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Stability of Matter Through an Electrostatic
Inequality

By Gian Michele Graf

Theoretische Physik, ETH Honggerberg
CH-8093 Zirich, Switzerland

(17.VIII.1995)

Abstract Stability of matter is proved using an electrostatic inequality which is a manifestation of
screening.

Dedicated to Klaus Hepp and Walter Hunziker

1. Introduction

Nonrelativistic matter is described by the Hamiltonian

N+M
--3ans Y, e
1,7=1 |$: - I]‘
J=
1<g
accounting for N fermionic electrons i = 1,..., N and M nucleit = N+1,... N+ M
with positions z; € R® and charges e; = —1, resp. 1 < e; < const. Stability of matter is

the statement:

Theorem 1. There is a constant C such that

H>-C(N + M). (1)
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This result has first been proved by Dyson and Lenard (3] and subsequently by Lenard [10],
Federbush [5], Eckmann [4], Lieb and Thirring [14] and Fefferman [6]. We refer to [11] for
the implications of this result. More recently, stability of matter in magnetic field has been
proved (7] (but see [13] for another proof), thereby extending previous results (8, 12]. Here
we propose a fairly direct proof of (1) based on an electrostatic inequality: Essentially,
Coulomb energies are lowered as R?® is decomposed into simplices and the interaction is
restricted to pairs belonging to the same simplex. This procedure is then repeated until
only a few nuclei are left in each simplex.

2. Inequalities

Let £ be a lattice in R* with unit cell of unit volume: |R3*/£| = 1. An open simplex, i.e.,
a tetrahedron, is a bounded set

A={zeR|az<c,i=1,...,4)} (2)

with a; € R®, ¢; € R. A periodic tiling of R? is a collection Ty = {A,} of disjoint simplices,
finitely many up to congruences, such that

U B =R
a€Ty
To +u:={As +u} =Tp (ue l).

An example is the tiling given by the Z3-translations of the simplices obtained by cutting
the unit cube W = [0, 1]* with all planes passing through the centre and an edge or a face
diagonal of W. This tiling contains just one simplex up to congruences.

We now regard £, Tj as fixed and define a tiling T' of scale [ > 0 to be one congruent
to [Ty. Its simplices are also said to be of scale [. Given a tiling T (of any scale) let

or(z1,22) = {

The average of a function f(T) of the tilings T" of scale [ is defined as

() = f du(R)dy f(IR(To +y))

SO(3)xR3/L

1 if 1, x5 belong to the same simplex of T,

0 otherwise .

where dp(R) is the Haar measure on R € SO(3). This definition is Euclidean invariant
in the sense that it is not affected if £, Ty are replaced by RL, R(T, + y) for some R €
SO(3), y € R®.

Theorem 2. There is C > 0 such that for any N € N, any z; € R® ¢; € R, (1 =
lI,...,N) and any l > 0

N
PR S > S

1,7=1
1<j 'i<j
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where the average is over tilings T of scale l.

This result, although not explicitely stated, is contained in [9). Previously, similar
inequalities were derived in [1] and in [2]: There the tiling is made of cubes, the average is
over translations and the interaction on the r.h.s. is of Yukawa type but, as here, the two
sides of the inequality differ by an interaction of positive type.

The proof of (3) is based on the following two lemmas, whose proof is given in the
Appendix. The spherical average of a function f : R* — R is the function f : [0, +00) — R
given by

F(lal) = [S o BRIRTE). (4)

Lemma 3. Let A be a simplex with characteristic function x. Set x_(z) = x(—z)
and let h(r) be the spherical average of x * x_. Then h € C3[0, +00), h(0) = |A| and
h"(r) is non-increasing in r.

Lemma 4. Let h € C%0, +00) with lim, 4o h(r) = 0 and let h”(r) be non-increasing.
Then
h(0) — h(l=])

w(z) = Z] y (z € R®)

has positive Fourier transform: w(p) > 0.

Proof of Theorem 2. By scaling it suffices to prove (3) for [ = 1. In this case it follows
from the fact that the function w(z) given by

1

w(zy — T2) = T2 = 7]

(1 = {67 (z1,22)))

is of positive type, and that C = w(0)/2 < 4o00. The proof of these properties is as
follows: Ty consists of finitely many simplices A(*), (t = 1,...,n) up to L-translations.
Let x(*) (resp. xa) be the characteristic function of A® | (resp. A,). Using 61, (z1,z2) =
ZGETo Xa(Il )ch(-TZ) and 6R(To+y)($1vm2) = 6T0(R_1$1 - Y R_1$2 - y) we get

(67 (21, 22)) = f dp(R)dy Y Xa(R™'T1 — Y)Xa(R™ 22 — y)
SO(3)xR3/L «€To
du(R)dy xV(R™z; — y)xW (R 122 — y)

=150(3)xR?

=D, f du(R) XD+ x (R (1 — 1)) .

=150(3)

The claim now follows from the above lemmas, together with (ér(z,z)) = 1. |
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For the sake of simplicity we shall from now on assume that all A,, @ € T are
congruent to a single one A = lAp, as in the example previously mentioned. We fix an
open cube Qg D Ag and let Q (resp. Q) be a cube in a fixed relative position to A (resp.
Ay), ie., if Ay = IR(Ag + y) then Q4 = IR(Qo + y)-

Lemma 5. Let Ap be the Neumann-Laplacian for an open set B C R®. Then
| Aol
— > ( — =
Ap > <|Q0| QEGT( AQ,,nB)> ; (5)
where the average is over tilings T' of scale l.

Proof. This follows from integrating |V|? against

(2 xeunn(a)) = (3 xe. (o) xote) = 19, (o). .

Let A be the simplex of scale . We shall consider Hamiltonians of the form
Has=kl*’Kg +1Vs

where k > 0 will be fixed later, S C A and

* i €;€,

i 1<J

with the x indicating that the sum is over electrons only. Scaling yields the unitary
equivalence Hya,1s = Ha,,s. We also set Ha = Ha a. Moreover, let Mp, resp. Np be
the number of nuclei, resp. electrons in B C R3.

From (3, 5) we obtain a decoupling inequality for tilings 7" of scale [,

sz—1(<z HAQ>—C(N+M)), (6)

a€T

provided k!l < |A|/|Qol-

3. Stability of Matter

We shall prove that the ‘energy in finite volume’ is bounded below:

Proposition 6. There are k, C > 0 such that

HAo 2 -C. (7)
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Proof of Theorem 1. By scaling, the bound (7) holds for A of any scale and can be
replaced by Hy > —CM},, since Hy > 0 if My = 0. Together with (6) this proves
stability of matter (1). [ |

7) One electron, one nucleus: The uncertainty principle. For the simplex Ay we have

€
z — y|

—AQ, — | xs(z) 2 -C (8)

for some C' > 0, uniformly in y € R¥ e < const and S C Ag. To show this [6], let
V(z) = |z —y| 'xs(z) and 3, Vi € L%(Qy). Set ¢ = |Qo| ™! fQo 1. Then, for any € > 0,

(Vip,9) < 26 1(Vh,9) + 2e(V(y — D), — ) < 2e |V |1 [#|* + 2¢||Vla/2ll¥ — 9|2
< 267 HQo|T IV 111wl + 2C e[|V ||a 2 V|13

by Hoélder and Sobolev inequalites, where the p-norms are those of L”(Qo). This proves
(8).
1) Many electrons, no nuclei: The Pauli principle. For the cube Qo we have

Kqq 2 ¢(Ng, ~ 1)} (9)
for some ¢ > 0. This follows from the Pauli principle by filling one-particle levels.

1it) Many electrons, many nuclei: Screening.

Lemma 7. Given Cy, K > 0 there are Ci,k > 0 depending respectively on Cy and K
only, such that

Ha,,s > Co(Ns + Ms) — Cy (10)

for any S C Ag, provided
Ms < K. (11)
Proof. Let y;,j = 1,..., Mg be the positions of the nuclei in S. By dropping the

repulsion between electrons we have for k > 2K

€5 €;€e
HAOVS > KQO +ZZ 2MS Qo —JXS(ml))+Z-|:y,J—k—

|z —y_7|

> ?(NQ0 - 1)“3_/3 — CMgNg, + const Mg(Ms — 1),

by using (8, 9) and diam(Ag) < +00. Due to MgNg, < Ms+ K(Ng, — 1)1/3 we see that
if ck/2 > CK + 1 in addition then

Ha,s — Co(Ng, + Ms) > (Ng, — 1)¥/* — CoNg, + const Ms(Ms — 1) — (C + Co)Ms .
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The r.h.s. has a lower bound —C,; depending on Cj only. Clearly, Ns < Ng,. [ |

Lemma 8. There is Kk > 0 such that (10) holds for some Cy, C; > 0 without the
restriction (11).

Remark. This implies Proposition 6.

Proof. We choose 0 < [ < min(|A|/|Qol,1/2) such that if A is any simplex of scale [
intersecting Ag then Q C Qo. Let w be the maximal number of such A’s occurring in any
tiling of scale I. Using (3, 5) once more we have

HA0,321_1(< Z HAH|SQ>-C(N5+M3)) 3 (12)
a€T
QGCQO
where S, = SN A, and the average is over tilings T' = {A,} of scale [. Here we dropped
any a € T with Q. ¢ Qo since their contribution is purely kinetic.

We shall prove prove the lemma by induction in n = 0, 1,..., the induction assump-
tion being: (10) holds provided Mgnam) < K for any simplex A(™) of scale I", where K
will be fixed below. Clearly any given configuration of non-coinciding nuclei satisfies this
condition for some n € N. The case n = 0 corresponds to Lemma 7. We may thus assume
Ms > K. If n > 1 the induction assumption applies to the simplices A, D S, of scale [,
after scaling them to scale 1. The r.h.s. of (12) is thus the average of

11 3" (Has. - C(Ns, +Ms,)) > 17 ((Co - C)(Ns + Ms) - Crw)

aeT
QGCQO

Clw

l )
where we set Co = C(1 — 21)~1. Now C; is fixed by the previous lemma, but not K. By
taking it large enough (independent of n) we have

= ZCO(NS + Ms) —

and hence HAO,S b Co(NS + Ms) |

Appendix

For the convenience of the reader we include the proofs [9] of Lemma 3 and 4. We remark
that a; € R3, ¢; € R in (2) can be normalized as

4
Za,- =0 3 (13)
i=1

1
| det(a;,a;,ax)| = 5 (14)
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Here 7, 7, k is some (and, by (13), any) triple of distinct integers in {1, ... , 4}. Elementary
considerations show that the volume of A is

A= (3 ey s (15)

where z, = max(z, 0) The spherical average (4) of a function f : R® — R is also given
by f(r) = [.. % dw f(rw), where dw is the normalized surface measure on the unit sphere
S?={wekR |[w|—1}

Proof of Lemma 3. We begin with

e x-(a) = [ dyx(e = x(-v) = [dixxty+2) = 1an A=)
Notethat ye An(A-z)iff a,y<cand a;y < e; —a;z fori =1, ..., 4, ie., iff

a;y < min(c;, ¢; — a;z) = ¢; — (a;x) 4 (i=1,...,4).

Hence A N (A — z) is again a simplex. According to (15) its volume is

4
|[An(A Z = 4|1 = k(w)r)}

where we set = rw (r > 0, w € §?) and k(w) = |A|~'/3 3|_,(a;w)4. This last function
is continuous on S? and has a positive minimum there. Indeed, if k(w) = 0 for some w € S?
then a;w = 0 fori =1, ..., 4 because of (13). Together with (14), this would imply that
the four vectors a,, ay, az, w € R® are linearly independent, which is impossible. As a

result,
— 14l [ du(1 - Kw)r)2
S2
has compact support. Its second derivative h”(r) = 6|4| [, dwk(w)*(1 — k(w)r)4 is con-
tinuous and non-increasing in r. =

Proof of Lemma 4. We note that h, —/’,h"” > 0. Passing to spherical coordinates we
find for p # 0

w(p) = lilrg/da:e_ipxe_emw(m) = %hﬁ)l dr sin(|p|r)e™ " (h(0) — h(r))
€ pl e
— lim _ 4T /:r(cos(|p|r) + £ sin(|p|r))e ™ "h'(r) = _ A= /'Cc’icr cos(|p|r)h'(r)
elo €2 + |p|? |pl lp|? Jo

k t
|p|3f drsin(|p|r)h" (r) = Z "/ dtsinth”( TPT )20.

The third and fifth equalities are obtained by partial integration. The series above is
alternating because h” > 0 is non-increasing. Hence the final inequality. ®
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