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Introduction

Let

«00 h - M2m

with the chemical potential p > 0 and let u be a short range rotation invariant pair potential.

The corresponding Hamiltonian for the d-dimensional system of fermions with dispersion

relation e(k) and pair potential u is

J dke(k)alaakij + \ J f\ dki (2*)* 5(kl+k2-k3-k4) A u(k,-k3) a^.X^r^WW

where, dk ^yj and repeated spin indices are summed over {|, |} In three dimensions,

Kohn and Luttinger [KL,L] made the surprising observation that for any purely repulsive

short range rotation invariant pair potential u the second order Bethe-Salpeter equation for

the Cooper channel always has a solution in some odd angular momentum sector. This result

suggests that the Fermi sea is unstable and further, that in the true ground state number

symmetry is broken and higher angular momentum Cooper pairs form. In [FKLT] we showed

that reflection invariance of the dispersion relation e(k) is essential for this instability.

We consider the two dimensional system with the special pair potential

Aw(ki-k3) A

where, A > 0. That is, a purely repulsive delta function in position space. Let

KN(s,t) YXnK^(s,t)
n=l

be the Bethe-Salpeter kernel (see, 1.1) for the Cooper channel up to order N, and let

Kk(s', t') be its restriction to the Fermi surface. Here, for each k (ko,k) G Hx (IR \{0})

k' (o.ftA,)

and kf (2mp)? In the Appendix we show that there is a solution of the associated

Bethe-Salpeter equation when K^(s',t'), regarded as the kernel of an integral operator on

L2 (Fermi surface), has a strictly negative eigenvalue. By rotation invariance,

KN(s',t') YAN,eA)cos2t9
oo
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and therefore, the Fourier coefficients A^.eA), i>0, are the eigenvalues of KN(s',t') By

convention, 29 is the angle between ,s' and t' on the Fermi surface.

The kernel K^n>(s,t) ,n> 1 is a sum of two particle irreducible diagrams. The

particle lines of a diagram represent the free propagator

iko - e(k)

The numerator /(|k|/C) cuts the ultraviolet end of the system off at €. In this expression,

/ is a nonnegative smooth function that is identically one between 0 and 1, decreases

monotonically between 1 and 2 and is identically zero to the right of 2

It is easy to compute the second order contribution A"'2'(s, t) in the limit (£ —> oo.

One obtains (Lemma II.5), using the fact (Corollary II.2) that the the two dimensional

polarization bubble is constant for ko 0 and |k| < 2kp-,

KW(s',t>) £lit
In particular, K^2\s',t') is independent of the angle between any momenta s' and t' on

the Fermi surface. It follows immediately that A.2,e (A) 0, I > 1 Thus, in contrast to three

dimensions, one must compute at least the third order contribution A^3)(s, t) to determine

whether there is an attractive angular momentum sector.

The third author [Si] evaluated K^(s,t) numerically and found that

A3,i(A) < /\3,£(A) < 0

for all 2 < £ < 100. The numerical results led us to the rather surprising conclusion that it

is possible to explicitly calculate all of the Fourier coefficients A3,; (A), £ > 1, of K3(s'. t1) in

the limit C —> oo. We obtain (see, Corollary II.8),

A3,«(A) -A ^5- yTl - (j^ — ï^2 + ?+3 — F+4 ± ' " " )J

for all £ > 1. In particular,

A3,i(A) -A3^(log2-|)

and for all £ > 2

A3,i(>0 < A3,£(A) < 0
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In. other words, a two dimensional system of fermions with dispersion relation e(k) j p

and a purely repulsive delta function pair potential generates the dominant attractive coupling

A 3,1 (A) in the third order Bethe-Salpeter approximation for the Cooper channel. This result

suggests that the true ground state of our system is an £ 1 superconductor.

To verify that the ground state is indeed an £ 1 superconductor is not straight

forward. In another paper we intend to rigorously implement, with the aid of a computer, a

renormalization group analysis of our system around the Fermi sphere that shows that the

£ 1 sector of the whole model is attractive and even dominates the £ 0 sector.

It is our pleasure to thank Franz Merkl for a number of useful suggestions.



158 Feldmanetal.

1 The Bethe-Salpeter Equation

Consider the many-fermion model with propagator

/(|k|/€)C(k)
iko — e(k)

and interaction

2 E / (lì (€p£r J W*+l6(ki + k2-k3- k4)u(\ki - ka|) V^t/w^W^,*

Here e(k) LL_ — ß with /j being the chemical potential. We use the smooth function

Ü < f(x) < 1, which is identically one for 0 < x < 1 and identically zero for a: > 2, to impose

an ultraviolet cutoff at €. We will ultimately set the two-body interaction u(\ki - k3|) 1,

that is, a delta function interaction in position space. We could equally well treat a model

having propagator C(k) ifcn}e<k) anc^ two_body interaction u(|k|) /(|k|/£).
Let

(M«v)j ß5P0.P>0(2n)do(p - p')Sa.a.G(p)

resp.

ßSpw+p.20_p[^plJ27t)do(pl + p2 - pi - p'2)SauJ2a.y2 (û^a.Pi + P2, ^)
be the one- resp. two-particle Schwinger functions at temperature T -rh. Diagrammat-

ically, G(p) is the sum of all Feynman diagrams (with appropriate signs and combinatorial

factors) having one incoming and one outgoing particle line, each with momentum p. The

energy-momentum conserving delta function is not included in the value of the diagram.

Similarly, S is the sum of all Feynman diagrams having two incoming particle lines with

momenta and spins p'x, o\ and p2, o'2 and two outgoing particle lines with momenta and spins

Pi,(T\ and P2, o"2- The interpretation of the arguments s, q, t of Sa,a2a'a' (s, q, t) is as follows:

q Pi + P2 p'i + p'2 is the transfer momentum, s Pl~P2 is the relative momentum of the

outgoing particles and t Pl ~Pz is the relative momentum of the incoming particles. The

diagrams need not be connected, though every connected component must have at least one

external line.
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(pWi)

9/2

(Pl,<Tl

t
(P2,0-2) W2>°2)

9ß
The two-particle Schwinger function is related to the vertex rCTlCT2<7<CT' (s,q,t) by

^>a\a2fT,,(7'AS''9-it-)

ßG(s + §)G( - s + §) [ôS0<t0(2ir)d6(S - t)Saia[Sa3^ - 6So^to(2n)dS(S + t)5a^502tr[}

-G(s+ §)G( - s + §)r,1(Ta<Tl<7, (,,g, t)G(< + §)G( - t + §

Diagrammatically, T is the negative of the sum of all connected Feynman diagrams having

two incoming and two outgoing particle lines. All four external lines are amputated by the

interacting propagator. F is normalized so that in first order

rai*2<T[a2(s,q,t) Xu(s- t)(5CTlCT;JCT2^ - Xu(s + t)ôaia'2ôaia'

The Bethe-Salpeter kernel Ia,oio'o' (s,q,t) is the sum of all diagrams from T that

are two particle irreducible in the channel from (p\,p'2) to (pi,P2)- We have

^a\a2'yl,(7,A^^gA) la\a2a'la2\^^aA)

E E /(0^iCT2<<(^9^)G(fc+f)G(-fc+f)rCT;v,v;CT-(fc,9,OJ_
27J

fco6f(2Z+l)<7;'ff2'

-^«/2 -^ZZZZAl/2 — -9/2
s2 r Ti aT^ i Jq - ^- s>J /

'
rfc)

7

r Jp
¦^--q/2 -^q/2 - -q/2

If, for some ç, there exists a nontrivial solution ip of the Bethe-Salpeter equation

^(«) -è E E /(#W2«(^9^)G(fc+f)G(-A:+f)^;^(fc)
fco€£(2Z+l)«

there will be a corresponding pole in T. Kohn and Luttinger use the onset of such a singularity

to signal the formation of Cooper pairs and consequently the breaking of number symmetry.
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At the critical temperature the binding energy for Cooper pairs with momentum q 0 is

qo 0. This corresponds to a nontrivial solution of the Bethe-Salpeter equation for q 0

and ß ßc.

</VlCT2(s) -5Ì YI E /tÄ7—,o>2-(s,0,k)G(k)G(-k)iP<a,,(k)
fc06f (2Z+1)<ct2'

Because the interaction is spin independent, / is of the form

J<7ia2<7;<72(s,g,0 h(s,q,t)ô0x0>ôaia' A h(s,q,t)6aia>5a2ai

By construction

¦*<7i<72Cr|cr2(.S,U,Cj ~~-'(72<71(7j<72 (,— ^,0,CJ — *CTior2cr2er(\5iO, _£J

Put K(s,f) Ii(s,Q,t). From the second equation it follows that l2(s,0,t) — K(s, — t) so

that

I<7,cr2a[a2(s,0,t) #(s, «)<W; <W2 ~ #(«> _*)<Wa<W;

One checks that the four spaces of functions

{«/w2(s) <W<Wx(s) I xW -x(-s) }. ^ {t,l}
{ Vw2(s) 5 (<W<W + ^a^t) x(s) | x(s) -x(-s) }

{ ^CTlCT2 (s) 5 (<*<7,î<W - <W«^î) X(s) | X(«) x(-s) }

are invariant under the integral operator with kernel /, and that the restriction of the Bethe-

Salpeter equation to each of these subspaces is

*(») -£ E I T^K(s,t)\G(t)\2x(t) (1.1)

to6^(2Z+l)J

In (1.1), K(s,t) is the sum of all diagrams in la,a2a[a2(s,0,t) that have a fermion string

joining o\ to cr',. If x(s) ls a nontrivial solution of this equation then at least one of the

two functions (6ail + <5CT2Î) (x(s) - x{~s)) and (<jaiT - <5ff2Î) (x(s) A x(-s)) is a nontrivial

solution of the Bethe-Salpeter equation.

Observe that Ia,„2<„'(s,q,t) Iai<ri<r[a^Rs,Rq, Rt) for all R G SO(d). Therefore

AT(s, t) K(Rs, Rt) for all R G 50(d)
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Hence the integral operator with kernel K commutes with the action of SO(d) on the space

of x's and it suffices to look for solutions of (1.1) in each angular momentum subspace. Write

K(s, t) E *<(«<>' Is!' *o, |t|; ß) ¦ «e (fir, fc)
e=o

where for each £ > 0, ne is the orthogonal projection from L2(Sd~l) onto the subspace of all

spherical harmonics of degree £. For emphasis, we have made explicit the dependence of Ke

on the inverse temperature ß. In the angular momentum sector £, equation (1.1) is

x(so.\A) -fc E /(0^(so,|s|,to,|t|;/3)|G(i)|2x(*o,|t|) (1.2)

The important feature of this equation is the fact that in the integral |G(i)|2 «

TfA-j-Ai has a non-integrable singularity at ko 0, |k| kp y/2mp. Hence it is reasonable

to expect that (1.2) should be, up to higher order corrections, equivalent to

1 v f dH /(|t|/C)2
i--jc E y (äö^tfrw (L3)

HC
t0ef; {2T+1)J V ' ° W

Here Ae Ke(0, kf, 0, kp; oo). A more precise statement of this nature is given in Proposition

A.l of the Appendix. Observe that

1_ v f dzH /(|t|/g)2 _ m (I4)
ßr 2.. J (2nyt2 + e(t)2 2^InÄ + UUj l '

Therefore, whenever A; is small and negative, equation (1.3) has a solution with

ft ~ „2ir/(m|A,|)

If the original two-body interaction is attractive then Ao is negative even in first

order perturbation theory. Kohn and Luttinger [KL,L] observe that, for d 3, even for a

repulsive two-body interaction, A^ is negative in second order perturbation theory for some

sufficiently large £. We show
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Theorem. Let d 2 and let the two-body interaction u(|k|) 1 be a delta function in

position space. Then, the perturbation expansion of Ai is

Ai -aA3 + 0(A)4

with q > 0 for all sufficiently large <£.

The Theorem is an immediate consequence of Lemma II.5 and Corollary II.8. It

strengthens the results of [BCK] who show that A^ < 0 for some sufficiently large £.
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II Evaluation of Diagrams

For the rest of this paper we restrict to d 2. In this section we use explicit formulae

for the values of the polarization bubble

d3k 1 1f dsi
W(q0, |q|) / -A

R3 (2tt)3 i(k0 A go/2) - e(k + q/2) i(k0 - go/2) - e(k - q/2)

g/2 ——.

q/2

and the particle-particle bubble

t,, ^ f d3k 1 1

R(q0,\q\;<£)= \
J\\w<€ (2tt)3 i(ko + go/2) - e(k + q/2) i(-k0 + g0/2) - e(-k + q/2)

g/2

q/2

with a 6 function interaction to evaluate all second and third order graphs. Note that in the

definition of W', the fermion propagators have no ultraviolet cutoff, while in the definition of

R, they have a sharp ultraviolet cutoff at |k| £.

For g0, r G C, r / 0 let

r im
a(90'r) ^'kpr'0

If a(go,r) ^ [—1,1] the quadratic equation

z2 - 2a(q0,r)z+ 1 0

has two different roots whose product is one, but which are not complex conjugates of each

other. Denote a(g0,r) the root with absolute value bigger than one. Then, by definition

a(q0,r)-2a(q0,r)+ — r 0
a(qo,r)

and

z - 2a(q0,r) + - [z - a(q0,r)) 1 -)
z \ I \ za(qo,r)J
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Proposition ILI //go, r ^ 0 or r > 2kF then

a)

W(q0,r) -— + T~ (a(q0,r)- — -+a(-g0,r) j2n 4nr \ a(q0,r) a(-q0,r)J
m mkp

-^ + ^Re{a{'l"'r)-
b)

R(q0,r;<E) ^la(l 'U'

1 \ ' ua(go,r) yui 'y a(-g0,r)
1 \

a(qo,r)J

+ 4^ln(1 +
4e:2

,.2 - 4imqo — 4kp27T \ ra(go,r)
where In is </ic standard branch of the logarithm with cut along the negative real axis.

Since VF(go,r) is continuous in go we can evaluate 14^(0, r) as a limit lv'(go,r). For

go 0 and 0 < r < 2kp, a(r, 0) is a real number between 0 and 1. Consequently the roots of

z2 — 2a(0, r)z +1 0 are complex conjugates and lim^^o Re (a(go, r) — —,
1

1 0. This

implies

Corollary II.2 For 0 < r < 2kF

V7(0,r) -fIn
Remark II.3 Proposition II.lb implies that R(qo,r;C) diverges as the ultraviolet cutoff

<Z —> oc. On the other hand W(qo,r) is well defined even in the absence of an ultraviolet

cutoff. Moreover, if / : IR2 —» [0,1] is a smooth function which is one on the unit disk, then

for all € sufficiently large and |q| < € — kp

d3k /((k + q/2)/C) /((k-q/2)/<£)//na (2tt)3 t(*o + go/2) - e(k + q/2) i(k0 - g0/2) - e(k - q/2)
To see this, evaluate the ko integral by residues to get

j d3k f((k + q/2)/€) /((k-q/2)/C)
/r3 (2tt)3 i(k0 + go/2) - e(k + q/2) i(k0 - g0/2) - e(k - q/2)

d2k signe(k + q/2)

W(q0, |q|;

/
(k+q/2)e(k-q/2)<o (2n)2 iq0 + e(k - q/2) - e(k + q/2)

d2k sign e(k + q/2)

/((k + q/2)/€)/((k-q/2)/€)

e(k+q/2)e(k-q/2)<o t2^)2 *9o + e(k - q/2) - e(k + q/2)

f _fk 1 1

7^3 (2tt)3 i(k0 + g0/2) - e(k + q/2) i(k0 - g0/2) - e(k - q/2)
l<?0'|q|j
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In the transition from line two to line three, we used the fact that for e(k±q/2) < 0, we have

|k±q/2| < kp < Cand |k + q/2| < |k±q/2| + |q| < <£ provided |q| < €-kF. Consequently,

on the domain of integration /((k + q/2)/C) /((k - q/2)/<£) 1.

The formulae for R, W stated in Proposition II.1 are well-known [FHN,St]. We

include here a possibly nonstandard evaluation, by residues, of W. The evaluation uses

Lemma II.4 Fix a G C with Imo ^ 0 or \Rea\ > 1 Let a+ be the root of

z2 - 2az + 1 0

determined by \a+\ > 1 Then,

/ dxAdy n(a+— aZ^1— 2a)
Jx2+y2<l x - a

Proof: By Stokes' theorem,

[ _^dxAdy=f dy^ -[ **l
Jx2+y2<l X - a Jx2+y2<l X — a Jx2+y2 l x — a

Substituting,
x \(z + z~l)

y hi*-*"1)
dx 1(1 - z~2)dz

our integral becomes

f 1
J J if (z - z-l)(l - z-2) ; i f (z2-!)2

/ dxAdy -A / -. dz -A / -7^7-75—— tt dz

W<ix-a 2A\z\=i z + z-i-2a 2' JM=l z2(z2 - 2az + 1)

or /1 f (z2 - l)2
/ dxAdy -A / ——i -/ —dz
/x2+yJ<i x-a /|2|=1 z2(z - a+)(z - a+

We have

Rr, (^-i)2 I
d (/-D2 I

__ o«"•es 22(z2_2az + l) l2=0 _ ^Z (z2-2az+l) !2=0 "

R (z2-!)2 I _ (";2-l)2 _ (a;'-a+)2 _ -1
"*8»»(»-a+)(»-a;1)l»=a;1 ~ a;2«-a +

~ (o^-o+J "+ "+

Applying the residue theorem,

/ dxAdy n(a+- aZZ.1 - 2a)
Jx2+y2<l x ~ a
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Proof of Proposition II.la): By rotation invariance, we may assume, without loss of

generality that q (r, 0). We first do the integral over k0, closing the contour in the upper

half plane.

W(90,|q|) J^3 (2^F i(fco+9o/2)-e(k+q/2) i(k0-9o/2)-e(k-q/2)

Adk21 I dk,/\dk2 1 / dk,
2~Fp" / -i9o+e(k+q/2)-e(k-q/2) "+" (2ÜY / i9o+e(k-q/

•ye(k+q/2)<0 •ye(k-q/2)<0

1 / dklr\dk2 1 /
2^ / M,^n e(k)-e(k-q)-igo + (W / ,^„

ml dk\ Adk-2
_ m I" ^ Aï+kKfcî. 2rkl-^-t2m'° ^ ik?

(2^ / ,u^n e(k)-e(k-q)-i,o ^ (2ttF / „ e(k)-e(k+q)+t«,n
e(k)<0 -/e{k)<0

(ifci Adk2

/k> ..a 2k-q+q2-*2m<zo

(JA-'t Adk-2

2 2 2rki+T-2-t2m^o
1 2 F •'•^irKj^rvc.

nfcp / dxAdy _
mfci / dxAdy

2*2 I 2rkFx-r2-i2mq0 2n2 / 2rfcFz+r2-i2
Jl!+92<1 Jl2+V2<l

nfcp j. / dxAdy _ m/cp 1_ /
i-n2 r x-a(-q0,r) 4jr2 r I

Jx2+y2 <1 ./x2
x+°-(qa,r)

2+y2<l ^i2+y2<l

By Lemma II.4, since the roots of z2—2az+l 0 are the negatives of the roots of z2+2az-fT

0, we have

W(q0, |q|) *&¦$ («(-go, r) - jp^y " 2a(-qo, r) + a(q0, r) - -^ - 2a(g0, r))

T^? ("fe + «(90,0 - -^ +a(-go,r) - ^rp^))
This proves the first line of Proposition II.la). The second follows from the observation that

a(g0,r) and a(—g0,r) are complex conjugates, which implies that cc(go,r) and a(-qo-r) are

complex conjugates. ¦
Proof of Proposition II.lb): [FHN] show that

nl rc\ m i 4(x0 - iq0)(xc - iqo)
R(q0,r;<£) — In

47T [-ig0 + y/x+ - iqo y/xl - iqo\2

where
(r - 2kF)(r + 2kF)

xo — 4m
g2 - k2, + r2/4

m
r(r±2kp)

2m
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and the square root is chosen to have positive real part. Writing

a(q0,r) a a(q0,r) a

we have

rkF r im \ rkF
x± - iqo rr- ± 1 - -—g0 (o±l)m \2kp kFr m

"2 *£ - r±L JfA\ _ *fxo - «go -. «go — \a -4m m m \ 4fcj7/ m

tf
_ rjcpf _ jr_\ ff2 - fc2-

a;c - «go £o - iqo H a - —— +
m m \ 4kp J m

so that the denominator

-igo + y/x+ - iq0 y/x_ - iqo -iq0 H \fa2 - 1

m
rkp r

a 1-

m \ 2kp
yjo? - l\

2kpJ

In the computation above we used

y/a - ly/a + 1 sfa2 - 1

and

a + ya2 — 1 a

These are justified by the fact that a lies in the right half plane and consequently

sign Im a sign Im a2 sign Im y/a2 — 1 sign Im a —sign go

Observe that

r \ 2kp\ 1 2kF r
a - — 1 -I a A

2kp J \ ra J a r 2kF

2kF r2a - ——
r 2kF

r 2kp 2im
2kp r kpr
2m (r2 -4k\
kpr \ 4m
2m
kp-r{X°-lqo)
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Therefore

4(xp - iqo)(xc -iqo)
[-iqo + y/x+ - iq0 yfx- - igo]2

and

2kp \ x,. — iqo

ra ; x0 - iq0

/ y m(xo - iqo)

l-^lra rkp(a- ^A) -fc2

4g2
_

2kp\
ra J \ 4rkpa — r2 — 4k2F

2fcF\2/ 4g2

m r2 — 4kF - 4imqo

4g2
Ä(«b,r;C) —In 1 M + -In 1 + 127T \ ra / 4jt \ r1 - 4kF - 4imqo

and

Re(2fe-^)=Re(Re«-ï)>

signlm (2Ì7 - a) -sign<?() -signlm (l + -

0

iir-
-4fct. —4imgo

We now start the evaluation of A^ in low order perturbation theory. The first order

computation is trivial, because the only diagram which contributes is

D C<t Xu(s - t)

This is indepedent of s and t because û 1. Hence this diagram contributes to A0. but no

Ae with £ > 0.

For a general interaction, the connected, amputated, second order diagrams that

are two particle irreducible in the particle-particle to hole-hole channel are
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G 2(2

Q
26 » t 3 - * « <->2c

and a fourth diagram, G2d, which is the reflection of G2b about a horizontal axis. Clearly

G2d(s,t) G2b(-s,-t).
The second order contribution to K(s,t) is

A(2)(s, 0 2G2a(s, 0 - G2b(s, t) - G2b(-s, -t) - G2c(s, t)

It is computed as follows. In general, the sign of the combinatorial factor of a diagram

contributing to K^'i is —1)( —1)"( —1)# Fermion loops^ with the first factor coming from the

fact that K is the negative of the sum of all diagrams In this case n 2 and the number

of Fermion loops is 1 for G2a and zero for G20 and G2C- For this model, as for quantum

electrodynamics (see, for example, [IZ chapter 6-1-2]) there are no symmetry factors because

diagrams have no symmetries that leave the external legs fixed. There is, however one spin

sum for each Fermion loop. Hence any nth order diagram comes with the combinatorial factor

/ 1 1"+1( —2Ì* Fermion loops /jj j\

When there is a delta function interaction, the three diagrams collapse to

G2,

so that

(zt G S t M 0

G2a(s,t) G2b(s,t) G2c(-s.t)

Lemma II.5 Let /C2'(s. t) be the second order contribution to K(s, t). Then for so to 0

and |s|. |t| < kp

*(2)M) SIn
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is independent of s and t.

Proof: The value of G2a(s, t) is

d3k /((k+£=g)/g) /((k-*=*)/<£)G (st)= f dk /((k+^)/g)
2aV ' ; /R3 (2tt)3 i(k0 + ^) - e(k + *fS) i(fco - ^) - e(k - *=*)

By Remark (II.3), this is W(t0 - s0, \t - s|) for all |t - s| < g - kF. Corollary II.2 yields the

claim. ¦
For a delta function interaction, the possible third order diagrams are

a S J (zt G36 0 (l

t G3d= 8 \

Lemma II.6 The third order contribution to K(s,t) is

kW(s, i) G3a(s, - t) H C3a( -s, t) - G3b(s, t) - G3b(-s, -t) + G3c(s, t) + G3c(s, -t)

Proof: We need a list of all four-legged graphs having three ^X^ vertices that are

connected, amputated and two particle irreducible in the two-particle to two-hole channel.

We first draw only the external legs and the vertices to which they belong. The following

basic configurations are possible:
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>Z -< ><

>- -< X
The configurations in the second line cannot be completed to two-particle irreducible

diagrams because they each contain a vertex with two particle external lines and two hole internal

lines or conversely. The first two configurations in the second line cannot be completed to

amputated diagrams because they each contain a vertex having only one internal line. The

last configuration always yields a disconnected diagram.

Let us now consider the first configuration. If both internal legs of the upper vertex

are connected to the same vertex the resulting diagram is either disconnected or not amputated.

If they are connected to different vertices one gets the following two configurations

:7c
The remaining internal lines connect to form either two tadpoles, which do not yield amputated

graphs, or a bubble.

For each of the two graphs, the momenta ±s, At may be assigned to the outgoing, resp.

ingoing, legs in four possible ways yielding G3a(±s,±t) and G3b(±s,±t).

Similarly the second basic configuration above yields G3c(±s,±t) and G3a(As, At).

Observe that G3d(s, t) 0 because the tadpole renormalizes to zero exactly. Therefore

K(3)(s, t) is a linear combination of G3a(±s, it), G3b(±s, ±t) and G3c(is, ±t). By

symmetry the coefficient of G3a(s, t) in the linear combination will agree with that of G3a(—s, —t)

and so on. We now determine the coefficients of G3a(s,t) and G3a(s, —t). We first find all
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graphs including interaction squiggles that collapse down to G3a(s, t) and then we determine

the combinatorial coefficient for each. To find the graphs with squiggles, just replace each

vertex "^X^ by S or V> This gives

By (II.1) the combinatorial factors for these diagrams are -2,1,1,1 respectively. The first three

combine to give G3a(s,t) a net factor of zero, while the last gives G3a(-s,t) a coefficient of

1. The remaining terms are computed similarly. ¦

Theorem II.7 Let s0 to 0 and |s|, |t| kF. Denote by 29 £ [0,7r] the angle between s

and t. Then, for sufficiently large ultraviolet cutoff g,

a) there are constants Bç^B'^ depending on g such that

m „cost
4-7T2 sino

Ü3a(s,t) B'€ + ^9^ + 0(l/£)

Be- ì]T(-l)Vcos(2^)-r-0(l/g)

where

h)

oi
1 1 1 1 1 M

- 1 ±
2£ \£+l £+2 £+3 £ + 4 )\

G36(s,t.) ^(l-m2)+0(l/g)
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C)

G3c(s,t)
(2n)

Corollary II.8 Let s0 t0 0 and |s|, ]t| kF. Denote by 29 G [0, n] the angle between s

and t and let
oo

A-(3)(.M) ^+E"'('0S(2^)
e=i

be the Fourier series expansion of K^3\ Then,

at 1/1 1 1 1

_2£ \£+l £+2 £ + 3 £ + 4

with the error 0(l/€) uniform in £. In particular,

± G(l/g)

ai _m2(ln2-l)+0(l/g)

and for all > 2 and sufficiently large g

ai < a e < 0

There is a constant Bç such that

K^(s,t)=A2(^-20)S-}A + B'll + O(l/€)
4nz cos 9

9(0)

0.5

0.0

0.5

1.0
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Proof: By Lemma II.6 and Theorem II.7 there is a constant B'e such that

AT<3> (s, t) + J2 o-t cos(2£0) - B'€

i=i

This proves the first two claims. The last one follows from

ai > a2 > • • • > 0

0(l/g)

The rest of this section deals with the proof of Theorem II.7. By scaling we may,

without loss of generality, choose kF 1. Part c) of Theorem II. 7 is an immediate consequence

of G3c(s, t) W(so - to, s - t)2. See the proof of Lemma II.5. The proofs of the other parts

depend on the following lemmata.

For s,t G IR2 with |s| |t| fcF 1 define

A(q0,r,9) ±- [2n /|q.=r ig0 - e(q-s) ig0 - e(q-t)

where 29 is the angle between s and t. Here the integral is over the circle of radius r in

IR with respect to the standard length element.

Lemma II.9 Let so to 0 and |s|, |t| kF. Denote by 29 the angle between s and t.
Then there is a constant const/, depending only on the cutoff function f, such that

\\G3a(s,t) - const/- —— / dr dq0 A(q0, r, 6)R(q0, r; €)\\ =0(l/€)(2ny Jo /-oo Moo

(2

i rOO />00

G^s-t) - 77TA2 dA dq0 A(qo,r,0)W(qo,r)\\ 0(l/g)
*") ./0 /-oo llo°

Proof: We must compute the difference between

r r« ri f ts rf3fc /(k/g) /((k+q)/g) /((q-)/g)/((q-*)/«)
<~T3a\»,^) - J (2tt)3 (2tt)3 -ifc0-c(k) t(fco+9o)-«(k+q) tqo-e(q-s) t<j0-f'(q-t)
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and

/•OO /»OO

2^5-/ dr dq0 A(qo,r,0)R(qo,r;€)
Jo J-oo

j&j+l fé
(2a

Jt] J -oo
1

)3 i(-fc0+«o/2)-e(-k+q/2) 1(fc0+<?o/2)-e(k+q/2) ,<,0-e(q-s) i9o-e(q-t)
|q|=r |k|<<r

f rf2q. f rf2k / dqp f dkz 1 1_
L2 <^* iik+q/zKc: ^i 2* V 2* -ifco"e(k) '(fc°+*)-e'|k+q/2|<e J J

For fixed g < oo the integrand of G3a is absolutely integrable and we may choose any order

of integration. Exchanging the angular q and go integrals as well as the go and k integrals

is justified by absolute integrability with respect to the exchanged variables for almost all

values of the non-exchanged variables. Evaluating the fco and gu integrals by residues

/dqp I dkn 1 1

2tt / 2tt -ifco-e(k) i(fco+«o)-
1

e(k+q) tqo-e(q-s) tgo-e(q-t)

[X++— + X--++ Ì e(k)+e(k+q)-e(q-s) e(k)+e(k+q)-e(q-t)

+ [X+ + -+ + X +-J e(k)+e(k+q)-e(q-s) e(q-s)-e(q-t)

+ W + + + - + X + J

e(k)+e(k+q)-K(q-t) e(q-t)-. (q-s)

where Xe,.e2,€3,u 's tne characteristic function of the set of k and q for which the signs of

e(k), e(k -I- q), c(q — s) and c(q — t) are ei, e2, e3, £4 respectively.

First consider the X--++ term. For this term we must have |k|,|k + q| < kF.

Consequently |k], |q| < 2kF so that

X- + + [/(k/g)/((k + q)/g)/((q - s)/g)/((q - t)/g) - X|k+q/2|<c] 0

For all other terms |q| < 2fcF so that /(q - s)/((q - t)/g) 1. fn order for

/(k/g)/((k + q)/g) - X|k+q/2| to be nonzero, |k| must be bounded above and below by

const g. Consequently all X--t3u terms are zero. On this domain, the integral over k and q

of the X++-- term is bounded above by const/g2.

So far, we have shown that

i /.oo /-OO

G3a(s. t) - —— / dr / rigo A(q0, r. 9)R(q0, r; €)
(2n)2 Jo J-oo

f jTçi_ f jAk_ [v /(k/g)/((k+q)/g)-X|k+q/2|<g 1 (Ui/rf)~ J (27T)2 J (2,r)2 [X++-+ [e(k)+e(k+q)-e(q-s)][e(q-s)-e(q-t)] + S ^ Lj + l^V «^
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The difference between then integral above and

L p* L2 w \-x++- -•2e(k)[e(q-s)-e(q-t)] + Sf+t

is bounded by 0(l/g). Finally, note that, for |q| < 2fcF and k in the support of the difference

of cutoff functions /(k/g)2 - X|k|<g, we nave |k|, |k + q| > kF so that

f AISL. f JX\v /(k/g)2-X|kl<g J
y^ (2^)2 7R2 (W Lx++"+2e(k)[e(q-s)-e(q-t)l J

/" d2k /" ji!q r v _ ^ v n /(k/gj'-xn.Ke
/

s
(2tt)2 /

2
(27Tp LA|q-s|<fcFA.|q-t|>fcf X|q-t|<fcF A|q-s|>fcF J 2e(k)[e(q-s)-e(q-t)]

Jm?V*F k^^ ~ *|k|<<t' ^W 7k3 ^* ¦«»-'•(q-8) wo-e(q-t)

/ (^(/(k/ff)2-X|k|<g)^H/(0,|t-s|)

-^/R2(&(/(k/«:)2-xiki<g)^

-^/ ^(/(k)2-X|k|<i)^+0(l/g2)
JlR2

In the second last equality we used Corollary II.2.

The proof of the bound involving G3b is similar but easier. ¦
Recall that, for go,r € C r ^ 0

r im
a(qo,r) go

2 r

If a(g0.r) ^ [—1,1] the quadratic equation

z2 -2a(q0.r)z+ 1 0

has two different roots whose product is one, but which are not complex conjugates of each

other. The root with absolute value bigger than one has been denoted a(go,r).

Lemma 11.10 Let s,t 6 IR2 with |s| |t| kF 1 Denote by 29 the angle between s
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and t. Then for each r > 0 go ^ 0

4m2 a(r,g0) + a(r,g0)_1
A(q0,r,9)

1

t «(r, go)-a(r, go)"1 a(r,q0)2 + a(r,q0)~2 - 2 cos(29)
2m2 1 a(r, g0)

r a(r, g0)-a(r, go)-1 a(r,q0)2 - cos29

4m2 a(r,q0) + a(r,q0)-1 1

r a(r, g0)-a(r, g0) l sin26>^
^a(r,qo)-2nsin(2n9)

Proof: Put a a(r, qo), a a(r, go). We identify IR2 with C in the usual way and

write g0 rz with |z| 1. Without loss of generality we may assume that s and t are

complex conjugate, so that

s e'e t s er'6

With this notation

1 1

igo-e(q-s) iq0 - e(q-t)
4ni

1 1

2imq0 — ((rz — s)(rz — s) - 1) 2imq0 — ((rz — s)(rz — s) — 1)

4m2 1 1

r2 sz - 2a + sz sz — 2a + sz
4m2 1 1

r2 sz - 2a + A sz - 2a + ±
4m2 1 1

r2 (¦*-«)(!-£) («-«)(l-ds)
4m2
~AT (2-sa)(,-sa)(l-^)(l-^)

we apply the residue theorem in the region { z 6 C | \z\ > 1 } and get

A(q0.r,( -[2rt 7|q|=r

1 1

¦In 7iq|=r «go - e(q-s) ig0 - e(q-t)
2m2 f rdz 1t rj.

J\z\ l l-nr" -l\z\ l IZ

-4m2

(Z-sa)(z--sa)(l-^)(l-A,)

sa(sa - sa) (l - ^) (l - 4,) sa(sa - sa) (l - 4,) (l - =£*)
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4m2 1

sa — sa ' sa — sa
4m2 a + a 1

r a-a-1 a2 + a-2 - (el2e + e~l2e)

This proves the first formula. The second is an immediate consequence.

To prove the third, we use

^/2 sin(20)sin(2n0) _
1 f*'2 (e2lfl - e~™) (e2mB - e~2lnS)4 r<2 sin(26>)sin(2n6>)

_ J_ [*" (e2W - e~2W)

n Jo a2 + a-2 - 2 cos(26>)
~~

2tt J_n/2 a2 + a"2 - te2i6 _|_ e-2iej

(z-l)(zn- \)
^i J\z\=i (z - a2) (z - a-2)

a -2n

Recall from Lemma II.9 that we wish to evaluate the integrals

1

(2t

fOO /«OO

-!— [ dr I dqo A(q0,r.9)R(q0,r;€)
M2 Jo

1 />oo />oo

-—2/ (ir / dqo A(qo,r,9)W(qo,r)
\2nY Jo J-00

In Proposition II.1 and Lemma 11.10 A(q0,r.9), R(q0,r:€) and W(g0.r) have all been

expressed as functions of a(go, r). We perform the change of variables

w a(q0,r), w a(-q0,r)

Then

r - [W+-+WA- — (tu-f-iö) (u>+-
2 \ ui w/ 2ui y w

ir / 1 _ 1

go -7— [w + w - —
4m V u> w

so that

dr — w ] dw H—— [ w — — ] dw
2w V "V 2u> \ w/

dg0 — w h w - — ] dr + -— I — w dw - — I w - — diu
4m \ tu w / 4m \ u; \ w / w \ w

dg0 A dr :—— w I w — — J dw A dw
4m ui V w I V w
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Therefore, by Lemma ILIO

"" I i) (w 1)w+w L
wj V üJ/ui —— ui2 + w~2 — 2cos29

U)2 + 1 / 1

A(q0,r,9)dqoAdr=—2 w - - [ w - - —f _
dw A dw

^ „ „ dw A dw
w4 - 2ui2 cos 29 + 1 V ÜT

Similarly, by Proposition II. 1

nr/ \ m m 1
_

1

W(qo,r) -— + -— w hu- -27T 47rr \ w w

m ml. _ I 1

1 (w + w) w —-27T 4-nr w \ w

m m w — 1/w m m \w\

2n 2nw+l/w 2n 2n \w\2 + 1

Under the change of variables, the domain of integration { (go, r) 6 IR | r > 0 } becomes

fl { w € <C \ \w\ > 1, w + w + w~l + w'1 > 0 }

{ w e C | M > 1, Reu; > 0 }

Neither A(go, r, 9) dqo A dr nor A(go, r, 9)W(qo, r) dqo A dr are absolutely integrable on this

domain. The same holds for A(qo,r,9)R(qo,r,€)dqo A dr. Therefore we add and subtract

counterterms that are later integrated separately.

Lemma 11.11

a)

j JA(go,r,0) (W(qo,r) + %) - -~^-—, j dg0dr m2(l - ln2)

J [A(q0, r, 0) - A(q0, r, n/4)} (R(q0, r, C) + f ln r) dq0dr 0(l/<£)

b)

Proof: a) Since

dg0 A dr i 1\ I_ 1

w w
r(a(q0,r)2-1) m\w\2 \ wj \ wJ (w + i)2 _ 4

dui A dw

1 1 dui A dw
mw2 — 1
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the differential form

w i[A(qo,r,9)(W(qo,r)+^)

im f \w\ - 1 (u>2 + l'
27rr(a(,o,r)2-l)

1

dgo A dr

2n \\w\2 + 1 w4 - 2w2cos29 + 1 w2 - 1

is absolutely integrable on ft.

Since u> is invariant under the involution w —> —w

1 ——z dw A dw

/7A(qo,rie)(W(go,r) + g)- ^ v } dg0dr f u, \ [ oj
J I 2*7-(a(9o,r)2-lJ J Jn 2 J J weC |„>i }

Writing w pC with |(| 1 we get

,2 /-oo^„ r ^
>K -i Ci*."r±( s^.rt(/n 2?r /j p /|C,=1 C V

(p2-c2)'^-' P-C" +1 1

p2 + 1 p4C4 - 2p2C2 cos 26» + 1 p2C2 - 1

Observe that for p > 1 all poles of the holomorphic differential form

*i?-?)(^ ^^ —Ì
C \P2 + 1 p4C4-2p2C2cos2ö + l p2C2-l/

lie inside the disk of radius p~' < 1, with the one exception of the pole at infinity. The

residue of this form at infinity is

Therefore

1 p2 - 1

p2 V, P +
1

L u) 2m' r°°dp

ji pj p2 + i

p2(p2 +1)

m2fl-ln2)

b) Put

Then

Using

_. m / 2
F(qo,r) —In [r2tt V. a(ço,r)

m
A —in

4g2

771 771

ß(g0,r,g) + — lnr F(g0,r) + — In 1
27T 47T

47T \r2 — 4imqo — 4

r2 — 4imqo — 4

4g2

In 1
r2 — 4imqo — 4

4g2
< const In 1 + const

g2

\[A(qo,r,9) — A(qo,r,n/4))dqQ A dr\ < const -—u\dw Adw\

for \w\ > 1

for \w\ » 1
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and the fact that [A(g0, r, 9) - A(q0, r, 7r/4)]dg0 A dr is L1 on fl, uniformly in 9, one sees that

I / [A(qo-,
\Jn

r,9)- A(g0,r,7r/4)]ln 1 +
r2 - 4imqo — 4

4g2
dgo A dr < const

lug
g2"

Observe that F(qo.r) is continuous outside { (r, 0) | 0 < r < 2 } Under the

coordinate change (go.r) —r (w,w) this set is mapped to { w € C I |tu| l,Reui > 0 } so

it lies at the boundary of ft. Since F(q0,r) has only logarithmic singularities, [A(qo,r, 9) —

A(q0, r. n/4)]F(qo, r)dqQAdr is absolutely integrable on fl and its integral over fl is continuous

in 9. We show that this integral vanishes for 0 < 9 < n/2 by writing

L [A(qo, r, 9)-A(qo, r, n/4)]F(qo, r)dq0 A dr

f 2im(w2 + l)w2cos29 1 \ dF
/ -,—: 7~,—: 7. r \ w -\ dui A dw

Jn (w4 + l)(w4 - 2w2cos26> + 1) \ w) dw

2im(w2 + l)w2 cos20 1

(w4 + l)(w4 - 2u2cos2ö+ 1) V" + A F(90'r)dw

Observe that 4? is a rational function of w and w. As in part a) it can be shown that the

first term is zero.

Put, for s > 1

/s { w e C | Rew 0, |Imw| > s }

Us { w e C | \w\ s, Reu > 0 }

By Stoke's Theorem, the second term is

2im(w2 + l)w2c.os29 _
1

- lim /i\ii/, ^^ + l)K-2u2cos2ö+l) yU>+-f,lF(lo,r)dw

We claim that F(g0.r) is an even function on /i Indeed, for f > 1 one has

r m i t
Z

lim — ln(r ;
Veo" 2n <x(Qo,r) 27T V i»<

and as w G ii goes to Ait one has ±go /* 0, so that

4g2

m .„ m-hl/2 ± —i
2n

' " 4

r m iInn — ln
u-.±.i 47T y rt — iirnqo — 4

i=^ln(-g2T,;0) ^ln(g2)T-
/ 47T V ; 47T V '



182 Feldmanetal.

Consequently, the integrand is odd on /i and

f 2im(w2 + l)w2 cos29 1\
ÌZ /,. (w4 + l)(w4-2w2 cos 20+1) A+A F{qo>r) dw °

For u0 with |u0| 1, Reu0 > 0, ±Imu0 > 0

Jlm„ F(9o, r) ^ ln - w0 + wo" + — +^ln( -^ ^ =F «0
„In0 2?r V2 V u0 wa J J 4n \(Row0)2-l

I m ,~,t ,n m ^ rn g2 \ m \(-ln(2|Imwo|) i -i) A (-In (^—j) T ^]
™ln2g
2tt

Since (w4 + l)(w4 — 2w2cos2ö + 1) has simple zeroes

f 2im(w2 + l)w2 cos20 1 \ _im / -—j tt—-. 7. r WH F{qo,r) dw
s\\JUs (w4 + l)(w4-2w2cos26> + 1) V w)

f 2im(w2 + l)w2cos29 l\m, ^im / t—, 77—, -t, 7, r [w + — — hi 2g dw
*\iJu3(w4 + l)(w4-2w2cos29+l) \ w)2n

1 f 2im(w2 + l)w2cos29 1 \ m _lim - / —; -V-: '— w + - — »i 2g dw
«Ni 2 7H=.„ (w4 + l)(w4 - 2w2co&29 + 1) V wj 2tt

0

by the residuo theorem.

The harder counterterms of Lemma 11.11 are treated in parts a) and b) of

Lemma 11.12 For 0 < 20 < n

a)

(2~

b) There is a constant Ao such that

i-OO /«OO

ipr / dr / dg0 A(q0. r, 9)
Jo J-oo

/•OO l-OO

lyr dr dqo A(qo,r,9)\nr A0+^g^2An.is'm(2n9)
Jo J-oo n>2

a i 3m m n cos Ô- Ao + "17 ~ 2^SÏÏ7ë

where

A _ (~l)"m [ 1 2 l]""-I ~~ 2tt [ 2n+2 ~ 2n 2n-2]
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Proof: a) Let s and t be of length kF and separated by an angle 29. Then

d3g 1 1

(2

i /«OO />00 /•

—to / dr I dqo A(q0,r,9) j*") Jo J-oo Jŵ3 (2tt)3 ig0 - e(q - s) ig0 - e(q - t)
mW(0,\s-t\) 2n

a(r,qo) 2 + -r-^ Y) a(r,qo)~2nsin(2n6

b) By Lemma 11.10

At a\ - 4m2 a(r > 9o) A a(r, qo)~l

r a(r, g0)-a(r, g0) *

Evaluating the go integral by contour integration methods one sees that

A0

is finite.

1 [°° f°° 4m2 a(r, gp)+a(r, gp)'1 2

-^ / dr dq0 -—r a(r,q0) "lnr
n) Jo J-oo '* ''* " 'v '' "'(2tt)2/o /.oo r "(r, g0) - a(r, g0)

We now evaluate, for n > 2

oo />oo1 z*00 /•

An-^j2nT2L dA-
4m2 a(r, g0) + a r, g0 ,_2nirfgo 7 ; -, rn a(r,q0) lnr
r a(r,q0) -a(r,q0)

Using the coordinates w, w as above,

mi
A„-i »>---] w H I —^ ln -(w + w) I 1 + :—r.

UI I w 2ll
dw A dw

mi
~~4n^

1 -\ - ] —r— In - (ui + w) 1 dw A dw
w2 I win V 2 '

Since

mi
'Ait2

ni f 1

t2 7n lw

Jn \ «¦¦

+5/0(1-À)(1+i)i1"(1+sî)'"°A'"!'

^fH,?H)(1+^);4-'°(<+ü?
we have

47T- JnV w2J(1 + u2ju2« ln - (w + w) dw A dw

mi f
~^Jn 1 —-^ ln I -(to + w) dF(w, w) A dw
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where

F(w, w)
1 1 1 \ 1

+
1 1

+2n+lVü2r'+1 w2n+l } 2n-l\w2n-1 w2""1

Observe that F vanishes on the imaginary axis. Using Stoke's Theorem

An-l mi
4n^ w,w)dw

,w)dw A dw

mi
41t2

lAi'-A'AA"1
mi f f 1 \ 1 „,
At Jn V u"- / w + w

/11 —z^ I In I -(w + w) F(u>, w) dw
i»i=i \ wl J \2 J

^LdppLJi (1_?)pcTpcmi
4^ tf(pC,p<-1)

J i<-i=i v \2 / w

+^/ dp
2tt p>i

1 1/1+
1 1 1 1

mi
''ilr2

u„ ^>n x

+ (-l)nm
2tt

(2n + 1) p2n+3 \2n + l 2n-l/p2n+1 (2n - 1) p2"-1

w + w"1) dF(w)

1 \ 1 1 11 1 / 1

+2n+12n + 2 V2n + 1 2n - 1 / 2n 2n - 1 2n - 2

where

F(w) «2n+2 + Ä2 + (-D-2(2n+l)(2n + 2)

+ — — — I w2n + -A - ("1)"2
27i V 2n + 1 2n - 1J \ w2n y ' j

+
1

(2n- l)(2n-2) V.
^"-2 + ^32 + (-D"2

By the Fundamental Theorem of Calculus, the first term

mi f /1, ,,\ - mi— yt ln(-(w + w-1))dFH= ¦-
i»i=i \2

Reu>0 v
4tt2

/* -, w2 - 1

/ F(w) — dw
/ i-i=i

v ywu2 + l)

'Al / F(W) I 2 ~- *"8t2 7m=i "

mi /
8t2 7t.Ni/

'
w(w2 + 1)

2

V

W(W2 + 1)
dw
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by the Residue Theorem. Because the sum over n > 2 is absolutely convergent it is straight

forward to justify the interchange of the sum over n with the integrals. It is also straight

forward to sum the Fourier series using

20 -£(-i)»lsin(2n0)

Proof of Theorem II.7:

a) By Lemma II.9 and Lemma II.lib

G3a =const / + -^ i A(qo, r, \) (R(q0, r, g) + % ln r)dq0dr

/•OO /»OO

_ (2tV / dr / dq° A(9o,r,0)lnr
Jo J — oo

By Lemma II.12b,

/¦oo /-oo sin(2nö)^ dr dqoA(qo,r,9)\nr %AoA%Y,A^-aÄ29
JO J-oo „>2

x-^ / / (008(20) n evenN
^Ao+fJ2An-Acos^n-^9 + cos^n-^9 + ---+\l noddj

oo oo

const o+f^ cos(2£f?) ^ Ae+2k

t=i fc=o
oo

const 0A^^2(-l)eae cos(2£9)

i=i

Putting

B€ const/ -consto+ j^ / ^(go, r, f )(R(qo, r, €) + fMnr)dg0dr

we get the desired result.
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b) By Lemma II.9, followed by Lemma II.11a and Lemma II.12b

since

G36(M)-7ëîï(l-ln2)y ' Moo
/•OO /"OO

WhA / dr / ^oA(9o,r,0)W(go,r)-^(l-ln2) + 0(l/€)
Il v 'Jo J-oo M°°

||-(W [ A(qo,r,9) dqodr + j^ [ * dq0dr\\ + 0(l/g)
II v ' J ^ ' J r[a{q0,r)'-l) lloo

|l^ + (w / ; \, ii «fr-HI +0(1/€)
II v ' J r(»(»/) -1) "oo

0(l/g)

Z*00 dr r°°
_

dqp _2n_

Jo r J-oo «(go,'")2 - 1 m
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Appendix. Restriction of the Bethe-Salpeter Equation to the Fermi
Surface

We use the Theorem stated in §1 and standard properties of the two point function

G and Bethe-Salpeter kernel K to show

Proposition A.l Let ßo(X) be the solution of
*3 — ' d2t /(t/g)2

1
aX3 ^ f d2t /i

Then, for sufficiently small X there exists a ßc(X) close to ßo(X) and a nonzero function

x(so-1s|; A) that solves the £ 1 equation (1.2)

x(s-o,|s|) -i Y. I ^Ki(so,\s\,to,\t\;ßc)\G(t)\2x(toM)
toe^r(2Z+l)-/

in perturbation theory.

For the proof of this Proposition we use the following properties of G and K

sup|CWI<7f/(l^ (A.1)
ß>\ |zfc0-e(k)|

sup
/3>1

G(k) - WW <
const A/(jk|/g)

|ifc0-e(k)|ifco — e(k)

There exists an e > 0 such that, for all sufficiently small A,

supsup|/r1(fc0,:c,£o,|t|;/?)-Z!Ti(f,£o,|t|;/ö)| < const A2[fco + \x - kF\2]e/2 (A.3)
/3>1 t

|üTi(f, f; ß) - Ai)| < const ~ (A.4)

where f (5, kF). That these properties are valid to all orders of perturbation theory will

be proven elsewhere.

The first property and (1.4) implies

\ £ / d2k|G(fc) |2 < const In ß (A.5)
P fco J

sup^E /d2k|C7(fc)|2(fc2 + e(k)2)e/2 < conste (A.6)
/3>1 ß fco J

For convenience we now suppress the dependence of Ki on ß.
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Lemma A.2 Put, for ß > 0, Wß { (k0,x) | fc0 e |(2Z + 1), 0 < x < 2g }. Then then-

exists an e > 0 such that, for all sufficiently small X and ß > 1,

a] mn
1 V- / dH \Ki(kg,x,to,\t\) - Ki({,to,\t\)\ir,u^2 ^a) SUP A IA, \ ATA2 fl2~n i21f/2 \(*(t)\ <constA In/*

(ko,x)€Wß ß to€^z+1)J (27r) [fc^+|a;-fcF|2]f/2

b) ,.^Jwt^,/^''1^"r-tyit|'''c'''''''--''',''ff
< const A2 < 1/2

c) ^ E /7^l^i(f,'o,|t|)-/ï1(f,f)||C7W|2<co..stA2
p t0ef(2Z+i)'y *• '

//ere a// £Ae constants const are independent of ß.

Proof: By (A.3)
|IC,(fco,i,fo,|t|)-.K-i(f,to,|t|)| 2

[fc02+|x-fcF|2F2 - TOnSt A

Sc parts a) and b) fellow immediately from (A.5) and (A.ß). By (A.3) and the symmetry of

|Ä"i(f,io, |t|) - K(f,f)\ < const X2[t2o + e(t)2]f/2

Again, part c) follows from (A.6). ¦

Proof of Proposition A.l: If x obeys

l + X(so,|s|) -£ Y [T^Ki(so,\s\,to,\t\)\G(t)\2[l+x(to,\t\)} (A.7)

then 1 + x obeys (1.2). We look for a solution obeying x(f) 0. Restricting (A.7) to the

Fermi surface gives

p
'--3

The difference between (A.7) and (A.8a) is

l E /(2^^1(f,«o,|t|)|C7(0|2[l + x(<o,|t|)] (A8.a)

t0eS(2Z+i)

x(.so, |s|) - Ì Y I (&[^i(so, |s|, to, |t|) - Kx(î, to, |t|)]|C(r.)|2[l + x(t0, |t|)]
t0ef(2Z+i)

(A.8b)
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Move all the x's in (A.8b) to the left hand side.

X(s0, |s|) + } Y J ï£-M*i(«o, |8|,to, |t|) - ^i(f,to, |t|)]|G(t)|2*(*o, |t|)
t0gf (2Z+1)

i E /(^[^i(so,|s|,ro,|t|)-/r1(f,to,|t|)]|C?(t)|2
to€£(2Z+l)

(A.9)

Define the norm

llxlke= sup [tf+ ia._jL-.|awalx(*o.»)l
(fco,œ)6f (2Z+l)x[0,2C] 1K0 + F KF| J

and the associated Banach space

Bß,t { x ¦ I (22 + 1) x [0,2g] -> C | Hxll/j.« < oo }

By Lemma A.2b, [/^(soi |s|, to, |t|) - Ki(f, to, |t|)]|G(t)|2 is the kernel of an integral operator

on Bßt€ whose norm is bounded by one half for all sufficiently small A and all ß > const.

Furthermore, by Lemma A.2a, the right hand side of (A.9) is an element of BßtC with norm at

most const A2 In/?. Consequently, for each ß > const, (A.8a) has a unique solution Xß.x 6 Bß)(

and this solution has norm at most const A2 In ß.

We now show that, for each sufficiently small A, there is a ß(X) such that Xß(\),\

obeys (A.8a). Indeed (A.8a) is equivalent to

l -^AiE/(0|G(t)|2

- JE [ T^Ki({.t0,t)\G(t)\2Xß,x(t) - ^Z [ é^[Ki(f-to,t) - Ai}\G(t)\2
to J to J

-<•*! v f d2t /(t/o2- ß j-< J (2PAt2+e(t)2

AM^^3)Ef^\G(t)\2 + Ì^YjlÙA{\G(t)\2-^} (A.10)
to ' to

- -3 E / (|^^i(f,to,t)|G(t)|2^,A(*) - | E / ^[A"i(f,io,t) - A!]|G(t)|2
to J to J

As observed in (1.4),

^E/^t^7f -g«A3(ln/3 + 0(l))
to J
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with const > 0. Similarly by the main Theorem, (1.4), (A.2) and (A.5)

l(Ai+aX3)Y [rlA\G(t)\2 0(X*)(lnß + 0(l))
to J

*E /'ï^[\G(t)\2 - $A&}=0(X*)(lnß + 0(l))
to •'

Since K-i. 0(X2), \\Xß,x\\ 0(X2\nß) and (A.5)

JE [ j^Ki({,to,t)\G(t)\2Xß,x(t) 0(X4)lnß
to J

Finally, by Lemma A.2c and (A.4),

lßT.[^[Ki(iAo,t)-Ai]\G(t)\2
to J

~ß E / jfà*[Ki{t, to, t) - Ki(f,f)]G(t)\2 A \ E / j$fc[Ki(t, f) - Ai]|G(t)|2
to J to J

0(A2)

So (A.10) is of the form

l + 0(X2)=^X3(lA0(X))lnß

Since both sides of (A. 10) are continuous in ß, it has a solution of the form

In/? =-^3(1 + 0(A))
maXó
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