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Atoms and Oscillators in Quasi-Periodic
External Fields

By Walter F. Wreszinski

Instituto de Fisica, Universidade de Sao Paulo,
C.P. 66318, 05389-970, Sao Paulo, SP, Brasil

(24.V.1996)

Abstract. We review some results on the spectrum of oscillators and two-level systems in external
fields which are quasi-periodic in time.

It is a pleasure to dedicate this paper to Professors K. Hepp and W. Hunziker on the occasion
of their siztieth birthday.

In recent years, there has been a increasing interest in quantum systems subject to periodic
or quasi-periodic perturbations. Some of this interest is due to the fact that such systems
constitute a paradigm for “quantum chaos” because the dynamics of their classical counter-
parts is, as a rule, chaotic. Perhaps the most interesting examples of experimental relevance
are Rydberg atoms in intense external electric microwave fields [1]. One of the most striking
manifestations of quantum mechanics in the latter is the “quantum suppression of classical
diffusion”, which occurs for large frequencies and leads to localization. At least two inde-
pendent mechanisms of localization occur in Rydberg atoms: a dynamic (pseudorandom)
Anderson localization [1] and localization by scars of special (unstable) periodic orbits [2].

What happens in the quasi-periodic case? Several results exist for particles in discrete
quasi-periodic potentials, beginning with the pioneering work of W. Craig 3], J. Poschel [4]
and Bellissard, Lima, Scoppola and Testard [5], which relied on KAM methods. More
recently, a global (i.e., nonperturbative) result has been obtained by Siito [6] for the Fi-
bonacci Hamiltonian: the spectrum is singular continuous, supported by a Cantor set of
zero Lebesgue measure. For systems under perturbations which are quasi-periodic in time
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— e.g., atoms in bichromatic electric fields —, there are fewer rigorous or exact results. Per-
turbative KAM results for small coupling were obtained by Blekher, Jauslin and Lebowitz [7]
for two-level atoms in quasi-periodic fields:

H(t) = Bo. + ¢f(t)os (1)

where 273 is the energy difference between the unperturbed levels important and f is quasi-
periodic. The results of 7] rely on previous work by Bellissard [8] and M. Combescure [9].
Moreover, nonempty continuous spectrum was proven to exist generically for models of two-
level systems [7]. The latter is a nonperturbative result which we shall comment upon later.
Finally, in this paper we have generalized the results of [7] to a restricted class of quasi-
periodic perturbations in the case of large coupling. It should be mentioned that for two-
level Fibonacci Hamiltonians there exists a non-perturbative result [10] which states that the
spectrum (as defined in [10]) has no pure-point part. This result provides additional support
(a first indication came from the numerical results for the kicked rotor with two or three
incommensurate frequencies [11]) to the expectation that localization is weaker (if present
at all) in the quasi-periodic case. It seems to be difficult, however, to establish the result of
[10] using any of the two equivalent definitions of spectrum used in the present paper.

Since there are so few nonperturbative results for the spectrum of two-level atoms un-
der quasi-periodic perturbation, it is natural to ask what happens for the forced harmonic
oscillator, where a solution in closed form exists:

H(t)=woata+ A f(t)(a+at). (2)

Here a and a' are standard annihilation and creation operators, and [ is quasi-periodic.
This has been done by Jauslin and Nerurkar [12] and by us [13]. We shall focus on [13], which
proves slightly more than [12] in the resonant case, namely, that the spectrum is transient
absolutely continuous.

In order to pose the problems more precisely, it is better to consider the periodic case
first [14]. Let us assume we are given a Hamiltonian

H(t) = Ho + V(1)

where Hj is a self-adjoint operator on a Hilbert space H with discrete spectrum {F,}:32,
and V is, for instance, a bounded periodic operator, i.e., V(t + T) = V(t). The quantum
analogue of Howland’s method in classical mechanics [15], which transforms time-dependent
systems into autonomous ones by substituting time by a new dynamical variable, corresponds
to introducing the Floquet operator

K(t) = Ko(t) — V(1) (3a)

where

Y
]XO = ta = HO (3b)
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Both Ky(t), the unperturbed Floquet operator, and K (t) are operators on
H® L*0,T]. (3¢)

The spectrum of Ky is E,,, =wm+ FE, mezZn=1,23,... where w=2r/T, and
1s, in general, dense pure point, unless there are some commensurability conditions between
w and the FE, . The basic question is: Is the pure point spectrum of K, stable? The stability
of the pure point spectrum of Ky is usually called quantum stability [14]. As we shall see,
there 1s strong evidence for this term because in the stable case time evolution happens
essentially in a subspace of finite dimension. The case of continuous spectrum is referred to
as unstable. One reason is that it frequently occurs due to the presence of resonances (as in
example (2)), in close analogy to the (unstable) resonant tori in classical mechanics, which
lead to chaotic behaviour. What happens more generally is that, while the initial state is
localized in “phase space”, time-evolution leads to delocalization. As a consequence, one
may have unstable behaviour, such as the unbounded growth of the kinetic energy as in the
case of the kicked rotor [8]. There may be several degrees of delocalization, with a hierarchy
of time decays of certain quantities, such as the autocorrelation function [16].

As in [17] we now consider the general situation described by the Hamiltonian

H(t) = Ho(x) + V(z,0(1)) (1a)

where z denotes the internal dynamical variables of the system, which act on a Hilbert
space ‘H . Moreover,

0(t) =g 0

where g, 1s an invertible flow corresponding to the trajectory of a classical dynamical system
on a manifold 2, having an invariant ergodic measure p. Thus §(¢) is a classical variable

whose time-dependence is independent of the state of the system evolving according to H(t),
corresponding to an “external bath”. Let U(¢,s;0) be the unitary propagator associated

to (3), strongly continuous in ¢ and s, and such that
Ult+a, s+a; 0)=U(t,s; ga0), a€ER. (5)

In analogy to the construction (3), let us define [17] the family of operators on

K=H® L(Q,dpu) (6)
given by
(W(tw](g) = U0, —t; 8)m-c 1(8)
= . Ut0; 9)v(g), veK (7)
where
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Then [17] W is a strongly continuous family of unitary operators with

W(t) =e ™™, (9)
and p
(K$)(9) = —i— v(gd)|,_, + H(O)Y (10)
is the generalized quasienergy operator [17]. If the flow has a generator G,
8 t h
~ t
= = (o), then a
K:—ig(g)-@-{—H(g). (11)

We list a few examples:

1) Periodic force: H = Hy + f(z) cos(wt 4 0), 2 = S, 6(t) = 0 + wt, dup = df, and

K = —iw% + H(0) with H(8) = Ho+ f(x)cosb

2) Quasi-periodic force with two frequencies wy,wy: H = Hy + f(z)[cos(wit + 61)
+ cos(wat + 65)], Q=S x 5, ¢,(601,0,) = (0, + wit, 0, + wot), du = db, db,

0 0
K = —lw *8—0'; — 2w~26—9—2‘ + H(B],H;) § (].2)
H(6) = Ho+ f(z) (cos ) + cosby) . (13)

We shall be specially interested in example 2. We may now describe the relation between
stability and the pure point specirum of ihe quasienergy operator

]{wm:’\mwma Y EK ; (14)

more precisely. We follow [18]. Since K is defined on an enlarged space K (6), one must
first embed the initial state ¢(0) € H in K, which may be done by the correspondence

p(0)eH—-p(0)®1€K

where 1 is the function on L3(2,du) which assigns the value 1 to all §. Because of (7)

and (8) it may then be proven easily [18] that for all € > 0 there exists an M independent
of t such that

I #(t) = 3 Cne g =
m<M

:” Z Cm C_il\mt'ﬁ '(/)m ”i S Z |C'm_|2 < 62

m>M m>M
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where
o(t) = U(1,0;0,0)(9(0) @ 1)
and

Cm = (lpm ) 99(0) ® l)k

The above uniformity in time means that the trajectories in Hilbert space are precompact
and is a sign of stability.

A second notion of spectrum is what we call the autocorrelation spectrum in [13], but is
actually due to Birkhoff and von Neumann (see [18] and references given there). Consider
the solution of the Schrodinger equation

;o)

L= HOUD v =y

where FH(t) is given by (4). Define the autocorrelation function

Cy(t)

lim 21’] ds(w(s), %(s + 1)) (15)

when the limit exists. Under this assumption, C is positive-definite, hence by Bochner’s
theorem there exists a Fourier-Stieltjes measure p, such that

Colt) = [ e dpuy(N) . (16)

Let {t;}22, be a countable dense set in H (which we assume to be separable). We define
the autocorrelation spectrum as the union of the supports of the measures p, . The sets of
t» such that u, is absolutely continuous (ac), singular continuous (sc¢) or pure point define
the subspaces H,., H,. or H,,, respectively. Equivalence between the above definitions
follows from ergodicity of the measure p: for almost all 6 [18]. Furthermore,

Eult] = lim ﬁf ds(ih, U(t + s, 5; 09 )

t—oo

= [ du(g)w, U(t,0; g

= (¥®1, et @ 1)k

where (5) was used.
We now consider the oscillator model (2), with
f(t) = A1 coswit + Az cos wyt . (17)

We have the following result [13].
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Theorem 1 In the resonant case wy = wy, wy incommensurate with w, , the autocorrelation
function satisfies the inequality

A2
Cy(t)] < ae™ T+ (18)

with a and b independent of ¢, and for ¢ in a dense set of (coherent) states. In the
nonresonant case, and under suitable diophantine conditions,

lw - m| > c|lm|™® Im| # 0 (19)

for some o € R and C >0, where w - m = womo + wimy +wamz |m| = [mo| + |mu| + [m.|,
and m;, ¢ = 0,1,2 are arbitrary in Z, Cy(t) is a special almost-periodic function, which
is not identically zero for % in a dense set of (coherence) states.

It follows from well-known theorems [19,20] that

Corollary 1 In the resonant case the autocorrelation spectrum is transient absolutely
continuous (¢ is in the transient Hilbert space H if Cy decreases in [t| faster than any
power of |t| [21]) and covers the whole line. In the nonresonant case, under the assumption
(19), it is pure point.

If @ >3 in (19), the Lebesgue measure of the complement of the set of w which satisfies

(19) is zero. The structure of Cy(t), for ¥ = |0), the ground state of the harmonic oscillator
(but generalizable to a dense set of coherent states) is

1 00 tw-mT —twmT

. € = = €
Cop(t) = Jim = > —

mo,.,.,th=—OO

L:lm»-‘,éo
N N
I I (i) + 32 T i (wi(®)) | (20)
1=0 mo,....myn 1=0
c:‘rﬂr'l:D
where N is fixed, mg,m; and m, are linear combinations of the integers my,...,my, the

I, are modified Bessel functions and the wu;(t) are almost-periodic functions of ¢. Due to
the bound

i e|u|(t)l

and (19), the first summation in (20) tends to zero. The same bound (21) and the fact
that the almost-periodic functions form a closed subalgebra of L*(R) [21], show that the
last summation defines an almost-periodic function which is easily seen to be not identically
zero. If, however, the ratios w;/wp are Liouville numbers, the bound (21) does not suffice

to show that the first summation in (20) is zero, In fact, it is conjectured that in this case
the spectrum is singular-continuous.

I, (uit))] < v/n

u;(t)
2

(21)
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We now turn to the much more interesting model (1). The generalized quasienergy
operator is given by (12) with Ho = €0, and (13), with f(z) = €0, and (cos 0, + cos ;)
replaced by a general quasi-periodic function. Or, more generally, by

K =Ko+ eV(0,0,) (22)

where p 5
Ko = = 5 — i + o (23)
on K = C* @ L*T,du), T 1is the two dimensional torus S' x S',
du = ;dﬂl df,, and V(60;,0;) is a 2 x 2 matrix. In [7] the following theorem has

(2m)?
been proven.

Theorem 2 [7] Let V(6,,0;) be such that each component is an analytic function in the
strip {Q|Im9j < To}. Assume e.g. @ = wy/wy > 1| and (28/w1)moed1r > 0.

Then, for any given n > 0 and fixed w,, there exists a set of o's, S, C (1,00) of
Lebesgue measure £(S,) < 1 and a value e.(n) such that, if a € (1,00)\ S, and € < ¢,
the spectrum of k is pure point.

The operator KAM method of (7] constructs a unitary operator R(a,¢) such that

P PR
RKR™ = Ko + ( 0 7. (a,e) ) (24)

where g¢4(o,€) are independent of § = (0,,6,), 1.e., R transforms K into an operator
which is diagonal in the basis of eigenfunctions of the unperturbed K, which are

eiﬂ'g ((1)) if m=+1, EE(nl,nz)Gzz
d’g,m = -y 0 (25)
et (1) if m=-1, m € {-1,1}
The transformation R is constructed by iteration R = ... Ri... RaRy. At each step the

order of the f§-dependent perturbation is reduced from ¢/ to €. The k-th step is defined
starting from an operator of the form

Ki =Dy + Vi (26)

where

Di = Ko+ gk (27)

with g, diagonal in the basis {¢, .}, and Vi hermitian. g, is generated by the previous
iterations and can depend explicitly on «, but not on . Writing Ry = s+, with



116 Wreszinski

Wk, = =Wy, and assuming Wy, of the same order as Vi which is verified a posteriori,
we have

Kip1 = e Kpe "ot = Ky 4 [Wigr, Ki] +
1 1 "
+ o7 W, (Wi, il + 3 Wisr, Wik, [Wisr, K]l + ... =

= Di + Vi + [Wiy1, Di] + Vin (28)

where

1
Vigr = [Wk+1, {[Wk+laDk] ST Vk}] +

+ [Wkﬂ, [Wk+1, {[Wkﬂ»Dk] % + %}H T (29)

Define for an operator A
A, = 1) = (s A ) (30)
Then, motivated by (28), we try to determine Wy,; and a diagonal é¢ such that
eWrr [( eVt = Dy 4 89 + Vi (31)

which follows if

(Wi, D] + Vi = b9 . (32)
The diagonal terms of (32) yields

and one may choose Wk“(m,m,g) = ).

The off-diagonal terms yield

Wialmm'sn =8 = B i ) — Dalry ) )
where the denominator in (33) is
Di(m,n) = Dr(m',n) = w - (n —n') + (m — m')B + gr(a, m) — gi(a,m) (34a)
with "
gr(a,m) = Z Sgrr (a,m) . (34b)

k'=1



Wreszinski 117

By (34a), the denominator in (33) may be zero or orbitrarily close to zero for infinitely many
m,m’, and 7 — E" In order to guarantee the convergence of the series for R, one must
restrict « to the set characterized by the Diophantine condition

Qi1 (Ye41) = {a € Q(vx) such that for VE =¥ and

m,m' € {~1,1},|w-n + (m — m)3 + gr(a,m) = —gi(a,m’)

2 0 ?Ena} (3)

where n and m—m’ are not simultaneously zero, Q = (1,00),7 > 2 and k41 is a constant
chosen for each step. Due to the explicit dependence of gx upon «, one has to control the
size of gr as well as its variation with «, and this is accomplished by the operator norm

[7,9]

| Allra= > 2 sup sup (‘A(m,m—i—Am,Q,a)|+

n,Am aa’'€l m

(36)

lA(m’m ¥ Amana Q) - A(mam + Amanaa’)l)
e i ~ .

la — o

The space of infinite matrices endoved with the above norm is a Banach algebra A(r,{2).
The sets 2 in (36) depend on k and are given by (35), and, correspondingly, the numbers
in (36), are related to the width of the strip of analyticity in Theorem 2. Starting from ro
given there, the width is reduced at the k’th step to rp with ro, > 0. The sets §; are by
construction such that Q44 C 4, and the Lebesgue measure of the complement of the

final set Q. = ﬁ (Q\ Qxy1) is proved to be small (see the statement of theorem 2). The
k=0
convergence of the operators Ry ... RyR; is in the Banach algebra A(r.,, Q).

An interesting problem, relevant from the point of view of both experiment [1] and theory,
is the nature of the spectrum of K given by (22), (23), for large coupling or, alternatively,

of

K = IX’U + f(01, 92)0':,; (37)
where p
Ko = —tw 59—1 — wWwo 3—92 + €0, . (38)
We have
Theorem 3 Let
f(61,05) = fi(01) + fo(02) + v (39a)
where ‘
fi(8) =3 Cine™  i=1,2 (39b)
nez

n#0
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with
|C:',',n| S (5,’ exp(—~,Lt,-|n\) 61',#,' > 01 = 1,2 (39()
-(71‘.” == Ci’_n (39(1)

and
v#0 (39¢)

Then K is unitarily equivalent to an operator

~ .0 .
K= —w — — 1wy

9, +vo, + Vi(a,b,,0,) (40)

90,

where V' is analytic in the strip

{0=00:.0)) st. Im0| <pi , i=12}

Proof By a unitary rotation through #/2 about the y axis we map KA to the operator
K', given by

d d
41
50, T +eoz + f(01,02)0. (41)

Define, now, the operator U from K to K by

K' = —twy — — twg —

( )
1 4 , 1 W
exp |=—-— Z gi‘_ emG] = Z 62 17192 0
wh =0 n w2 n#0 n
U = nez nez (42)
1 A & 1 Con .
0 exp | — Z &617191 s e Z ~2n emﬁ;
wi wy M
\ nez nez }
By (39¢), (39d), U is a unitary operator and
UT'K'U =K (43)
where K is given by (40), with
_ 0 h(a,@l,ﬁz)
V(a 91,92) = ( 72:((1 91’92) 0 (44)
and
‘l !71.
hoy01,03) = expd =23 3 —[ '“9] (45)
n
t=1 n;eg
ne

By (39c) and (45), h is analytic in the strip |[Im6;] < p;, 1 =1,2. =

There is a basic difference between the operator (40) and the operator (23)treated in
[7): in (40) the “potential” V depends on «a (see (44), (45)). In order to prove that the
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spectrum of A, given by (23), is pure point in ref. [7], by an operator KAM technique, one
proceeds as described in the discussion of Theorem 2.

The assumption on the potential for the proof in [7] to go through is:
|| ¥ “fo,ﬂo <Ce (46)

where rg,{)y are the starting values of the parameter r and the set § in (36), and C is a
constant. In the case (23) of [7] this property followed directly from analyticity on a strip,

because the second term in (36) did not contribute, and the sup in (36) was irrelevant,
aa’'€Qg
since V' (in (23)) was independent of . From (46) it follows that ||V||,,q, is sufficiently

small if ¢ is chosen sufficiently small. We collect these remarks in

Proposition 1 Let V in (40) satisfy assumption (46). Then, if @ > 1 (for definiteness)
and (2v/wi)mod1 > 0, for any given 5 > 0 and fixed w, there exists a set S, C o of
Lebesgue measure £(S,) <n and a value €.(n) such that, if a € (1,00)\ S, and € < €(n)
the spectrum of K is pure point.

Assumption (46) must be verified in each particular case:

Corollary 2 Let fi(6;) = cos #; and f,(0;) = cos 6, in (39), and ¢ = (1,00). Then
assumption (46) holds for any 0 < rg < o0

Proof In this case, by (44), (45)

in 6 in @
h(8y,0;) = exp (~2i — I) exp (—Qi . 2) (47)
W w2
and 5
V(L ~1,p,0) = V(=1,1,p,0) = e Ju (<2/en) - Joy (~—) (48)
~ ~ w1

where J,, 1s Bessel’s function of order n.

By (36)

Vi, < const.e erolzl sup V(1,-1,n,a
0,820 n

nez? a,a'€f

) (49)

V(1,-1,n,a) = V(1,~1,n,a)

| — o

:

and by (48) and (49):

IV oo < const.e (Z erolml IJn, (—E)D X (Z e”"’”'g(n;)) (50)

neZ w1
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where
2

g(nq) = sup |/, (——)' +

a€f)g W o

2
() ()
w1 Wi
1

T o — o] (51)

Using now the bounds, for « real

(z/2)"

IJn($)| < m
o L[ (w/z)f”'“]
@S | Ty T T+ 2)

together with the mean-value theorem and the fact that «,o’ > 1 in (51), because Qy =
(1,00), we get

g(n2) <

M 2_[(1/“’1)'"2"1 Jr(l/wl)InzIHJ
T(jng| +1)  wi | T(n2|) (g + 2)

and hence, by (50):
” 4 ”1‘0‘520 < eCh exp(ro CQ)

where C; and C, are constants. ®

What happens in the case v =0 in (39a)? In this case, the spectrum of

~ d 0
Ko = —tw) — — twy = 52)
0T T Be, T 50, (52)
with K = Ko+ €V(a, 6,,8,) in (40), is doubly degenerate, and some essential modifications
in the structure of the proof are necessary [22]. The same happens for f nonseparable, i.e.,
not the sum of two functions, each dependent on only one variable, as in (39) [22].

We now come to a harder problem, that of the existence of continuous spectrum [7]. For
this purpose, it is interesting to introduce a generalized Floquet operator Up [17] which acts
on K1 = H® Ly(S',df;) and whose spectral properties are equivalent [17] to those of the
quasi-energy operator:

UF' = Tsz U](gl) (53)
where u;(6;) = U(73,0;60,,0) (the monodromy operator) and

(rL7,8)(01) = ¢(01 —wn T2) (54)
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In the case of two-level systems, u; 1s an element of SU(2) and may thus be represented as

ur(0) = ( o ) (55)

a

with |a]? + [b]* = 1. It may be proven [7] that for any choice of functions a(6),5(8) with
la|* + |b]> = 1 there is some quasi-periodic Hamiltonian

H = fo(t)1+3_ fi(t)s,; , (56)

with fo, fi, f2 and f53 real quasi-periodic functions,

fi®) = fi (it + 01,05t +65) , §=0,1,2,3

with f;(0;,0,) continuous and 2r-periodic in (6y,8,) € S' x S* and 7 such that u; , given
by (46), is the corresponding monodromy operator. This construction [7] relies on the fact
that SU(2) is simply connected and is not applicable to the scalar case (f; = 0 in (56) for
two of the indices 7 = 1,2,3) because U(1) is not simply connected. A simple example due
to Rychlik, reported in [7], is

et
ul(Gl) = ( 0 e_q'g] ) (57)

The corresponding Floquet operator has no pure point spectrum (no eigenvalues). Since u,
is diagonal any eigenvector candidate is (y(6,),0) or (0,z(8,)). Consider the first type. The
eigenvalue equation is, by (53)

rlrey(61) = e y(0)

or

e y(0)) = e 2 y(0, + wy Ta) = e 2 y(0; + 270) (58)
with @ = w;/w, . An eigenfunction is y € L,(S!,d6,).

Hence .
y(01) = D ype™ (59)
with -
Y Iyl < oo (60)
By (58) and (59) _ _
Ynp1 = e—h\T; e—'ZJ'r:cm.yTl
whence |yn4+1]| = |yn|, which is incompatible with (60).

Now ||(y(61),0)||3 = |y(6,)|*> € Li(S5*,d6,) is invariant under the map 6, — 6, + 27«
on S' because of (49). Assuming o irrational, this map is ergodic and hence |y(6,)| is
constant for almost all 6, , and we may write

y(01) = explip (1)) (61)
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with ¢ real. Substituting (61) into (58), we see that the indez (i,e., the number of times the
image wraps around the circle when 6; goes from 0 to 27 ) of the left-hand side is larger
by one than that of the right-hand side. Therefore [7] the equation, for topological reasons,
cannot have a solution. Actually much more is proven in [7]: the spectrum is absolutely
continuous for all irrational « .

An interesting and important open problem is to find out whether K, as given by (22)
and (23), has some continuous spectrum for intermediate values of ¢.
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