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On Preparata’s Theory of a Superradiant Phase
Transition

By Charles P. Enz

Département de Physique Théorique, Université de Genéve
CH-1211 Geneva 4, Switzerland

(24.VI1.1996)

Abstract Expressing the non-relativistic matter-radiation coupling in eigenmodes within dipole
approximation the resulting equations of motion are analyzed. Specific stationary oscillating so-
lutions at resonance in two-level approximation are found for which conditions are given leading
to a minimum of the total energy that is lower than the energy of the non-interacting ground-
state. The main result describing superradiance without population inversion is compared with
Preparata’s formulation.

1 Introduction

In a recent fascinating little book Giuliano Preparata has reviewed his work on a new
theory of matter in which the vacuum fluctuations of the electromagnetic field couple to an
internal resonance of the matter system such that this coupling gives rise, in certain cases,
to a non-perturbative, "superradiant", groundstate. ' This program is quite ambitious
since Preparata hopes to explain in this way the known collective phenomena of condensed
matter such as the Mossbauer effect, superconductivity, superfluidity, ferromagnetism, the
particularities of water and more. Proceeding by analogy, replacing the electromagnetic
by the pion field he also offers an explanation of the shell model of nuclei and other strong-
coupling effects.

Since if true, Preparata’s claims have far-reaching consequences for the understanding
of the physics of condensed matter, it is of importance to subject this theory to an indepen-
dent examination. This is the purpose of the present paper in which Preparata’s elegant
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field-theoretic and path-integral methods are replaced by more conventional means. I will
follow Preparata’s exposition described in Chapters 1 to 3 of his book as well as in earlier
lecture notes  in its essential steps while using an independent formulation and notation.

"Superradiance", the phase transition of the radiation field coupled to a matter sys-
tem, has a long and controversial history going back to the seminal paper by Dicke of 1954
where this term was coined and where the "Dicke Hamiltonian" was introduced which
consists in a two-level system coupled to the single electromagnetic mode resonating with
the system. 3 The mathematical problems related with this model have been investigated
in depth by Giinter Scharf * and by Klaus Hepp and Elliott Lieb. °> The last two authors
have determined in particular the groundstate of the Dicke Hamiltonian which is also the
problem addressed in the present paper.

But before being able to enter the subject we must clear away a serious roadblock
which has the form of a "no-go theorem". ® In Ref. 6 the well-known fact is derived that
it is always possible to locally gauge away the vector potential A. This follows from the
identity (see, e.g. Eq. (31.3) of Ref 7)

ett0/elp 1 A (r e O/ = p 4 S(A(r,t) - Volre) . (L1)

valid for any gauge field ¢, by choosing, for any path through r, ¢(r f A(r',t)-dr’

For the matter system the dipole approximation then lmphes that one may have
A =0 at a given atom but certainly not in a whole "coherence domain" (Ref. 1, Sec. 3.1)
of the size of the wavelength A of the resonant radiation which is supposed to contain a
large number N of atoms. For the physics of the radiation, however, enforcmg A =0in
one space-time point is of no relevance since the radiation energy density &- (E2 + B2) is
non-zero even at this point, as follows from the relations

E:—EA;B:VXA (1.2)
C

and from the fact that the resonant radiation has a non-zero frequency Q = 2%¢. Here and

o=,
in what follows the Coulomb gauge
V-A=0, (1.3)

valid in the absence of sources, is used.

2 The coupled matter-radiation system

We define the matter system by the non-relativistic one-particle Hamiltonian

. —(p+ A( ))2+W(r) (2.1)

2m
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where the radiation-field operator A is written in Schrodinger representation and the field-
free part H, determines orthonormal states |¢, ) through the Schrodinger equation

Hy¢,(r) = e, ¢,(r) . (2.2)

Here r may also stand for other degrees of freedom and n may be a composite index. In
what follows we assume the matter system to consist of one-electron atoms defined by the
potential W which in a crystal may have the periodicity of the lattice.

In a second-quantized form, defined by the matter-field operator
Y(r) =) codn(r) (2.3)

where the c,, satisfy anti-commutation relations, the matter system is described by the
Hamiltonians

HO = (1/)[H0|¢ an CnCn »

1_ ('M—(P A+A- P ‘Ilvb Z/ d37‘A Jnn( ) CpCnr s (24)

nn’

sz(

—SATY) = 2 Y (4.A%8,)ck e

nn'

g 8 . . .
Here V' is taken as the coherence volume, r, = -*= is the classical electron radius and

h
jnn’(r) = %((ﬁ;V(ﬁn; - ¢n’v¢1’:) (25)

the matrix element of the current density.

To Eq. (2.4) must be added the radiation Hamiltonian
1
H, = —f d’r(E? + B?) (2.6)
8w v

where quantization is defined by the development of the vector-potential into eigenmodes
of the volume V,

4mhc? -
= ; oV R (2.7)
Here w, = c|k| and
1
—=(ay, + atk) == Qik (2.8)

QkE\/i
+

where a; and a, are the creation and annihilation operators, respectively, and k is a
composite index defined by £k = (£k, +\) where A = £ is the polarization index defined
such that the polarization vectors e, = e, satisfy

ek:e_k ;k-ekZO;ek,\-ekA,:-&)\x . (29)
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Inserting Eq. (2.7) into (2.6) and making use of (1.2), (2.9) one finds

h -
K, = 2 Z{w_lekQ—k -+ kakQ_k} (2.10)
k

where the first and second terms come from E* and B?, respectively.

The Hamiltonian H, in Eq. (2.4) deserves special examination because it may be
understood as a renormalization of H, (Ref. 1, Sec. 3.4). Making use of Eq. (2.7),

4mhc? e, e i M. \
<¢n|A2|¢n') = Vv \/tdkaQka' ((’bnle (k+k7) I¢n') E (211)
kk' k'

Here the matrix element of the matter system may be treated in dipole approximation
which means that we may set k + k' ~ 0. Inserting (2.11) in H, one then finds with
¥ c:cn = N, which is the number of electrons in the volume V/,

H, ~ 27rhc2re€£ zh: allekQ_k . (2.12)
Hence 5 i,
W, &=y ; o (@@ + 1 + 41040 4) (2.13)
where
K= 47r're% (2.14)

is the analogue of the reciprocal London penetration depth in the theory of superconduc-
tivity (see, e.g. Eq. (25.21) of Ref. 7). k or, equivalently the mass h—c", implies that Eq.
(2.13) gives rise to an equation of motion having the form of the Klein-Gordon equation

(see Eq. (3.2) below for A, = 0).

Taking for the average distance between the electrons (atoms) d = (V/N )1”3 ~
10" "cm and for the wavelength A = 27/|k| ~ 10" *cm so that in a coherence volume V
there are N ~ 10 atoms one finds x/|k| ~ 1. Note that for free but extended particles
with no internal degrees of freedom ("one-level atoms") it is H, which may be renormal-
ized away by a Bloch-Nordsieck transformation leading to a photon-pair theory. ® These
different treatments of the radiation field are possible because in dipole approximation
there is no gauge invariance. =

The dynamics is described by equations of motion
0= %[H0+H1 +H,+H,,0]. (2.15)

for "observables" O. In the case of the radiation field it is necessary first to define canonical
momenta. One easily verifies that the relations

1 . :
P, = ;;Q_k 1 i[Pry Qi) = Oppe (2.16)



Enz 145

are compatible with Eq.(2.15) for O = Q_,.

In Eq. (2.15) we also need H, which may be deduced from Eqs. (2.4) by inserting
(2.5), (2.7). One finds

Hy=-ihY Y A (R)Q_,cte, (2.17)

nn’ k

where the coupling function

4
A, (k) =ec nkaek “Wma (I s (2.18)
i1s introduced. Here the dimensionless matrix element
Vo (k) = Ef 4513"r'jm,_,(r)e_“"r ~v,,..(0) (2.19)
cJv

does not depend on k in dipole approximation.

For the radiation field the relevant equation of motion (2.15) now is
1. . K2
S Q=P= —(1+ 5)enQi + i;!\nn,(k)c:cn, . (2.20)

Here use was made of the approximate expression (2.13) and of the definition (2.18). For
the matter field the equation of motion (2.15) is just the Schrodinger equation

.. En )
G, = e, — S A (K)Q_iey (2.21)
n'  k

where the contribution from H, was neglected since, according to Eq. (2.12), —[H,,¢,] ~
H,c, /N which is negligible for large N.

3 The dynamics in two-level approximation

The physically important condition is the existence of a resonance of the radiation with a
specific transition frequency §2 of the matter system,

w, =N . (3.1)

As a consequence, only two atomic levels which we label n = 0,1 and only the radiation
modes satisfying (3.1) are assumed to be relevant. The energy levels defined in Eq. (2.2)
may then be chosen such that e, = 0 and ¢, = h§). We further assume that there are
no transport currents, j,,, = 0, i.e. the ¢, are real. Then ij,, = —ij,, and, according
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to (2.19) v = v,; = —v,, Is a constant real vector. The equations of motion (2.20) and
(2.21) now become

1 = n2 .
w—;Qk + wk(l ¥ F)Qk = ilyp(k)ctcy = ey ) (3-2)

and

In view of the fact that ) ¢fe, = N is a very large number it is natural to rescale the
dynamical variables which, in addition, may be considered to be classical. The resonance
condition (3.1) then implies that the dynamics separates into fast oscillations by € and a
slow motion which happens in the long time 7 = Qt. This separation is exhibited in the
following "interaction representation" of the variables defined in Eqgs. (2.3) and (2.7):

Qut) = 1 5 (n(r)e™ + a2, (r)e+i™) (3.4)
and _
co(t) = VNvy(7) s 01(t) = VN (r)e ™ (3.5)
where now
ToYo+ Y =1: (3.6)

Separation of the slow motion is obtained by equating all the coefficients of the fast
motions e*" in Egs. (3.1) and (3.2) to zero, a procedure called "rotating-wave approxima-
tion" in the literature (Ref. 1, Sec. 3.1). In the notation &; = day /d7T and 4,, = dv,, /dT
the slow equations of motion then are

1

v ; %
5 Yk + oy + gH = Avom (3.7)
valid for w, = 2 and
/ !
Yo = Z Apagyy 3% = —Z Ay - (3.8)
k k

Here we have introduced the dimensionless quantities p = nz/ k* and

1 /N \ [ pumc?
Ak = 5 ?AlO(k}Iwk=Q = ﬁﬁ-e Vv (39)

and the summation convention

Y= (2‘;)3 3 f LrAkS(|k| - %) (3.10)
A

k =+

where Ak ~ 27V "3 is a spectral width. In view of (2.14), (3.9) it is then evident that
the rescaled variables interact strongly with an effective coupling constant ev/N.
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For these equations of motion a first integral may be obtained in the following way:
Multiply (3.7) by 3", o}, and the first Eq. (3.8) by 75, equate the left-hand sides and add
to the resulting equation its complex conjugate. The result is the time-derivative of the
following equation:

4 1 * : <
> {ol? = lowl? - (o, — aéip)} = Ko - (3.11)
k
Similarly we obtain with the second Eq. (3.8)
! 2 2 i * o . *
z {Iva|* + log|* + é(akak - o 6y)} = K, (3.12)
k

where K, and K are real constants. These integrals are not independent, however since,
according to (3.6)

Ko+ K, =) 1=——=1, (3.13)

but
!/
K=K, -Ky= Z {11 1? = Iol? + 2lay | + i(akéy, — a67)} (3.14)
k

is an independent constant of the motion.

Inserting the "interaction representation" (3.4), (3.5) into the Hamiltonians (2.4),
(2.13) and (2.17) one obtains the corresponding contributions to the total energy by aver-
aging over the fast motion. Thus

E, = ANQ|y, |? (3.15)

and

h

E +E = ENQZI{[koZ +i(alcy, — agal) + (2+ a2} - (3.16)
k

Here an apparent simplification is to substitute the constant of the motion (3.14) for the
second and part of the third terms. However, this mixes in the matter variables in a quite
unsymmetrical fashion. But even more serious is the fact that it is practically impossible

to know the value of K with any precision as is evident from the discussion following Eq.
(4.11) below.

As for H,, elimination of the radiation degrees of freedom with the aid of Eqs. (3.8)
leads to

E, = —ihNQ(Yo7g +11m) = ANOS (1076 + 11771) (3.17)
where in the last step (3.6) was used.

In the "perturbative groundstate" defined by v, = 0, v, = 0 and o, = 0 (all k), the
total energy is E®©)

min

groundstate with E, , < E'°)

min*

= 0. On the other hand, superradiance implies the existence of a
In order to decide this question the dynamics (3.7), (3.8)
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has to be analysed in more detail. Eq. (3.8) shows that the only radiation mode coupling
to the matter system is

1 /
Blr) = 23 Avau () (3.18)
k
where g is the new coupling constant defined in Eq. (3.21) below. The projected Eq. (3.7)
is
im 3 4
58+ 6+ 5ub = 2975m (3.19)
while Egs. (3.8) become
Yo =98V i = —9Bv - (3.20)
Here i
2= _Y A2 2.21
g 2; o ¥ ( )

so that g is real. Note that (3.19), (3.20) agree with Eqgs. (3.9) of Ref. 1 if vy, v;, 8, p
and g are identified with Preparata’s x,, 1x,, V2A, 2 and g/\/§, respectively.

These slow modes 3, v, and 7, obey a constant of the motion in addition to the
normalization (3.6). In complete analogy to the derivation of Eqs. (3.11), (3.12) one here
finds

20yl - 18I* - %(ﬁ‘ﬁ - BB*) =24, (3.22)

and _
2/y, >+ 181* + %(B*B — BB*) =24, (3.23)

where A, and A, are again real constants which, because of (3.6) satisfy A, + A, = 1.
The independent constant of the motion therefore is

9]
[\¥]
=

A=A =By =l bl + 18P + 587 - ) G

4 Conditions for superradiance

A useful equation which is homogeneous in 3 is obtained by taking the time derivative of
(3.19) and substituting ¥, and ¥, from (3.20),

iB+ 28 +iuB = —4¢*Bcosb . (4.1)
Here we have introduced the parametrization |y,| = cosg and |v,| = sing so that

Yol* = [71|* = cos 6 . (4.2)
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@ > 0 then measures the degree of excitation of the matter system and 6 > 7 signifies a
population inversion.

We first consider the short-time behavior, 7 = 2t < 1, of Eq. (4.1). Assuming as
initial state photon vacuum but allowing for the moment some atomic excitation, 8 > 0,
the initial time evolution given by Eq. (4.1) has the form 3 < e~ *” where p is determined
by the characteristic equation

f(p) = p(p* +2p — p) = 49° cos b . (4.3)

Since f(p) has extrema at f,(u) = f(py(u)) where p, are the roots of f'(p) = 0, Eq.
(4.3) has only real solutions provided that the right-hand side of (4.3) lies in the interval

Fo(n) < 497 cos < f_(u) . (4.4)

The initial, aperiodic, evolution must therefore lie outside of the interval (4.4). Numeri-
cally, f_(0) = 32 = 1.185, f,(0) = 0 and f_(1) = 2.63, f,(1) = —0.113. Thus 4g° cos @ <

s

f+(n) < 0 requires a population inversion 6 > 7 while for 4g° cos® > f_(p) > 32 the
system evolves even for § = 0, provided that

9> . (4.5)

In these outer domains f(p) has one real and two complex conjugate solutions, p = r + is,

for which 8 « €7 *°7)_ Hence the system possesses a run-away instability which is a
necessary condition for reaching a superradiant groundstate starting from the perturbative
groundstate 6 = 0.

We next investigate the oscillating stationary states that this run-away solution may
eventually reach by writing

B = Betl*™¥7) .y = cos ge—iVOT ;7Y = sin gei(x"”lf) (4.6)
with real positive amplitude B. This gives for the constant of the motion (3.24)
A = B*(1+v)—cosf (4.7)
while (4.1) becomes (4.3) with p = v,
f(v) = 4g*cos 6 (4.8)

where, however, we are interested in real values of v. Insertion of (4.6) into Egs. (3.20)
yields the remaining equations,

6 6
v, = gBtan 5 V1= gB cot 7 (4.9)
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and -
I/+I/0—V1=O;(p—-X=:t§. (4.10)
Combination of (4.9) and the first Eq. (4.10) gives
v = 2gBeotl yr=%|p| ;8 = £|0] . (4.11)

In principle, Egs. (4.7), (4.8) and (4.11) determine the amplitude B and the atomic
excitation 8 as functions of the coupling constant g, the "mass" ,/u and the constant of the
motion A. Since, physically, the system starts to evolve from the perturbative groundstate
one is tempted to conclude from Eq. (3.24) that A = —1. This, however, is questionable
since the classical motion emerges from the initial quantum motion so that the initial value
of A is unsharp.

The crucial question now is, what does the solution (4.6)-(4.11) imply for the energies
(3.15)-(3.17). The result for (3.15) and (3.17) is simple since it is expressed entirely in
terms of the matter variables:

mat —

h
EBpaa=E,+E, = ENQ{l — cosf — 2gBsinf} . (4.12)

On the other hand, the motion of the radiation variables «; is best described by the
analogue of Eq. (3.19). Taking the time derivative of (3.7) and inserting Eqs. (3.8) one
obtains

iy, + 26y, + iudy, = —2gA,Bcosh . (4.13)

Again we are interested in an oscillatory stationay state as in (4.6),
o = A e T (4.14)

with real v,. Now, since Eq. (3.18) is supposed to be valid for all times 7, 3 and o, must
oscillate with the same frequency, i.e. according to (4.6), v, = v (all k). Inserting (4.14)
with this restriction in (4.13) the result is

f(v)A, = 2gA, Be*? cos . (4.15)

Comparison with (4.8) then gives
A .
A, = —EBet¥ (4.16)
29

which, inserted together with (4.14) and v, = v in (3.16), yields

. _h .
E. .=E +E,= ZI\JQ{(:»+1)"+1+,u}B2 (4.17)
where use was made of (3.21). Since E,_,; > 0 the existence of a superradiant groundstate
demands that E,, , < 0. Note that in Ref. 1 the constant of the motion Q = A—éﬁ is
inserted in Eq. (3.15) for the total energy.
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The convenient parameter to analyse the total energy (4.12), (4.17) turns out to be
the frequency v. This means that the atomic excitation cos @ has to be expressed with the
aid of (4.8) as

cosB(v) = J;(;z) s = kv (4.18)
while the amplitude B is obtained by substituting this relation in (4.11),
Bly) = % tan 6(v) (4.19)

and the constant of the motion (4.7) becomes

V(1 + v)

492

A = tan® 8(v) — cosO(v) . (4.20)
But since the initial value of A is expected to be unsharp we are not using this equation,
leaving v as a free parameter. (Note that another possibility would be to use (4.20) in
extremal form, 6A = 0.)

With (4.18), (4.19) the total energy may now be expressed as

(Epmat + Eraq) = [1 — cos8(v)]{1 — ﬂy—)—Zgz[l + cos8(v)]} (4.21)

p*(v)
where @(v) = v° 4+ 2v — p = f(v)/v and Y(v) = vV + 2w —2-3u=)-2(1+pu). Eq
(4.21) shows that a necessary condition for € < 0 to hold is () > 0. This is the case for
v > vy, and for v < v;_ where v, are the zeros of ¥ (v),

2
hNGQ

€=

Vpy = 1% /n(1+p) (4.22)

and the zeros of ¢(v) are v, . The condition for a negative total energy as obtained from
Eq. (4.21) reads

‘PZ(V) 2 o = .
() < 29"+ E(’O(V) ;9(v) >0 . (4.23)

Now it is not difficult to show that in the outer regions v > v, and v < v;_ the function

cpz(u)/v,b(u) is parabola-like with minima at v = v, and that ¢(vs,) = 4(1 + p) and
P(vsy) = 2(1 + p). Hence

‘PZ(V)) _ ‘1"2("5:&)
P(v) Y(vsy )

min( =8(1+pu);v>vz orv<uyy_ . (4.24)

We may take v = vy, as representative points rather than determine the minimum

value of g* from (4.23) or that of & from (4.21). Then, using definition (4.22), Egs. (4.18)
and (4.23) become, respectively,

1+ p

cosf(vyy) = (=1 +/5(1 4+ p)) (4.25)
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and
i ,u]
3 ;

Here the upper value of the bound is larger than the one in Eq. (4.5) for u < 3.88. But
it is still much smaller than the lower value which corresponds to a population inversion
of the atomic system, cosf < 0. This shows that population inversion is unfavorable for
superradiance, in striking difference to the laser.

¢ >5(1+up)[1F (4.26)

A somewhat simpler but less explicit form of the total energy (4.21) is obtained by
using as parameter the atomic excitation 6. Substituting in Eq. (4.8) g cos @ with the help
of (4.11) one arrives at an equation which is only quadratic in v,

(v + 1) :2g%+1+# (4.27)

where, however, B is a complicated function of 8. Four of the eight solutions v = £|v|
of Eq. (4.27) are given in Preparata’s Eq. (3.25c) where 2« is our 6 and € our sign of
6 = £|6|. From Eqs. (4.12), (4.17) one now deduces the following expression for the total
energy:

e=1-cosf —gBsinf + (1 + u)B? . (4.28)

This expression corresponds to Preparata’s 2H given by his Eqgs. (3.23), (3.30), provided
that the appropriate signs € are chosen.

Considering now B as a free parameter the minimum of € is situated at

gsinf

B=—— 4.29
2(1 + p) )
and has the value s g
g sin” @
5min =1- cosf - m . (430)
Hence a necessary condition for superradiance is
41 + p) :
2 ) ;
g oo L) 4.31
1+ cos# ( )

which again shows that population inversion, # > 7/2, is unfavorable for superradiance.

Surprisingly, if the value (4.29) is inserted into Eq. (4.27) one recovers v = v;, which,
more precisely, are the four values v = £|v;, |. This means that the renormalized frequency

Qen = |1+ 7|9 has the values \/5(1 + ) +2n where n = 0, 1 and, for n = —1, is smaller
than Q if 4 < 4/5. Note that Preparata’s relation (3.33) agrees with this expression for
n = 0, provided that care is taken in choosing the appropriate signs €, and hence, obeys

Qen > Q (w > wy in his notation).
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5 Conclusion

The results of the last section confirm Preparata’s conclusion that, at least in two-level
approximation, a superradiant groundstate below the perturbative groundstate exists for
sufficiently strong coupling 92 x Neé?, i.e. if the number N of atoms contained in the co-
herence volume V ~ A® is large enough. He is also right in emphasizing that, in distinction
to the laser, superradiance does not require a population inversion of the atomic system
but occurs preferentially at low excitation.

An assertion which is more delicate to assess is Preparata’s claim that superradiance
is self-contained, i.e. that there is total reflection at the boundary of the matter system.
If true this property would preclude any detection of superradiant photons outside the
system. This is the most crucial point because such a detection, I believe, would represent
the only possibility of an experimental verification.

Now, the system will radiate at a frequency AQ2 = NQ(e/2) + 12,..,,, provided that
A > 0. Thus the condition which allows a collective phenomenon in condensed matter to
be explained in terms of superradiance is even more severe than the existence of a negative
groundstate energy, € < 0, namely A2 < 0. However, if the number N of resonators in the
coherence volume satisfies N > 1, the two conditions merge, provided that € is of order
one.
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