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Localization Near Band Edges
for Random Schrodinger Operators

By J.M. Barbaroux!, J.M. Combes! and P.D. Hislop? ?
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Abstract. In this article, we prove exponential localization for wide classes of Schrédinger operators,
including those with magnetic fields, at the edges of unperturbed spectral gaps. We assume that
the unperturbed operator Hy has an open gap Iy = (B_, B4). The random potential is assumed
to be Anderson-type with independent, identically distributed coupling constants. The common
density may have either bounded or unbounded support. For either case, we prove that there exists
an interval of energies in the unperturbed gap for which the almost sure spectrum of the family
H, = Hy+ V,, is dense pure point with exponentially decaying eigenfunctions. We also prove that
the integrated density of states is Lipschitz continuous in the unperturbed spectral gap Io.
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1 Introduction

The phenomenon of exponential localization for various families of random Schrédinger op-
erators H, = Hy+ V,, on L2(]Rd), d > 1, near the bottom of the almost sure spectrum is now
reasonably well understood, see for example [5],[22], [20], [L1], [12], [19], [24]. The results for
lattice Schrodinger operators on ¢2(Z?) can be found in the book of Carmona and Lacroix
[4] and Pastur and Figotin [27]. Recently, there have been several results [6], [23], [13],
[14], [15], [31], [20], [1] concerning band edge localization, i.e. the existence of pure point
spectra near the edges of the spectral bands of the deterministic, unperturbed operator Hy.
In this paper, we prove that band edge localization is a rather general phenomenon. We
study the perturbation of fixed, background Schrodinger operators Hy = (—i1V — A)? +
on L%(IR%),d > 1, with an open spectral gap I, = (B_, B}), by random potentials V,, of

Anderson-type

= z Ai(w)u(z —1) . (1.1)

ieZd

The coupling constants {A;(w)|: € Z?} are assumed to be independent and identically dis-
tributed with common density h. We assume u > 0 and supp u is compact. There are three
main results. First, we assume that supp h is compact and that the almost sure spectrum
¥ of the family Ho + V|, has an open spectral gap (B-,B,) with B_ < B_ < B, < Bj.
We prove that near the band edges B_ and B, the spectrum & consists of only pure point
spectrum with exponentially decaying eigenfunctions. This result requires that h decays
sufficiently rapidly near the edges of its support.

Secondly, we consider the case when supp h is unbounded so there is no spectral gap
in ¥ near Ip. We add a coupling constant ¢ > 0 and let ¥(g) denote the deterministic
spectrum of Hy + gV,,. For any energies £y with B_ < F_ < E, < B,, we prove that there
exists go > 0 such that £(g) N (E_, E;) is pure point for all 0 < g < go, with exponentially
decaying eigenfunctions. Thirdly, we prove that the integrated density of states for each of
the families H, and H,(g) is Lipschitz continuous in the spectral gap Iy of Hy in both cases.

In the case of bounded perturbations V,,, the localization result follows from the fact that
the spectrum is “thin” near the band edges By (provided the density h decays sufficiently
rapidly). In fact, for local Hamiltonians Hy, = Ho + (V. |A), associated with bounded
regions A C R?, we prove that the eigenvalues remain at a strictly positive distance from B_
and 1§+ with a good probability. This fact allows one to apply the Combes-Thomas argument
(8] in order to prove decay estimates on the resolvent of Hy . with a good probability. This
initial scale estimate, together with an improved Wegner estimate, are the starting points for
the multiscale analysis of [5] which results in almost sure decay estimates for the localized
resolvent of the infinite volume Hamiltonian. When the density A has unbounded support,
we must add a coupling constant g and work in the weak coupling regime.

We also prove in this paper an improved version of the Combes-Thomas estimate [8] on
the decay of localized resolvents. This result may be of independent interest. Suppose H
is a self-adjoint operator with a spectral gap (B_, By). The usual Combes-Thomas result
gives an upper bound on the spatial decay of the resolvent (H — E)~!, E € (B_, By), with
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a decay constant proportional to dist(#,o(H)). We prove here that the decay constant is
proportional to \/A+(E')/_\_(E), where AL (F) = dist(E£,{A € o(H)|A > By})and A_(F) =
dist(E,{\ € o(H)|A < B_}). Note that when E is close to o( H ), the decay is approximately
[dist(E,a(H))]'/2. This is similar to the case when E < inf o(H) and the decay constant is
proportional to [dist(E, a( H))]'/2.

In [23], Klopp studied localization induced by random perturbations of a periodic Schro-
dinger operator Ho(h) = —h?A + V; in the semiclassical regime. He proved exponential
localization near the band edges of the first band of Hy(h) for A small. Figotin and Klein
[13] studied band edge localization for perturbations of periodic lattice Schrédinger opera-
tors H(g) = Ho + gv, on {*(Z%), in the weak coupling regime. In [14], these results were
extended to lattice models of acoustic and electromagnetic waves propagating in random
media. These results for wave propagation were extended to continuum models in [15]. In
all these cases, the random perturbation is Anderson-type. Aizenman [1] gave an elemen-
tary proof of band edge localization on the lattice in the weak disorder regime. He studied
Anderson-type perturbations H, = Ho+ AV, of a background operator Hy = T + Uy, where
T 1s a bounded self-adjoint operator with exponentially decaying matrix elements and U,
is periodic. Aizenman proved that the a.s. spectrum of H, is pure point near o(Hy) for A
in a certain regime of small values. He utilized an extension of the ideas of Aizenman and
Molchanov [2] which avoids multiscale analysis (Unfortunately, it is not clear how to extend
[2] to continuous models). Our own interest in band edge localization originated with our
study of localization for the randomly perturbed Landau Hamiltonian on L?(R?) ([6], [3],
[31], [11], [12]). We discuss this model in Example 2.1 of the next section.

This paper is organized as follows. In section 2, we present the main hypotheses and
results. We provide several examples of models satisfying these hypotheses. An improved
version of the Combes-Thomas estimate is presented in section 3. Section 4 contains a
new proof of the Wegner estimate which can be applied to models with unbounded random
potentials (see [3]). In section 5, we give estimates on the location of the spectrum of the
finite-volume Hamiltonians Hy, with good probability. These results, with those of section
3, allow us to verify the initial decay hypothesis [H1](~o, €o) of [5]. By the multiscale analysis
and perturbation theory of [5], we then establish band edge localization when supp h is
bounded. The case of supp h unbounded is discussed in section 6. We present certain
technical trace ideal estimates in the appendix, section 7.
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2 The Models and the Main Results

We study random families of Schrodinger operators H, = Hy + V,, on L?*(R?), d > 1. The
unperturbed Schrodinger operator Hy has the form

Ho=(=iV—A?+V,, (2.1)

where A is a vector potential and V; is a background electrostatic potential. We first list
the assumptions on Hp and present our main results. We then discuss the assumptions and
give several examples. Let Ro(z) = (Ho — z)™! denote the resolvent of Hp.

(H1) The operator Hy is essentially self-adjoint on Cg°(R?).

(H2) The spectrum of Hy, o(Hy), is semibounded and contains an open gap, that is, there
exist finite constants C'y > 0 and —Cy < B_ < B} < oo such that

O'(Ho) C (—Co, B_] U [B+,OO) ‘

(H3) The operator Hy is strongly locally compact in the sense that for any f € L*(R?)
with compact support, the operator f(Hy + Co + 1)"! € J,, for some even integer ¢,
1 < ¢ < co.

(H4) Let p(z) = (1 + ||z]|*)*/%. The operator
Ho(a) = e “°Hpe ™'

defined for o € R, admits an analytic continuation as a type-A analytic family to a

strip
Slag) ={z+iy e C | |y| < a0},

for some a¢ > 0.

We now describe the random perturbations V,,. We assume V,, is Anderson type of the
form

Vo(z) = Y Ai(w)u(z —1) . (2.2)
ieZd
The coupling constants {)\;(w)} and the single-site potential u are assumed to satisfy the
following conditions.

(H5) The coupling constants {\;(w) | ¢ € Z%} form a family of independent, identically
distributed (iid) random variables. The common distribution has a density h satisfying
0 <he L®(R)NC(R). There exist not necessarily finite, positive constants 0 < m, M
such that supp h C [—m, M] and h(0) > 0.
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(H6) The density h decays sufficiently rapidly near —m and near M in the following sense.
If0<m< M < oo, then

0 < P{|A 4+ m| < e} < 3¥2HP

0 < P{|} — M| < e} < 34?8

for some 8 > 0. In the case that either m or M is infinite, we require that for some
r > max(q,d/2).
Ch = sup, h(A)|A["*? < oo.

We take Q = [supp h]%" to be the probability space equipped with the probability measure
P induced by the finite product measure. The single site potential u in (2.2) is assumed to
satisfy.

(HT) The single-site potential u has compact support and 0 < u € L=(RY).

At the level of generality maintained so far, we need some hypotheses on the spectral
properties of the random family H.,.

(H8) The family {H,|w € 2} has deterministic spectrum ¥ in the sense that 3Q¢ C Q with
P(Qp) = 1 such that for w € Qo, o(H,) = X.

According to whether supp & is bounded or unbounded, we need to consider the nature
of ¥ near the unperturbed spectral gap (B_, By).

(H9) Suppose supp h is bounded, i.e. 0 < m, M < oo. Then, 3 constants B} satisfying
B_ < B. < B, < By such that

&N {(B—vB’—) U (B:'HB-F)} #‘ 0.

We remark that in the presence of ergodicity (H8) is known (cf.[27]). In the unbounded
case (H5) and (H7) imply that, the deterministic spectrum X fills the gap (B-, By) entirely
(see Proposition 6.4). Given (H9), we define the perturbed band edges By, satisfying B_ <
B_ < B’ and B, < B, < B, by

B_ = sup {E eX|EL B'_} (2.3)

and

B,=inf{E€X|E>B,} (2.4)

We can now state our main results.
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Theorem 2.1

Assume (H1) - (H9) and that supph 1s bounded, i.e. 0 < m,M < oco. There exist
constants Ey satisfying B < E_ < B_ and By < E; < By such that SN (E_,E,) is pure
point with exponentially decaying eigenfunctions.

In the case that supp h is unbounded, we must introduce a coupling constant g and work
in the weak disorder regime of small g.

Theorem 2.2

Let H,(g) = Ho + gV,,. Suppose that supph is unbounded and assume the hypotheses
(H1) - (H8). For any energies Ey satisfying B_ < E_ < Ey < By, 3 g0 = go(F1) > 0
such that for all 0 < g < go, we have LN (E_, E) is pure point with ezponentially decaying
etgenfunctions.

Finally, the Wegner estimate of section 4 provides the following regularity result for the
integrated density of states (IDS) in the unperturbed spectral gap.

Theorem 2.3

Assume (H1) - (H9) and supph bounded or (Hi) - (H8) and supp h unbounded. In either
case, the integrated density of states is Lipschitz continuous on (B_, By ).

We remark that if h € C*, then we believe that the IDS N(E) € C*((B_,B.)). Such
a result for & > 3d/2 would allow us to remove hypothesis (H6) in the case that supp A is
compact.

Let us make a few remarks on the hypotheses. We refer to the review of Simon[29] and
the book by Cycon, Froese, Kirsch and Simon[9] for further details. A theorem of Leinfelder
and Simader[25] states that if V € L}, V. € K4, and A € L}, then C&(R?) is a core
for Hy, which is condition (H1). Let H4 = (—:V — A)? be the pure magnetic Hamiltonian.
If A e CHRYRY), it is easy to see (cf [29]) that D(H4) C HYR?) = D(-A). Let us
suppose also that Vj is relatively —A-bounded with relative bound < 1. Then, (—=A + V)
is semibounded by some —Cjy > —oo. The diamagnetic inequality (see [29]) implies that Hy
is also semibounded with the same constant. The strong local compactness condition (H3)
is immediate under these conditions. Indeed, it suffices to prove that for all f € L™ with
compact support, the operator f(—A+ Co+1)~! € T, for all ¢ such that co > ¢ > [d/2] as
in (H3). This follows from the standard estimate (see [30]):

flz)g(=iV)e T, if fog€ LYRY) for oo >q>[d/2].

The analyticity condition (H4) is also satisfied for general (A, Vp). For a € R, we have
Ho(a) = €™ Hy €7 = Hy — 2aVp - (—=iV — A) + iaAp + &*|Vp|? |
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with |Vp| and Ap bounded. Assuming that V4 is relatively H4-bounded, it suffices for
analyticity in « to show that for some 2 € p(H,), the operator

{~2aVp - (=iV = A) +iadp+®|Vp|} (Ha — 2)7" (2.5)

is bounded with norm less than one for some z € p(H,4). Since the operator in (2.5) is
bounded above by

dist(o(Ha), )™ {2le] [Vl max {1, |z]'/} + |al |Ap] + o?|Vp [}

it follows that for any fixed ap > 0, this bound can be made < 1/2 by taking z = —ic, 0 > 0
sufficiently large. This shows that Hp(a) has a continuation to any strip S(ap), o > 0.

We now present several examples satisfying these conditions and hypotheses (H2), (H8)
and (H9).

Example 2.1

Landau Hamiltonians in d = 2 dimensions. We take Vo = 0 and A = %(—1'2,:1:1). In
this case, the unperturbed spectrum of H, is pure point o(H,) = {E.(B) = (2n + 1)B,
n=0,1,2,...}. When supph is compact, the existence of localized states away from a region
of size O(B™") centered at the Landau energies E,(B), and for B, large was proved in [6].
Theorem 2.1 applied to this case avoids the restriction that B is large. The analog of Theorem
2.2, when supp h is unbounded, is proved in [3].

Example 2.2

Periodic Schrodinger Operators. We set A =0 so Hy = —A + Vy and assume that V;
is a real, bounded, periodic function with an open gap (see [28]). The random family H, has
deterministic spectrum provided the lattice group of Vy is commensurate with Z*. In the case
of supp h bounded, condition (H9) can be guaranteed by writing H,,(\) = Ho+ AV, and taking
A small enough.

Example 2.3

Pure Magnetic Field Hamiltonians. We take Hy = Hy(A) = (—iV — MA)? with ) € R,
and A € C'(R%,R?). Amongst other questions, Hempel and Herbst [17] studied the case when
the magnetic field B = dA is periodic with respect to Z%(d > 2). Let Mg = {z|B(z) = 0}
and My = {z|A(z) = 0}. Under the condition that |Mg\Ma| = 0, they show that H4(\)
converges in the norm resolvent sense as A — oo to the Dirichlet Laplacian on M. Based on
this, they construct examples of pure magnetic hamiltonians H4(A) in dimensions d > 2 with
periodic magnetic fields and with open spectral gaps for all X sufficiently large. As discussed
above, our hypotheses hold for these models.
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Example 2.4

Magnetic Hamiltonians with periodic Potentials. Nakamura [26] (inspired by [17]) studied
the eristence of open spectral gaps for more general magnetic Schrodinger operators, for
d > 2, of the form

Ho(A) = (—iV = M)+ 1},

with A € CY (R, R?) and V; real and bounded. The result of [26] of interest to us is the
following. Suppose B = dA and V are periodic with respect to a lattice subgroup I' of Z?
with bounded fundamental domain Qr. Let HP()) be the restriction of Ho(A) to QU with
Dirichlet boundary conditions on dQr. The spectrum E(A) of HP (A) is discrete. Under the
assumption that the largest eigenvalue of the matriz (B;;(z)) restricted to OQr is strictly pos-
itive, Nakamura proves that for all X large o(Hy(\)) lies in neighborhoods of size O(e“”‘/x),
for some a > 0, about (A). Hence, there are open spectral gaps in a(Hy(A)) and Theorems
2.1 and 2.2 apply to random perturbations of these operators. Note that if A is periodic, the

operator Hyo(A) has band spectrum and the width of the bands is O(e™").

Example 2.5

Combes-Hislop model revisited. Theorem 2.1 can be applied to the Anderson type models
studied in [5] improving the result proven there. Let H, = —A + V,,, where V,, is given in
(2.2). In [5], we assumed (H5) with m = 0, M < oo, and that u > Coxa,, where xa, is
the characteristic function on the unit cube. The present work allows us to remove this last
assumption on the single-site potential u. We choose a constant Cy > 0 satisfying Cy < M
and write

Heyy = {—A-l— Z Cﬂl,‘}—{— Z()\, —Cl)u,-

i€Zd 1eZ?
= Ho+V,, (2.6)

where u;(z) = u(x —1). The operator Hy is a periodic Schrodinger operator with a positive
potential. and hence inf o(Hy) = 59 > 0. The potential V., is an Anderson-type potential
with coupling constants \(w) = M\(w) — Cy. The density of these random variables has
support in [—Cy, M — Cy]. Theorem 2.1 now shows that there is a small interval of energy
of the form [0, Ey), for some Ey > 0, in which the spectrum 1s pure pont almost surely.
Theorem 2.3 guarantees the Lipschitz continuity of the integrated density of states in the
interval [0, Lo].

3 Improved Resolvent Decay Estimates

In this section, we present an alternative form of the Combes-Thomas method [8] which
allows an improvement on the rate of decay of the resolvent which is of independent interest.
The basic technical result is the following.
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Lemma 3.1

Let A and B be two self-adjoint operators such that dx = dist(c(A) N R*,0) > 0, and
|B|| < 1. Then,

(i) For B3 € R s.t. |8 < 3/dyd_, one has 0 € p(A +i8B),

(i) For f € R as in (i),
(4 +i8B)7] < 2sup(d3?,d2t).

Proof:

Let Py be the spectral projectors for A corresponding to the sets o(A) NR*, respectively
and define uy = Pyu. By the Schwarz inequality one has

lull (A +iBBYull > Re((us —u_), (A +iBB)(us +u_))
dillus |2 + d_Ju_||? — 28m (uy, Bu_) (3.1)

2 (e flus || + d-[lu]f?),

where we again used the Schwarz inequality to estimate the inner product. It follows that

IV IV IV

: 1 .
I(A+:8B)u|| 2 5 min(dy, d-)]ju],
and since this is independent of the sign of 3, the lemma follows.

Proposition 3.2

Let H be ¢ semibounded self-adjoint operator with a spectral gap G = (F_, F}) C n(ﬁ)
Let W be a symmetric operator such that D(W) D D((H + Co)?) and ||(H + Co)": W (H +

C())_%” < 1, for some Co such that H+Cy > 1. For any E € G, let Ay = dist(Ey, E). Then,
we have

(i) The energy E € p(ﬁ—{— 1BW) for all real B satisfying

1 AA_ :
o< 5{(.& ¥ Co)(B- + Go)} ’

(i1) for any real B and energy E as in (1),

I+ i6W = By < 2oup 2225, B Co)

A, | A
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Proof:

Let E EG and Cy be as above. Define a self-adjoint operator A = (ff -+ C’o)'l(ﬁ - F)
and B = (H+CO)'%W(H+CO)‘%. By hypothesis, the operator B is self-adjoint and satisfies
||B]| < 1. Note that 0 € p(A) and

dy = dist(c(A)NRE,0) = AL(Ex 4+ Co) ' >0 (3.2)

Applying Lemma 3.1 to these operators A and B, we see that for # asin (i), 0 € p(A+:3B)
and that

E E_
||(A+:»:aB)-l||szsup( i O *C") .

A, A

Let Pi be as in the proof of Lemma 3.1. For any w € D(H),

|(H +i8W = Eyull = |(H + Co)*(A +i8B)(H + Co)u|
> |I(A+iBB)H + Co)rwl ,

since (F+ Co) > 1. We now repeat estimate (3.1) taking u = (ﬁ + C’o)%w. This gives

I(H +iBW — E)ol| > YI(H + Co)¥ull ™ (dy[| Py (H + Co)rw]?
+(d_|| P-(H + Co)3w]]?) (3.3)
> Lmin(dy,d_)||(H + Co)iw| .
Since ||(H + Co)7w|| > ||w|| and dy are defined in (3.2), result (i) follows from (3.3) and
Lemma 3.1.

Theorem 3.3 Let Hy be given as in (2.1) satisfying (H1) and (H{). Let V be Hy-bounded
with relative bound less than 1 and define the self-adjoint operator H = Ho + V. Then the
dilated operator H(a) = ¢'*?He™'*?, a € R, admits an analytic continuation to a type-A
family on the strip S(ag) (p and S(ap) are defined in (Hf)). Suppose Hy satisfies (H2) and
that H has a spectral gap G = (E_,E;) C (B-,B;y) (E- # E;). For E € G, define
Ay = dist(Ey, E). Then there exist finite constants Cy, Cy > 0, depending only on Hy and
V', such that

(1) for any real B satisfying |B| < min(ag, C1v/ALA_,\/AL/2), the energy E € p(H(:/3));
(1i) for any real B as in (1),

I(H(i8) — E)7'|| < Cymax(A7!, AT . (3.4)
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Proof:

As in the discussion of (H4) in section 2, we have,

H(a) = H + o*|Vp|* + oW |

where o € R and W = —(Vp.(p — A) + (p — A).Vp) is symmetric. Note that |[Vp|. = 1
and ||Ap|loc = 1 and that V and V, are relatively (p — A)?*-bounded. Consequently, (2.1)
is less than 1/2 for |Imz| large enough. This proves analyticity of H(a) in S(ap). Taking
a =1f3, 3 real and |3| < ap, we have

H(iB) = H — BV p|? +ipW .

We apply Proposition 3.2 to this operator taking H=H- B%|Vp|*. This operator has a
spectral gap which contains (E_, E,), where E_ = E_ and F, = E, — 2. In order that
A, = dist(Ey, E) > (A4/2), we require |8] < VA4+/2. (Note that A_ = A_). We can now

apply Proposition 3.2 to conclude E € p(H(iB)) for |3] < min{ao, C\v/ALA, /A, /2}
and that (3.4) holds.

4 The Wegner Estimate

In this section, we prove a Wegner estimate for local Hamiltonians valid at all energies in
the spectral gap of Hyg. This estimate holds in the case of unbounded potentials as will be
discussed in section 6 (see also [3] for an application of this estimate to 2-dimensional Landau
Hamiltonians with unbounded potentials). Let A C R? be a bounded region and denote by
Ha. = Ho + (V,|A). Since (V,,|A) is a relatively compact perturbation of Hp, the spectrum
o(Hp,) N (B-, By) 1s discrete. Let Py and E, denote the probability and expectation with
respect to the random variables associated with A N Z¢ = A. We denote by Tr the trace
on L?(R?). Let Ra(z) and E4(.) denote the resolvent and the spectral projection for Hy .,
respectively; we often suppress the w and write Hy for Hy,, Vi for (V,|A), and Ro(z) for
(Hy — Z)_].

Theorem 4.1

Assume (H1) - (H3), (H5) and (H7) - (H8). For any Ey € (B_,By) and for any
n < 1dist(Eo,o(Hy)), 3 finite constant Cg,, depending on [dist(o(Ho), Eo)]™! such that:

Py {dist(c(Hy), Eo) <} < Cron|A| . (4.1)

Proof:

Let I, = [Eo — n, Eo + n]. We write Hy for Hy ., Vi for (V,|A) and Ry for Ro(FEp). By
Chebishev’s inequality the left hand side of (4.1) is bounded above by

Ea (Tr(EA(1}))) -
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To control the trace, we recall that any eigenfunction g of Hyvp = Ev¢g, E € I, satisfies
Koyp = =Yg + Ro (Ha — Eo) YE , (4.2)
where Ko = RoVi. From (4.2), it follows easily that:
Ea(l,) = —KoEx(Iy) + Ro(Hx — Bo)Ex(L,) . (4.3)
Hence, noting that Ex(I,) is a positive trace class operator,

I1EA(LR)]h

Tr(En(ly) =
< [Tr(KoEx(1y))] + 0l Roll | EA(13)]]1

and by the assumption on 7:
Tr(Ea(Iy)) < 2|Tr(KoEa(Iy))]. (4.4)
A first consequence of (4.4) is, by the Holder inequality:
Ex(lEa(In)ll) < 2EA(|[KoEn(Ly)]l1) L
n)ll) (E i 1)
< 2{EA (|| Koll) 3 {EACIEA(L)1,7)}P,

IA

where || ||, denote the norm in the Schatten class J,. By Proposition 7.4 and the fact that
EA(|EA(I),7) = Ea(|| Ea(15)]1, since all the eigenvalues of the spectral projector are equal
to one, we obtain,

Ea(| Ea(Ly)][1) < 2C|A], (4.5)

from which the existence of the integrated density of states, for energies in the unperturbed
spectral gap, follows. Now, we use the adjoint of formula (4.3) to derive

KoEA(1,) = —KoEA(I) K5 + KoEA(L)(Hpy — Eo) Ry,

which implies

I Tr(KoEa(y))] < || KoEa(Ly)]lx
< Tr(KoEa(1y)KG) + nl|Rol| [|[ Ko Ea(Ly)]]1-
Hence, by (4.4),
Ex(Tr(EA(I,)) S 4EA(Tr(KoEA(I)Ky). (4.6)

If ¢ > 2, one continues this procedure and writes:

KoEr(I)K; = —KoEA(I,)(K2)? + KoEa(I,)(Hx — E)RoK}. (4.7)
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One has by Holder’s inequality,

| Tr(KoEn(1)(Hx — Eo)RoKg)| = ||KoEa(I,)(Ha — Eo) RoK (||
<l Rollll Ko Ea(Ln)lata-1) 155l
<l Rollll Kol Ea(T)llasia-2)- (4.8)

Taking the expectation and again using Holder’s inequality, Proposition 7.4, and (4.5), one
can bound the expectation of the left hand side of (4.8) by:

(20) | Roll Al
Consequently, equations (4.6)-(4.8) imply
EA(Tr(En(1;)) £ 4AEA(ITr(KoEA(1;)(Kg)?)
+4(20)%F n dist(Eo, o(Ho))™|Al.
If ¢ > 3, one repeats this procedure again. Finally, one obtains:
En(Tr(Ex(Ly)) < 4 BA(ITr(KoEa(L)(K3)"]) + Cndist(Bo, o(Ho) Al (4.9)
where C' depends on ¢ and the constant C' of Proposition 7.4.

To estimate the first term on the right hand side of (4.9), we expand the potential

Va = ZieK Aiu;, where u;(z) = u(xz — ). For each g-tuple of indices {i} = (71, ...,7,) € A7,
we define: . 1

]{il..,iq = uf; Rou,*sRUui‘....uinguZ (4.10)

We prove in the appendix, section 7, that (H3) implies that Ky = K;,_;, € Ji. In terms of
this operator, the first term on the right side of (4.9) becomes

Ex { > A (@) A ()T {I\'{i}(ui EA(I,})Ui)}} : (4.11)

iy,..igEA

Since Ky is compact, we write it in terms of its singular value decomposition. For each
multi-index {¢}, there exists a pair of orthonormal bases, {qﬁ,{{”} and {wé'}}, and nonnegative

numbers {,uf;i}}, all independent of w, such that
K=Y m' e e (4.12)
k=1

Inserting the representation (4.12) into (4.11) and expanding the trace in {qbl{:}}, we obtain

Exd > 3 Aplw)ni! i”,(uz;EA(f,,)uf;)qsf})}, (4.13)

{iYeAs k21
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where Ay (w) = A (w)... A (w). Recalling that Ex([,) > 0, we bound the k-sum above by:

LS VB { @I, (ud Ealinud o)
k>1 (4.14)

@I, h Eatimud ol |

From independance of the \;’s, the spectral averaging result (see [5] or [7]) applied to each
term in (4.14) gives for the first term:

En { Mo (@Il (wd Ealh)ud i)} < Cin. (4.15)

where 'y is finite according to (H6). From (4.13)-(4.15), we obtain an upper bound for the
first term on the right hand side of (4.9),

Cin Y (IK@lh) - (4.16)

111eerigEA

In the appendix, we prove in Proposition 7.2 that 3 finite constant Cg, > 0, depending only
on dist(o(Hy), Eo)~! and the dimension d > 1, such that (4.16) is bounded above by

¢l CrymlAl (4.17)

Results (4.9) and (4.17) prove the theorem.

5 Verification of [H1](vy,4)

The goal of this section is to prove the hypothesis [H1](~o, {o) for finite volume Hamiltonians
corresponding to the models introduced in section 2. We let A C R? denote a bounded open
region and Ay (zo) = {x € RY||z; — 0| < €/2,1 = 1,...,d}. When z¢ = 0, we will write A, for
simplicity. The potential depending only on the ), in a region A is denoted V, , = (V_,|A).The
finite volume Hamiltonians Hy ,, are defined as Hp, = Ho + Va. Since Vj,, has compact
support, it is a relatively compact pertubation of Hy and hence oess(Hp) = 0ess(Hp ). One
of our first tasks is to locate precisely the eigenvalues of Hy , in the gap (B_, B4 ) with good
probability.

The condition [H1](70,4) on the resolvent of Hy ., written Ry(z) = (Hp. — z)” ', when
it exists, is the following. For any y € C2, define the first order differential operator W (x)

by

W(x) = [-A,x] = -V.Vx - Vx.V (5.1)

This operator is localized on the support of Vy. Fix any § > 0 small and let A;5s = {a €
A¢|dist(OA, x) > 6}. We will use x, to denote a function satisfying x¢|A¢s = 1, supp xe C A¢
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and x, > 0. It follows that supp Vx, C As\Ass and W(x,) is also localized in this region.
The condition we must verify is
[Hl](707 f0) :
370 > 0 and ¢ >> 1 such that 4olp > 1 and P{sup ||W(xs ) Ra, (E + 1€)xesll < e} >
e>0

1 — 43¢, for E near the band edges By and for some ¢ > 2d.

We do this in two steps. We first prove that for § > 0 small, dist (¢(Hy ), B+) > § with
good probability. We can then apply the Combes-Thomas result of section 3 to conclude

exponential decay at energies £ € (B_ — /2, B) U (B, By + §/2) with a good probability.
We then verify [H1](vo,4o) for an appropriate choice of 74y and 4.

We now discuss the location of the spectrum of the finite volume Hamiltonians H, ., in
the unperturbed spectral gap. Recall that by (H8) the family {H,} has an almost sure
spectrum X. The probabitity space is {2 = (supp h)ld

Lemma 5.1 Suppose i = ppw, € 0d(Hprw,) N (B-, By) for some wy € €1, then u € ¥.

Proof: let v, be an eigenfunction of Hy ., with eigenvalue ppw, = p 1 Hp vy = f¥ugs
|tws|| = 1. For any R such that A CC Ag, consider the following events ( for any v > 0)

Iny = {w € Q| [Ai(wo) = Ai(w)| < v(6]A] [lullos)™", Vi € A},

and

Er, = {w € Q] |\i(w)| < v(6|AR\A| [lull)™", Vi € AR\A} .

Set Br, = Ir,NER,. Let x € C? be a smoothed characteristic function with supp y C Aq,
X <1, and x|A; = 1. For R > 1, set xr(z) = x(R™'z) so that ||8°xr| = O(R7el), for
la| = 0,1,2. Choose R, sufficiently large so ||xr,¥u,|| > %, and for R > R; define vg =

2’
IXRYuwoll ™! XR%w, 50 |¥R|| = 1. Then, by the definition of 1) and the local Hamiltonians,

(Hy — p)¥r = (Haw, — #)¥R + Z Ai(wo))uitpr + Z Ai(w)uivr ,

ich i€Ap\A

and it follows that for all w € Bg,,

1
I(He = p)vr|l < 2|l [Ho, xrlbull + 3¥ (5.2)
The commutator is estimated as follows: as Hy = (p — A)* + Vo, we have

[(P - A)29 XR]Tr/)wo = _22AXR(p - A)ILYWO - (AXR)¢wo ® (53)



Barbaroux, Combes and Hislop 31

Now v, 1s an eigenfunction of H, ,, and, in particular, ¥,, € D(Hy), so

(P - A)j¢wo = (P - A)j(HO - Z)‘l(tu' &= VA,WO)d)UO'
Setting z =16, 8§ > 0, we obtain

1(p = A)jthunll < 67 It =16 = Vaug lleo - (5.4)

which is independent of R. Hence, by taking R sufficiently large, it follows from (5.4) that

[(Hy — p)drll < ‘V
This shows that for any v > 0, o(H,) N [ — v,u + v] # O with probability P(Bg,) =
P(Eg,)P(Ig,) > 0. Since the spectrum of {H,} is deterministic, this implies u € .
Lemma 5.2 Let up, = p € oa(Hpw)N(B-, By), with eigenfunction ¢y, ||¢u|| = 1. Assume

that Vy ., > 0. Then we have

(s Vawde) > [dist(p, o(Ho)))* M)

Proof: Since M, Vi, > (V4. )? under the hypothesis that Vj, > 0, we have

<¢w’ VA,w¢’w) = M;1(¢u, MooVA,w(bw)
> M| Vawdull® -

The eigenvalue equation gives Vj ¢, = —(Ho — pt)¢w, so that

(6o, Vawto) 2 MZH|(Ho = p)ol’
M} [dist(o( Ho), 1)”

(AVARAVS

Proposition 5.3

Let 84 = LBy — By|, and for any 0 < § < 1MZ' min(64,6_), assume that A;(w) < (1 —
M [min(d4,6_)]"2)M,Vi € A. Then we have

sup {O’(I’"]A]w) N (—oo, B’_)} <B_-6

and

inf {o(Haw) N (By,00)} > By +6.
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Proof: Without loss of generality, we assume H, , has an eigenvalue yy , = p € [[3’_ —6,B_).
Furthermore, we can assume that Vj, > 0, since by Lemma 5.1, we always have y < B_
and the eigenvalues of H, ., are increasing functions of the coupling constants { i(w)e € A}
This fact follows, for example, from the Feynman-Hellman formula and the positivity of u.
Indeed, if ¢, i1s an eigenfunction of Hy,, so that Hy ¢, = né., then

8[-"A,w BHA w

0X;

Wi, —r—0w)
= (¢, u; qﬁw) >0.

The family T'(8) = Ho+ 0V, o, for 8 in a small neighborhood of #y = 1, is an analytic type A

family which is self-adjoint for # real. If g has multiplicity m, there are at most m functions

1 *)(8), analytic in 8 for  near 6y = 1, and which satisfy , lim p®(0) = p. Let 64)(0) be
— o=

an eigenfunction for ¥ (), with ||¢*)(8)|| = 1 for 0 real and |6 — 1| small. Applying the
Feynman-Hellman formula again, we find

du (0
0 (6(0), Va.u6(0) (5.5)

= 07{¢(0),(6Vhw)e(0)) -
We now assume \;(w) < (1 — § M [min(8,,6_)]2)M, Vi € A, and fix

tEA

(M - )7
o=nin () 5 (1- e im0
> 1,

Applying Lemma 5.2 to V}, , under these conditions yields

7 - 2
u,udg\ﬁ) >0 M} ldist(,u(k)(ﬂ),cr(Hg))] .

Upon integrating over [1,8,], we get, by monotonicity of u*)(6):

pO901) > -+ (logy) M min { [dist(u(01), o (Ho))), dist (1, o Ho))*
2,u+6>B_.

This shows that (H() +>:ieK Mu;) has an eigenvalue outside of ¥ which contradicts
Lemma 5.1.

This proposition is the main technical result. We can now easily compute the probability
that dist(c(Hp ), Bx) > 6.
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Corollary 5.4 For0 < é < ;MZ' min(6,,6_), we have
sup {a’(HA'“,) N (—oo,f?_)} < B_ -,

and

inf {o(Hpu) N (By,00)} > By +6,
with a probability larger than

h(s)ds

1 —|A] Jnax
X=m,

/:-5Mm[msn(5+ S_)]~2X

Proof: The probability that A\i(w) < (1 — My [min(8,,6-)]"2)M , Vi € A, is given by

A
1[1 - f(f,w_‘m,ma_g)M /2(3)(1'3]' l. The corollary now follows by expanding this probability and
rom Proposition 5.3.

We verify [H1](70, fo) by combining Corollary 5.4 on the location of the spectrum of Hy,
and the exponential decay estimate of Theorem 3.3. We note that hypothesis (H6) on the
decay of the tail of the density h near the endpoints of its support m and M is essential
in order to control the probability in corollary 5.4. We first give the decay estimate for the
localized resolvent and then comment on the gradient term.

Proposition 5.5 Let x;,t = 1,2, be two functions with ||xi|lcc < 1,suppx1 C Ays and
supp 2 localized near dA,; and 64 = %|1§+ — B_|. For B> 0 as in (H6), consider any v > 0
such that 0 < v < 43(28 + 3d)™'. Then 3¢ = (5(Mus,64,6-, M) such that ¥ty > € and
VE € (B_ — 572, B_.]U By, By + €57%),

; _gvl3
sup || x2Ra,, (E +ie)xi|| < e,
£>0

with probability > 1 — (’55, for some £ > 2d.

Proof: From Corollary 5.4 and (H6), we compute the probability that o (HAzow) is at a

distance § = 2042 from By,

)3d/2+ﬁ

P{dist (o (Ha, ) Bs) > 26} >1 — €5 (2057 Mg [min(6,,8.)] > X (5.6)

where X = m for B_ and X = M for B,. A simple computation shows that the right side of
(5.6) is bounded below by 1—£5¢ for some ¢ > 2d provided v satisfies 0 < v < 443(23+3d)~".
We now apply Theorem 3.3 to Ha, .. Let E' € [B_ — €2, B_) and, following the notation
of Theorem 3.3, let A_ = dist(B_ — § E) > /2 = €572 and Ay > |By — B_|. Since
dist(supp x2,supp x1) = 4o/3 (in dimension d > 9, this is no longer true; one has to replace
€o/3 by €y/(3v/d), for the diameter of the inner cube), we obtain
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Ix2Rag (E +ie)xall < Cosup (|By — B_|7,63™)
% o= infloo,City* T By -B_|'1?)t /6

The result follows by taking £y large.

Corollary 5.6 3¢ such that ¥l > £, hypothesis [H1] (70,40) holds VE € (B_—¢52 B_|u
[By, By + €57%) and any v satisfying 0 < v < 43(23 + 3d)™!, B as in (H6).

Proof: Asin Lemma 5.1, of [6], we write

”W(XZO.U)RAzOXfoﬁ“ < ”(AX%.U)RMOX%m”
+2 550, 185 xt0) (P — A)i Ray, Xeos3ll

for a function yy, . localized within distance v of dA4,. Let x4, ¢ = 1,2, be smooth functions
such that xixe.w = Xeo.0s X2X1 = X1, and supp x; is localized within a distance 2v for : = 1
and 3v for i = 2, of dAy,. Then, we write for each j and any u € L*(RY),

(5.7)

1(3ixe00)(p — A)jRay ull®> < Col(p — A)jBa, u, x1(p — A)jx2Ba, u)
< CollxaRa,ull l(p — A)ixa(p — A)jRa, vl

Taking u = xs,/3f, we see that (5.7) is bounded above as in Proposition 5.5 (taking &
larger) provided we have ||(p— A)? Ra, u|| bounded. This follows with a probability > &5,

since V4 is relatively bounded and V2 is bounded.

6 The Case of Unbounded Random Potentials

We indicate here the modifications necessary when supp k is unbounded and satisfies the
second part of (H6). To control the location of o( Hy) with a good probability, we must work
in the weak coupling regime. Consequently, we study the family H(g) = Ho + gV, for |g|
sufficiently small. We assume conditions (H1)-(H8) in this section.

Proposition 6.1 The random family of Schrodinger operators H,(g) = Ho + gV,, is essen-
tialy self-adjoint on C°(R?) with probability 1.

Proof: We refer to Hinz and Stolz [18] for a discussion of essential self-adjointness. It
suffices to prove that |V,(z)| = O(|z|?) as |z| — oo with probability one. We define events
Ak, ke Zd, by

A = {w| e(w)] = 1+ [k}
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From (H6), we have for any bounded set B C R? containing the origin,

S P(A) D (fu|>1+|ke| h(A)dN)

I

keZA\B keZA\B
< Ch Z |k|—2(r+l)
r+l, Zas

< 00,

since r > %—1 according to (H6). The Borel-Cantelli lemma then states that P(lim A;) = 0.
So Vk € Z°, |k| sufficiently large, and for a.e.w € Q, 3 finite C, > 0s.t. [Ae(w)| < Cu(1+]k]?).

We next turn to the Wegner estimate. The only change in Theorem 4.1 is a factor g7 on
the right side of (4.1). The multiscale analysis of [5] requires a simple modification. For a
constant Cy, depending on the length ¢ , assumption (H6) on the decay of A()) implies

P{|Va,| < Ce}>1- [lu]l Cutey 0 (6.1)

r+1

for Cy and r as in (H6). It is easy to verify that for C; = O(£°), we have (6.1) bounded
below by 1 — ¢7¢, for some £ > 2d. This can be absorbed into the probability of exponential
decay. At each stage of the multiscale analysis the constant is O(£2). A careful check of
the calculations in the appendix of [5] shows that this changes the decay constant v by a
vanishing amount of O((logl,)¢;') at each step. Hence, the results remain unchanged. Next,
we indicate how the small coupling constant g allows us to obtain estimates on o(Ha,o(9)),
which replace those of section 5. In fact, the results are simpler in this case.

Proposition 6.2 Let E, = (3)(By — B-),A = (3)|By+ — B_|, and fit K > 2. Then
3go(K) > 0 such that Vg < go(K) and for Iy = g5,

P{dist (0(Ha, w(9)), En) > K (K —1)A} > 1 - 5
for some £ > 2d.

Proof: It is clear that ||gVj,|l.c < K7'A,if Vi € Au, the coupling constants satisfy
IMi(w)] € (gKus)'A = v(A)
where us = || D uilleo. If this condition holds, then o(Hy,, ) is a distance K~ (K —1)A

i€Zd
from E,,. The probability of this occurring is

po = P{dist(0(Ha,, w(9), En) 2 KK —1)A} 21— £ /Mmm)h(/\)d/\.

Using (H6), we obtain the estimate for the probability

po > 1 — Crllg®™ (A(Kuy) ')t
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where ¢ and C), are as in (H6). By choosing ly large enough and g = O({;°), we can bound
po from below by 1 — ¢3¢, for some ¢ > 2d.

Finally, we formulate the analog of Proposition 5.5 in this case. We note that Corollary
5.6 is immediate since we know V3, . can be bounded with a good probability.

Proposition 6.3 Let x;,i = 1,2, be the functions defined in Proposition 5.5 and fix K > 2
as in Proposition 6.2. There exist finite positive constants go(K), € and Cs, Cy (depending
only on x;, K,and A), such that for all £y >> €3 and any E € [B_- +2K7'A, By —2K'A],
we have

sup [ x2Ra,, (E + 1) x1|| < Cae™ %

e>0

with probability > 1 — lgﬁ, for some £ > 2d.

Proof: For F as in the proposition, define

A_= inf (dist(F, B)),

Be{B_,By}

Ay =  sup (dist(E, B)).
Be{B_,B4}
From Proposition 6.2, it follows that for ¢ < go(/K) and £y > ¢~¢, we have Ay > (A/4) with
a probability > 1 — €5, for some ¢ > 2d. We can now apply Theorem 3.1 directly. The analog
of Corollary 5.6 now follows since we can control VA with a good probability (> 1 — %), as
indicated above.

[t remains to provide some examples which show that theorem 2.2 is not empty. We prove
that if supp h = R and hypotheses (H1)-(H8) are satisfied, then the almost sure spectrum
¥(g) fills in the spectral gaps of Ho; an example of this is the Gaussian distribution. We
prove the following.

Proposition 6.4 Let Hy satisfy (H1)-(H3) and assume (H5), (H7)-(H8). Let ¥(g) be the
a.s. spectrum of H,(g) = Ho + gV, and assume supph = R. Then we have

R\o(Ho) C X(g), g #0 .

Proof: We fix ¢ = 1 without loosing generality and consider po € (B-, By); by Lemma
5.1 one has po € X(g) if po € 04(Ha ) for some finite volume hamiltonians Hy ., and some
wo € . Given any fixed ball A C R? there exists by (H5) and (H7) an wp € Q such that
VA.w, 18 positive; consider then H(A) = Ho + AV, 1.e., H(A) = Hp o ; by (H3) and (HT)
one has oess(H(A)) = 0ess(Hp) for all A and the operator K (1) = [Vawo|Z(Ho — 1) Vi s |2
is compact for all u € p(Hp). It is well known that uo € o4(H(A)) iff —1/X € o(K (po));
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so unless K (pg) = 0 one has pg € Uyepoa(H(A)). On the other hand, if K(uo) = 0, then
either there exists a sequence (u,), converging to jo such that K(u,) # 0 in which case po
obviously belongs to Uyemoq(H(A)); or K (u) = 0 for all p in an open neighbourhood of po;

d 1 1 1
but then d_ K(pt)mo = [Vawol?(Ho — 120) | Vawo |2 is zero ie. (Ho — pto) ™ Vaw,|2 = 0;

but po € p(Hg) so this is possible only if |V}, L‘,0|2 = 0. Since Lemma 5.1 implies that
Ureroa(H (X)) € E(g), the proof is complete.

We remark that this technique also applies to show (H9) in case supph is compact
but large. Essential in the proof is positivity of Vi ., which follows from positivity of u
(assumption (H7)); if there is no magnetic field, A = 0, we could also use results of Deift
and Hempel to get the result without this positivity assumption ([10], [16]).

7 Appendix

We prove estimates on the operator K(; defined in (4.10) which are needed in the proof of
Theorem 4.1. Let A = ANZ¢ and recall that {i} is a g-tuple of elements of A. The following

lemma is easily proved using Holder’s inequality for trace ideals (see, for example, Theorem
2.8 of [30]).

Lemma 7.1 Assume (H1) - (H3) and (H7). Then Ky is trace class provided {1} is a
q-tuple, with q as in (H3). There exists a finite constant Cg, > 0, depending only on ||u|s,
dist(o(Ho), Fo)™', and (il € Cr.

The main result of this appendix is the following proposition which establishes (4.17).

Proposition 7.2 Under the assumptions of Lemma 7.1, for any Ey € (B, By), 3 finite
constant C'g, > 0 such that

1 ,...,‘inA

< Cry|A| (7.1)

provided {1} is a q-tuple, with q as in (H3). The constant Cg, depends on the dimension
d > 1, ||u||e, and dist(c(Hy), Fo)™!

The work in this appendix concerns only the unperturbed Hamiltonian Hy = (p— A)*+ Vo
and Ey € (B_, By) C p(Hp). To simplify the notation, we write Ry = (Hy — Eo)™*

Lemma7.3 Assume (H1)- (H3) and (H7). Suppose x1, x2 € C®(R?), with supp x1 compact
and that supp x2 lies in a half-space disjoint from supp x1, ||Xilleo = 1, dist(supp x1, supp x2)
> a>0, for some a > 0.
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Then, the operator y1Roxz € Ji. Furthermore, there exist finite constants D > 0, a > 0
such that

Ix1Roxally £ D e, (7.2)
where D and o depend only on dist(a(Hy), FEo)™!.

Proof: Let H, be the half-space containing supp x; and such that

H,y {z|dist(z,supp x1) < dist(z,supp x2)}

Let L be the straight line minimizing dist(supp x1,supp x2) so |L| = a and dH, L L. Let T},
A > 0, denote the parallel translate of H, along L, that is, T\H; = {z | A"dist(supp x1, z) <

dist(supp x2, )} = Hy. For any A > 1, we can choose x, € C§° such that y,x» = x; and

dist(supp x»,supp x2) = a(l — 3). Note that x,x, = 0 if A > 1. Iterating the geometric

resolvent equation 2¢-times, we find

x1Rox2 = XlRoW(XM)ROW(Xb\z)-'-W(X’,\zq)ROX‘z (7.3)

for any sequence Ay > Ay > -+- Ay, > 1, where

W(xa) = [Ho,xal = [(p — A)% xa] - (7.4)

For each );, we can find Yy, € Cg°(R?) such that W(xa,)Xa, = W(xy,). It then follows for ¢
as in (H3) and the boundedness of W (x)RoW (x.) that

.)?)\.ROW(X/\.‘H)ROW(X»\;H) € jq (75)

In exactly the same way as in the proof of Lemma 7.1, we use the Holder inequality to
conclude that y;Roy2 € Ji. To prove the exponential decay estimate (7.2), we use the
Combes-Thomas estimate.

If §(Ey) = dist{Ey, o{ Hy))™!, then there exist finite constants C' > 0, & > 0 depending on 6,
8.t N
lIx1Roxall < C e™* . (7.6)

By the same argument as above, we can choose ¥; € CZ°(R?) such that Y1 x1 = x1, X1x2 = 0
and

dist(supp x1, suppVx1) > a/3 ,

dist(supp X1, supp xz2) > a/3 .
Again, by the support properties,

x1Rox2 = xiRoW (X1)Rox2 ,

and we estimate the trace norm by

Ix1Roxzlli < IxiRo xa |l IW(X1)Roxzllr (7.7)
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where Y, is the characteristic function for supp (Vx1).

To prove the finiteness of the second factor, we note
W(X1)Rox2 = 1VX1 - (p — A)Rox2 + AX1Rox2 - (7.8)

The second term on the right in (7.8) is trace class by the first part of the theorem. The first
term is trace class by the argument of (7.3) - (7.5). Applying the estimate (7.6) to the first
factor in (7.7) gives the result (7.2). Note that C' depends on ||W(xa,)RoW (x2,)||, which is
proportional to dist(Ey,o(Ho))™?.

Remark : We will only use this lemma for x;,x2 € C&(R?). In the proof of Proposition
7.2 below, we simplify notation and write

- _ 2
]1{,‘} = u,-]Rou,-?Rou,-a...ui,_]ROu,-q 3
d 2 =, wh ient
and assume u,k = Uqy whnen convenient.

Proof of Proposition 7.2: Fix ¢ so that K;, ;, € Ji according to Lemma 7.1. We separate
the multiple sum over A? = {31, .-y 7)1k € /~\} into two parts. By (H5), we can choose a
finite @ > 0 so that if n = 2diam(supp u), we have n < a < 27 and ||i, — tm|| > @ implies
dist(supp u;,,supp u,,,) > a/2 > 0. We define a subset I; of A? as follows. An g-tuple
{1} € A%is in I, if liko1 — k|| < @ Vk = 2,...,q. Let I = K"\Il be the complementary set
of indices. If {i} € I, then there exist at least one pair of consecutive indices (2x-1,1%) s.t.
|2x — 2k-1]| > a. We use this pair of indices for the exponential decay. From Lemma 7.1, we
have an estimate for the sum over I,

> 1K wlh £ Cry 1], (7.9)
{i}en

where é'go is the constant appearing in Lemma 7.1. To estimate |I,|, if we fix i;, there are
a finite number C(a,d) of possible i, terms so that |[z; — 23| < @. This number depends
only on the constant a and d, for all large A. Hence, for fixed i,, there are C(a,d)?"" terms
satisfying the closeness condition since there are |A| choices for 71, we obtain the bound

L] < C(a, d)[Al. (7.10)

We now turn to the sum over I,. We write 7; N i, if ||z; — k|| < a and ¢; iy if ||7; — ]| >
a. We sum successively from #; to i,, for {i} € I. We sum first over all :; such that
(42,23, ..., 15) € AT71s.t (44,12, ..., 1) € [;. We separate the 7; sum into two parts :

Sl @l = (3 + 2 ) IK @l (7.11)

1) 1My 17
The sum over #; s.t. i; N2, is bounded above by

> iy Rowsy || [lwiy Ro - - Ro®wi ||y < C(a, d)é(Eo) ||uiy Ro - - R, | (7.12)

FytH
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where 6(Ep) = (dist(o(Ho), Eo))™! and C(a,d) are the numbers introduced above. To eval-
uate the sum for which z; Ny, we use (7.2) of lemma 7.3, and obtain an upper bound,

> lluiy Rouiy |l [|ui, Ro... Ro®ui, || < ( > De““'“”’") iy Ro.... Bo™wi ||| ul| 5. (7.13)
11z 11 iz

The sum in (7.13) is finite and independent of |A|. Note that in (7.13), we only need to
continue the estimate in the operator norm. We now pass to the sum over i, . There are two
terms, one coming from (7.12) and one from (7.13). From (7.12), we sum over all ¢; such
that (i3,13,....7,) € A" N I,. Separating the sum into 2 terms as in (7.11), we obtain,

> Nl Ro- Rjuigllh < 3 [lwiy Rowss || ||uiy Ro.... Ro®ui ||y
12 12N13

+ Y |Jui, Rousy || ||wis Ro.... Ro*us, || (7.14)

a3

Each term is estimated as in (7.12)-(7.13). As for the i5-sum in (7.13), we have
> i, Rouiy -+ Roui,|
i2

<3 s Rovil i Ro -+ Rou, |
t2M3
+ D llui Roui || lluiy Ro - - Ro®ui|| (7.15)
12013
Since the trace norm has been evaluated in (7.13); the usual Combes-Thomas result (7.6)
(see section 3) can be used for the second term of (7.15). As above, the bound on both terms
is |A|-independent. We continue to sum over i3, - ¢,_7. In (7.14) the trace norm is pushed
through each pair when (z;_;,7;) satisfy ||¢;1 — ¢;|| < a, and it is evaluated using lemma
7.3 otherwise. Similarly, in (7.15), we use the Combes-Thomas result (7.6) of section 3 to
control the operator norm of pairs (;-1,7;)s.t.||i;-1 — ¢;]| > a. We obtain in this way 2772
terms and a coefficient depending only en d, ||z||.., C(e,d), and 6( Fy) Finally, there are 2
remaining terms to evaluate : one from (7.14),

Z Huiq_,Roth,'qu, (716)
ig-1:iq
and the other from (7.15),
> i, Ro*ui || (7.17)
lg-1stq

for the trace norm in (7.16), we recall that the remaining indices, coming from I, satisfy
tg—1 N2, (that is, the only remaining trace norm is from those g-tuples {¢} for which only
the pair (z,-1,1,) satisfy ||i,-1 — 2,|| > a). Because dist(suppu, _,,suppu;,) > 5, we can find
X € C{)’O(Rd)s.t.xuiq_, = u;,_,,dist(supp x,supp u;,) > %, and dist(supp Vx,suppu; _,) > 5.
We then have:

> i Ro®uiglh < 32 Nlwigoy Rollllx Roui Il -

fq—lmiq iq—lmiq

+ D luin RoW (X))

iq—l miq

1||302Ui,,|| (7.18)
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The trace norms in both terms on the right in (7.18) are exponentially bounded by Lemma
7.3 and the operator norms are bounded by a power of 6(Ey). Consequently, the 7, ;-
sum is controlled and the 7,-sum results in a factor of |A|. Finally, we estimate (7.17).
We separate the sum into i,y N7, and 2, /7,. The nearest neighbour sum is bounded
by C(a,d)§(Ep)*|A|l. The sum over disjoint pairs is estimated as in (7.18) using the usual
Combes-Thomas estimate (7.6) for the operator norm. This completes the proof.

Proposition 7.4 Let Ky = RoVj, then there exists a finite constant C > 0, as in Proposition
7.2, such that

E(]| Ko

') SCIA| (7.19)

Proof: The proof uses almost exactly the same arguments as in Proposition 7.2 and we will
indicate how to reduce the expression to those calculations. By hypothesis (H3), we write
q = 2p, for some integer p. From the definition of the norms, we have

15oll® = 11 Kol”?[lx = (K5 Ko)lls. (7.20)

1\’0

Since K3 Ko = RoV{¥ Ry, we must estimate
EA{Tr(ViRS-- ViR3)}. (7.21)
Expanding the potential as before (4.9), we obtain the analog of (4.10),
Ky = wiy Ryuiwi, Rjwi, iy . wi,_, Ry, - (7.22)

The trace norm of this operator is estimated as in the proof of Proposition 7.2. We carry out
the summation over the indices in the same manner using Lemma 7.3 to control ||u; Rau;]|:
when w;u; = 0. Note that the intermediate terms like w;u;, actually vanish when the
supports are disjoint. The proof then proceeds as in the proof of Proposition 7.2.
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