1) o w) 2w v

1 2im(w? + 1)w? cos 26 1

= lim - = A" + )4 608 : (w+ —) :im?@: dw

N1 2 Sy (w* 4+ 1) (w* — 202 cos 29 + 1) w /) 2w
= 0

by the residue theorem.
The harder counterterms of Lemma II.11 are treated in parts a) and b) of

Lemma I1.12 For 0 <20 <

a)
@ /0 d?"[_ dgo A(go,7,0) = -3

b) There is a constant Ay such that

o0 o0
(2,17)5 /(; dr / dqo A(go,7,0)Inr = Ay + ﬁ Z A, —18in(2n8)
) ahit. n>2

— 3m _ m geosf
- AO + 8w 21r65ir19

where
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Proof: a) Let s and t be of length kr and separated by an angle 26. Then

oodr oodq Alq rﬁ)—/ d°g 1 1
o e VDD R (27)3 iqo — e(q — 8) igo — e(q — t)
= W(0,|s—t]) = ——
2w

b) By Lemma II.10

d4m? a(r,qo) + (7, q0) "
T G(T, ‘?0) - a(Ta QO)_I

-2

A(QO)TaB) = +

1 P
a(r, go) Sin%’;a(r,qo) " sin(2nd)

Evaluating the go integral by contour integration methods one sees that

1 o= 0 am? a(r,qo) + a(r,q0) ! s
Ag = —/ drf d - ’ a(r, Inr
0 (2’”—)2 0 — 00 9 r CY(‘T', qO) - Of(’f', QO)-I ( QO)

is finite.
We now evaluate, for n > 2

le'o) o0 2 -1
/ drf dqo 4m” o(r, qo) + a(r go) a(r, g) " Inr
0 -0

r a(r,q) — a(r,q) !

"1 T (22

Using the coordinates w, w as above,
mi 1 1 1 1 1 _
= | — | —— — In (= )1+ — ) )|dwAd
=i o (2 5) (o4 3) o (3w 0 (14 ) dw o
mi 1 1 1 1 _ _
:mfg(l wz) (1+m) n In (§(w+w)) dw A dw
mi 1 1 1 1
+ZF/S;(1—E) (1+;U—2)F£1n( +| l2)dw/\dw

1 1 )
47‘_2 ( —w— ( ) 1n(1+W)dedw
_m d¢ _C_Q)( 1 ) 1 ( L)
4m / / ¢ (1 p? Hp?C? pAn(n 1+Ipl2
=0

™mi 1 1 1 1 _ _

An—l :WL (1 G ﬁ) (1+ F) ’LU2" ll’l (§(w+w)> dw/\dw
mi 1 1 _ _ ~
=—-m/g;(l—;U_—i)ln(-i(w-i—w))dF(w,w)/\dw

=

Since

we have
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where

P o) = ! 1 1 1 1 1
= g1 \@r T ) T gy \ gt e

Observe that F' vanishes on the imaginary axis. Using Stoke’s Theorem

An_lz—%Ld[(I_ %) I (%(wﬂa)) F(w,u‘))du‘)}
+ﬁ/ﬂ(1_i) L P, @)l o de

472 w?

s e

) mi d¢ Cz) 1 o1
- d -2 —=
g /21 ppf c ( P F(p¢,p(™7)

mi 1 B . dw
~is /.., (=) (5(“’ i 1)) Flnw™) o
Re w>0
+(—1)"mf . 1 S 1 1 1 1 1
27 p>1 # (2n 4 1) p2n+3 2n+1 m —1 ,02"'+1 (271 _ 1) {)2”_1
_ mi 1 g N
= B I e In (2 (w+w )) dF(w)

Rew>0

) 1 1L (1 1 1 1 1
o |2n+12n+2 \2n+1 2n—-1/2n 2n—12n-2

where
= 1

— 2n42
H) (2n+1)(2n+2) (w + g+

1 1 1 N/ o 1 \
+— - W+ —— — (=1)"2
2n (2n+1 271—1)( BT (=1) )

+ : ('wzn_2 +
(2n—-1)(2n—2) \

+ (—1)"2)

w2n—2

By the Fundamental Theorem of Calculus, the first term

mi 1 . - mi - w? —1
- - L Flw) ——————
= ]R"”‘i‘o In (2(w +w )) dF(w) = fﬂ'“"i‘(, (w)w(w2 ) dw

mi . 12 — 1
=T Flw)—2 1 4
871'2 ‘/]w|__.1 (w) w('w2 + 1) v

mi ~ w? — 1
——— Bl ——ee &
872 -[w|=1/2 (u))'LU(T,U2 + 1) v
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by the Residue Theorem. Because the sum over n > 2 is absolutely convergent it is straight
forward to justify the interchange of the sum over n with the integrals. It is also straight

forward to sum the Fourier series using

20 = — > (—1)"Zsin(2n0)

Proof of Theorem I1.7:

a) By Lemma II.9 and Lemma II.11b

G3, =const 5 + 2—")5/ (go, T ,4)(R(qg,r €)+ &1n r)dqur

- (2—’;‘—)3-/ dr/ dgo A(qo,7,0)Inr
0 —00
By Lemma II.12b,

(2n6
dr dQO A(go,7,0)InT = - Ao + 3= ZAn 1sm nf)

sin 26
n>2

5 n odd

= 3- Ao + %ZAH_I (cos2(n— 1)6 +cos2(n—3)0+--- + s

n>2

{ cos(20) n even)

o0 o0
=constg + 2 Z cos(246) Z Apyok
£=1 k=0

[ o]
= const g + % Z G.g cos(2£0)
=1
Putting

B¢ = const 5 — const g + ﬁg fA(qg,r, %)(R(qo,r, €+ In r)dgodr

we get the desired result.
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b) By Lemma II.9, followed by Lemma II.11a and Lemma I1.12b

Hng (5.8) — 25 (1 — 1112)“

(2)

. W[ dr/ ddo Alqo,,O)W (90,7) = (1~ m2)|| _+0(1/¢)

rla(qo,r)?—1

= - #]A(QO,T,H) dqodr + (;;.)3/ ( ! ) dQOdT"OO+O(1/¢)

—_ m2 m3 1
|| (2m)? + (2m)® f 1'((1(£10,7‘)2—1) dQOdTHCXD t O(I/G)

= 0(1/¢)

since

/O" dr/oo dqo . 2m
o T Jowalg,2-1  m
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Appendix. Restriction of the Bethe-Salpeter Equation to the Fermi
Surface

We use the Theorem stated in §1 and standard properties of the two point function

G and Bethe-Salpeter kernel K to show

Proposition A.1 Let B9()) be the solution of

A3 2t f(t/C)?
1:——
, Z f2w2t2+e (t)2

F=(2Z+1)

Then, for sufficiently small A there exists a B.(\) close to By(A) and a nonzero function

x(s0, [s|; A) that solves the £ =1 equation (1.2)

Xoolsh=—F 3 [ Koo lsh to el B)IGOF x(tos )

to € 3 Be (22-{» 1)

in perturbation theory.

For the proof of this Proposition we use the following properties of G and Kj:

const f(|k|/€)
ok G = g, o) (D

, F(KI/©) | _ const Af(IkI/€)
2|0~ S — ey | S oo — e(k)] A

There exists an € > 0 such that, for all sufficiently small A,

sup sup | K (ko, , to, |t]; ) — K1(f, to, |t]; B)| < const A2 [k2 + |z — kp'z]e/z (A.3)
A>1 t
2

A
| K, (f,£;:8) — Ay)| SconstE (A.4)
where f = (g—, kr). That these properties are valid to all orders of perturbation theory will
be proven elsewhere.

The first property and (I.4) implies

l Z/d2k|G(k)|2 < const In 3 (A.5)

sup = 3 [ PKIG(K)P (k2 + e(k)?)? < const (A.6)
8>1 0 g

For convenience we now suppress the dependence of K; on f3.
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Lemma A.2 Put, for >0, Wg = { (ko, ) | ko € (ZZ +1), 0<zr<2¢C } Then there
erists an € > 0 such that, for all sufficiently small X and 3 > 1,

2) ‘ 1 Z / dzt | K1 (ko, 7,10, |t]) — K1 (£, to, |t])]

P B . |G(t )|2 < const, A2 1n 3
(ko,z)EWy F = (2z+1) (k2 + |z — kp|2]¢/2
1 Pt Ko, tos[6) = Ko (B tos 0Dy o2y
b) sup  — / IG()2[t2 + e(t)?]°
(ko,)EW; Z (k2 + |z — kp|2]/2 0

7(2Z+1)

< const A < 1/2

o 5 5 / 2[Kl(f to, [£]) — K1 (£, £)[|G(£)[2 < const A
63(22-{-1)

Here all the constants const are independent of 3.

Proof: DBy (A.3)
|K1(k‘07$7 to, It|) — Kl(fv to, |t|)|
73+ [ — el
Sc parts a) and b) fellow immediately from (A.5) and (A.6). By (A.3) and the svimmetry of
K,

< const 32

|K1(f, to, |t|) — K(F,f)| < const A2[t2 + e(t)?]/?

Again, part ¢) follows from (A.6). o

Proof of Proposition A.1: If x obeys
1+ X(s0,18]) = — 3 f—grzKl(So,IS| to, [E)|G(8)P[1 + x(to, t])] (A7)
ioe (22+1)
then 1 + x obeys (I.2). We look for a solution obeying x(f) = 0. Restricting (A.7) to the

Fermi surface gives

P = [ s o, [EDIG P+ X(to. 61 (A8.2)

“G)I'—'

t0€3(22+1)
The difference between (A.7) and (A.8a) is
oo lsh=-3 3 ] [K1(s0,Isl, o, [6]) — K1 (£, to, [£)]IG(8) 2[1 + X(to. It])]

to€E L il (2Z+1)

(A.8b)
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Move all the x’s in (A.8b) to the left hand side.

x(50,1s]) + 5 /W[Kl so, [sl, to, [t]) — K1 (. to, [t)]IG () [*x(to, [t])
tOEB—(ZZ-i-l)
(A.9)
_ NS fw K1 (0, 18], to, t]) — K1 (F, to, [£)]|G(t)]?
5063-(22'1'1)

Define the norm

1
(k8 + |z — kr|?

Ixllg.e = sup

}e/2 |i(k01 T)l
(ko,z)E%(22+1)x[0,2€]

and the associated Banach space
Bpe={ x:5(2Z+1)x[0,2€] = C | [[xllg,e < o0 }

By Lemma A.2b, [K(so, |s|, to, |t]) — K1(f, to, |t])]|G(¢)|? is the kernel of an integral operator

on Bs . whose norm is bounded by one half for all sufficiently small A and all § > const.
Furthermore, by Lemma A.2a, the right hand side of (A.9) is an element of Bg  with norm at
most const A? In 3. Consequently, for each 3 > const, (A.8a) has a unique solution xs. € Bg,e
and this solution has norm at most const A? In 3.

We now show that, for each sufficiently small A, there is a 3(A) such that xg)a

obeys (A.8a). Indeed (A.8a) is equivalent to

%> [Z_F
ﬁzfg—;;mno, NGO pal) - 3T [ st t0.8) - MICOP
a,\‘z/ tiﬁ(Gt))g
— 5(A1 + aX?) /2—«)7 |2+a*32/ it 2-%%] (A.10)
3T [ K 0160 R0 ﬁsz Ka(f, to, t) — M)IG(1)?

As observed in (1.4),

% - (_:_é?:t)z = —ﬂ-az\a(]nﬁ +0(1))
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with const > 0. Similarly by the main Theorem, (I.4), (A.2) and (A.5)

Since Ky = O(A\?), |[xgall = O(A%In ) and (A.5)

ﬁz:f—mKl £, 0, £)|G() o (6) = 0N In 3

Finally, by Lemma A.2c¢ and (A.4),

ﬁZfW[Kl f,t0,t) — M1)|G(t)|°
ﬁZ/W[Klfth) K\(f,6)G(#)* + ﬁZ/ [K.1(f,f) —
= 0()\?)

So (A.10) is of the form
1+0(N) =22)3(1+0(A\) Inf

Since both sides of (A.10) are continuous in 3, it has a solution of the form

Ing = (1+0(N)

a/\3
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