
Zeitschrift: Helvetica Physica Acta

Band: 70 (1997)

Heft: 1-2

Artikel: Flux and scattering into cones in potential scattering

Autor: Amrein, W.O. / Zuleta, J.L.

DOI: https://doi.org/10.5169/seals-117007

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte
an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei
den Herausgebern beziehungsweise den externen Rechteinhabern. Siehe Rechtliche Hinweise.

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les

éditeurs ou les détenteurs de droits externes. Voir Informations légales.

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. See Legal notice.

Download PDF: 14.05.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-117007
https://www.e-periodica.ch/digbib/about3?lang=de
https://www.e-periodica.ch/digbib/about3?lang=fr
https://www.e-periodica.ch/digbib/about3?lang=en


Helv. Phys. Acta 70 (1997) 1 - 15

0018-0238/97/020001-15 $ 1.50+0.20/0 "N m O? O I
© Schweizerische Physikalische Gesellschaft, 1997 P -) -> " | Helvetica Physica Acta

v3L'0

<̂*\ Sto.

Vj
C/R

Flux and Scattering Into Cones in Potential Scattering

By W. O. Amrein and J. L. Zuleta*

Department of Theoretical Physics
University of Geneva
CH-1211 Geneva 4, Switzerland

(3.V.1996)

Abstract. For short range potentials we prove that the probability of finding a scattered quantum-
mechanical particle at large times in a truncated cone is identical with the scattered flux, integrated
over time, across a distant spherical surface subtending this cone.

1 Introduction

The definition of scattering cross sections in the Hilbert space approach to quantum scattering

theory is based on Dollard's scattering into cones formula (see e.g. [1, 2, 3]), whereas in
standard texts on quantum mechanics the scattering cross section is usually introduced in
terms of probability currents across distant surfaces (e.g. in [4]). As argued in [5] and [6], the
latter approach represents a better reflection of the experimental situation where particles
get counted in a detector, and it is interesting to study the relation between the two points
of view. The present paper is concerned with this problem.

We consider the simple case of potential scattering in Rn. Let H0 — A be the free
Hamiltonian and H — A + V(x) the total Hamiltonian, and denote by {{7°}teR and {Ut}teR
the associated evolution groups in the Hilbert space Jif L2(K"), i.e. U° e~xp(—iH0t)
and Ut exp(-iHt) respectively. For a large class of short range potentials, the wave
operators f2± s-limt^±oa U'U? exist and the scattering operator 5 Q*fi_ is unitary.
If / G Af is interpreted as an initial state vector, then Sf is the associated final state

* Supported by the Schmidheiny Foundation (Geneva) and the Turrettini Foundation (Geneva)
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vector and g Q,_f Q,+Sf the associated scattering state vector, in the sense that
linw^ \\Utg- [/t0/|| 0 and lim(^+00 \\Utg- U?Sf\\ 0, and gt(x) [UtÜ_f](x) represents

the full wave function at time t.

Let C be a cone in Kn with vertex at the origin and R a positive real number. We define CR

to be the truncated cone CR {x € C \ r > R} ', and we denote by T,R the intersection of
the cone C with the sphere SR {xeRn \ r R}, i.e. £„ {x € C | r R}. Then the
probability that the scattered state be localized in the truncated cone CR after the scattering
event is given by

P(f,CR)= lira [ \gt(x)\2dnx (1.1)
t-t+<xJcR

(if one assumes that ||/|| 1). Dollard's scattering into cones theorem states that this
quantity is identical with the probability that the momentum of the final state lies in the

cone C, i.e. one has

P(f.CK) Jc\Sf(k)\2dnk (1.2)

for each / € Jf. A further argument, involving an average over a collection of initial state
vectors / describing a beam, then leads to an expression for the scattering cross section for
the cone C (the details of this are irrelevant in the context of this paper).

The second quantity of interest is the scattered flux across EÄ at time t, given by

(j)s(g,t) 2lm[ g~Äx) Vgt(x)-n(x) do ; (1.3)

here n(x) x/r is the outward unit vector orthogonal to SR at x and do the surface

(Lebesgue) measure on SR. The sign of 0E indicates whether the flux is outgoing (0E > 0)

or incoming (0E < 0).

One expects that, if R is sufficiently large, then P(/, CR) should be the same as the total
scattered flux (the scattered flux integrated over time) across ER, more precisely that, for

any T € R:

lim f" 0ER(fi_/, t) dt / \Sf(k)\2 dnk (1.4)
fi->oo JT R JC

The equality of the two quantities appearing in (1.4) was conjectured, for A^-body
systems, by Combes et al. in [6], and recently the validity of this conjecture has been explicitly
verified for free particles (i.e. with V 0, hence Q± S I, the identity operator) by
Daumer et al. in [7]. Our purpose here is to prove (1.4) for a large class of short range
potentials V, and we plan to consider more complicated situations in a forthcoming
publication.

Our method consists in showing that, as R —» oo, the scattered flux across E„ converges
to the free flux associated to the final state vector Sf. The idea of the proof is explained
in Section 2, but the technical estimates are deferred to Section 3; these estimates rely on
asymptotic properties (t —> +00) of the evolution group Ut exp(-iHt) which we gather

fWe use the notation r \x\ (Y^=i x2,)
V2
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from earlier publications. This proof does not cover the situation of slowly decaying (short
range) potentials; in this case it is necessary to use a modified free evolution, as is shown

in Section 4. The principal results are stated in Theorems 1 and 2, and in an appendix we
discuss the flux associated to the free and the modified free evolution. A different method
(based on properties of eigenfunctions) for obtaining the result (1.4) for V ^ 0 is indicated
in [7] and applied to potentials of class C%° in [8].

2 Free flux and scattered flux

We now outline our method of proving (1.4). Precise conditions on the potential V and
details on the necessary estimates will be given in Section 3. The following conventions will
be used: Q (Qi, ¦ ¦ ¦ ,Qn) and P (Pi,...,Pn) denote the n-component position and
momentum operator respectively (Q: is multiplication by x3 and Pj —i^/gx )¦ We set

(Q) (I + Q2)1/2, (QY (I + Q2Y'2 for ^eR, Q (EU Q)Yl2 and P (£?=, P3Yl2-

Each of these operators is considered on the domain on which it is self-adjoint.

We denote by TR the following operator from L2(Rn) to L2(Sn~l), where S""1 5,
{xGRn \r 1}:

[7iu](«) [(/ + P)-1«](Ä«); (2.1)

here u>eSn~l and uGL2(R"). So TRu is the restriction of the function (/ + P)~lu to the
sphere SR of radius R. It is known (see the end of Section 3) that TR is a bounded operator
and that there is a constant cn < oo (depending on n) such that

llr«IK^Ä72 foratici. (2.2)

The operator rR is useful for expressing the flux across £R associated to a state vector u.
One has do RJ1-1 dw (dw the Lebesgue measure on Sn~l) and n(x)-V iYZff=i^>jPj,
where w3 denotes the j'-th component of the vector w G S"-1. By recalling that T.l Cn5"_1,
one obtains for any e € R:

(j)s (u) 2 Im / u(x) Vu(i)-n(i) do
Jer

n r
2 ]H Re / fi""1 dio u(Ru>) wj[Pju](Ru)

3=i j£i

^LÉRe^ l(QYu](Ru>) UilPfuKRu)

Alternatively, one may use the expression

oDn-l n

$£» ff2ìe/2ERe/E ^ [TR(I + P)u](u;)wJ[rR(I + P){QyP3u](u;). (2.4)
(1 + R2Y'2 £ï
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As in the Introduction, consider now an initial state vector / and set gt UtÇl_f, h S/
and ht Ut h. Then Çz (h, f) <J>E (ht) represents the free flux of the final state across ER

at time t, whereas 0E (g,t) <J)E (gt) is the scattered flux across ER at time t. We shall
show that the integrated scattered flux across ER coincides with the integrated free flux of
the final state h across ER in the limit R —> oo.

The properties of the free flux were established in [7] where it is shown that, for any TeR
and a dense set of state vectors h:

lim j™ Òl (h,t)dt= lim f°|0v° (h,t)\dt= [ \h(k)\2 dnk (2.5)
r->oc Jt r R-»oo Jt ' r ' Jc

To estimate the difference between the scattered and the free flux, we observe that

</>£>¦*)-</>sR(M)
2Rn~l

,Ä£Re/ dw[rR(I + P)(gt-ht)}(u;)wJ[TR(I + P)(QyP3ht}(u:)
(1 + RA z

J=1 -'S,

+ {12+nR2f2 ^Re/S|^ [W + PKQYat}^)^[tm + p)pJ(9t -M]M-

So, by using first the Cauchy-Schwarz inequality and then the estimate (2.2), one obtains
that

\(ßzR(n-f,t)-(f)zR(Sf,t)\ \<f)ZR(g,t)-(t)lR(h,t)\

^ irY \rR(I + P)(gt - ht)\\ \\rR(I + P)(QYP1ht\\
(l+R2)/2-i I-" Ullz.J(Ei)ll J elli,2(E,)

+ \\rR(i + P)<Q>^||£2(Ei) |r,(/ + P)p,(ft - M||L2(Ei) j

^ „
21X% è le+^)(ft - Ml IK7+pkqypm

(1 + R2)'2j=

+ \\(I + P)(QYgt\\\\(I + P)PJ(gt - ht)\ (2.6)

If the potential decays faster than r 2, one can exhibit a dense set ^ of vectors / for
which the norms on the R. H. S. of (2.6) can be majorized as follows:

1. if / € .^, there is a constant c (depending on /) such that for all t G R and e G [0.1]:

||(/ + P)(QYPjht\ + \\(I + P)(QY9t\\ S c(l + |i|)3£, (2.7)

2. if / G ~d( and T G R, there is a constant cT such that for allf ^ T and some ó > 0:

||(/ + P)(gt - ht)\\ + \\(I + P)PJ(gt - Mil ^ cT(l + \t\)-l~s (2.8)
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The proof of (2.7) and (2.8) will be based on propagation estimates obtained by commutator

methods in an earlier paper. By choosing e < |, one deduces from (2.6)-(2.8) that,
for / G M:

Yimof~\(f>I,R(n_f,t)-<f)zR(Sf,t)\dt 0. (2.9)

Combined with (2.5), this equation implies that

lim r<j> (Cl_f,t)dt lim r\(f) (Q.f,t)\dt= f\Sf(k)\2dnk, (2.10)
R-too Jt r ä->oo Jt ' r ' Jc

which proves the conjecture (1.4). The first equation in (2.10) also shows that, if R is

sufficiently large, the scattered flux is essentially outgoing.

Remark: The identity (2.10) holds for each finite T. Physically T plays the role of the
time at which the detection of scattered states is initiated. If the initial state vector has no
momentum support in —C (i.e. if f(k) 0 for all k G R" such that —ke C), then (2.10) is

true also for T — oo. Indeed, the same arguments that lead to (2.10) also allow one to
show that, for any T G R:

lim / 6y (Çl f,t)dt - lim / \6V (Ü f,t)\dt= - \f(-k)\2dnk, (2.11)
H->oo7-oo R fi-tooV-oo I ^" I Jc

and the last integral is zero if / has no momentum support in —C.

3 Estimates on the scattered flux

We first prove (2.7) and (2.8) for a class of short range potentials and for a dense set f& of
vectors h (then ^# will be given as ^( S*&). We shall use various results from [9]. From

now on we assume the following condition to be satisfied:

(Hj) V is a real-valued function on Rn of the form

V(x) (1 + x2yal2\wx(x) + W2(xj\ (3.1)

witha> 1, Wl€L°°(Rn), x-gradVKi G I°°(Rn) + L"l(W) and(l+r)W2 G L°°(Rn)-l-
LQ2(Rn), where g, and q2 satisfy q, ^ 2 and q, > |.

Under this assumption, the Hamiltonian H H0 + V(Q) is self-adjoint on the domain D(H0)
of H0.

For p > 0 we define &p to be the following dense subset of JIC:

% {he L2(Rn) | h G D(Q"), h ip(H0)h for some ip G Co°°((0, oo)\crp(/Y))}

We observe that, if h G 3>p, then P3h G &p, for j 1,..., n.

The following facts have been established in Lemmas 3, 5, 6. 9a and Proposition 4 of [9]

(ZM(Jif) denotes the set of all bounded everywhere defined linear operators in Ji?):
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Proposition 1:

(a) For each p. ^ 0, each j 1,... ,n and each ip G C£°(R), the operators (QYtp(H){Q)~>l
and (QYPjfH + lYHQY" belong to Së(Af).

(b) For each tp G C0°°(R), the closure of the operator [tp(H) - tp(H0)](Q)a belongs to âë(Jf).

(c) For each tpeC™(R), the closure of the operator Vtp(H)(Q)a belongs to âS(Af).

(d) For each tpeC%°((0,oo)\op(H)), each /cG [0, a] and each r\ > 0, there is a constant c
such that for all t G R:

\\(Q)-KUt^(H){QYK\\^c(l-r\t\)-K+r>. (3.2)

(e) Let heS>p for some p > 2 and assume that a > 2 in (Hi). Then Çl±he D(Q2).

Corollary 1: Assume that a > 2 in (Hi) and let tp G C%°((0, oo)\crp(H)). Then, for each

c G [0, 2] and each e' > e, one has (Qf Çl±ip(H0)(Q)~e' G @(Jf

Proof. Let / G Jff and p > 2. Then tp(H0) {Q)~pf G %. Hence (I+Q2)Çl±tp(H0) (QY"f e Aff.

By the closed graph theorem, one has (I + Q2)Çlitp(H0)(Q)~p G äe(Jif), and the assertion
of the corollary follows by interpolation. ¦
Corollary 2: Let k, n > 0 and he 3>p for some p > 0. Then there is a constant c such that

for each t G R.'

I (QP Ufh\\ ^ c (1 A \t\)~ "»-(«¦")+•». (3.3)

Proof. Choose ip G Co°°((0, oo)) such that ip(H0)h h. Then

\\(QYHU!h} - l(QrKUi*(Ht)(Q)-'l\(QYhl

and the result follows by using (3.2) for V 0. ¦
Proposition 2: If a > 2, then for each he &p with p > 2 there is a constant c such that (2.7)
is satisfied.

Proof. Let h G %>p, p > 2 and let ip G Co°°((0, oo)\ap(H)) be such that ip(H0)h h.

(i) By using the relations

[Qh Ut] 2tPjUl and [Q,MHB)] 2iP]ip'(H0),

and by commuting the powers of Q\,..., Q„ through U°ip(H0), one finds that for each m G N
there is a constant c(m) such that for all t G R:

\(I + Q2)mU?iP(H0){Q)-2mHc(m)(l + \t\ \2m
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By interpolation this implies that for each p ^ 0 there is a constant c(u) such that for
all t G R:

\\(QYU?iP(H0){Q)-»\\<c(p)(l + \t\r. (3.4)

(ii) Let e G [0,1] be fixed. One has

|<q>£pa| ^ \\(QYuU(Ho)(Qr£\\\\(QYP]h\\ ^ c(i + \t\y,

since Pjh G 9P Ç D((Q)e). Furthermore

||p*<Q>'pa|| ||(<3)eP*PA-ieQit<Qr2PA|

< \\(QyuU(Ho)(QYe\\\\(QyPkPjh\\ + E\\Pjh\\

^c2(i + \t\y.

Since ll-P/ll2 YAk=i ||Pt/||2, the preceding estimates imply that

\\(I + P){QYPJht\\^c3(l + \t\y ViGR. (3.5)

(iii) Similarly one has

||(/ + -p)<Qr3(||^||(g>^|| + E||w>£^5t||+fè||^(Qr2||iiftii-
k=l k=l

The last term on the R. H. S. is bounded by a constant independent of t. The first term on
the R. H. S. can be estimated by using Corollary 1 and (3.4): if e' G (e, 3e) D (e.p), then

| (QYgtI < f (QY n+W) {QY" 11 (QY' u?ri>{H0) (QYC' \\ || (QY'h\\

<c4(i + \t\y' <cA(i + \t\)3A

Finally, one has by Proposition 1(a) and the preceding estimate:

\\(QYPk9t\\^\\(QYPk(H + i)-HQr%QY(HAi)mHQYe\\l{QY9t\\
^cs(i + \t\)3c. m

Proposition 3: Let a > 2, TeR and heS)p with p > 2. Let J G (0,1) be such that
ô < min(a,p) — 2. Then (2.8) is satisfied for some constant cT and all t~^T.

Proof. It suffices to show that ||(/ + H0)(gt - ht)\\ ^ cr(l + |i|)"1_,s for all t ^ T. Clearly

||(/ + H0)(gt - Mil ^ \\9\\ + \\h\\ + \\H0(H + i)-l\\\\(H + i)g\\ + \\H0h\\ < oo

so (2.8) is satisfied for all t e [T, 0] (if T < 0), and it remains to prove (2.8) for t > 0. In this
case we write

HA - Ml U(H)[Ut Çl+h - Uìh) + [iP(H) - ip(H0)} U?h\\,
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where ip 6 Q°((0, oo)\op(H)) is such that ip(H0)h h. Now by using (3.3) with n

min(a, p) — 2 — 6:

<(H)[UtÇl+h - Uth\\\ \\ip(H)[il+ - UtUt}h\\ / U'sip(H)VU°sl
n ii \\jt

<\\v(H)[U\(Q) + W2(Q)]\\ / ds\\(Q)-aU°,l
n ii jt n

\\il)(H)\UtÇl+h - Uth\\\ Ik(//)[J2+ - f/;i/'(0l/i|| - ' / Utip(H)VU0ahds\

lh\

/OO d.s(l + s)-™»(°.p)+n c2(i + ()i-HM+i
c2(l + t)-1-'s.

Furthermore, for any £ G R:

\\[iP(H) - ip(H0)} U?h\\ < |[V(#) - ^(H0)](Q>o|||(Q)-fl Ü?A|

sc c3(l + |i|)-m,n(a-p)+^,

by Proposition 1(b) and (3.3). Summing up we have for t > 0:

lis,-MKc4(l+ *)"'"*¦ (3-6)

Next define tp e Co°°((0, oo)\op(H)) by tp(\) Xip(X). Then

\\H0(gt - Mil \\H0rp(H)gt - H^(Ha)ht\\
sC \\H0iP(H0)(gt - Mil + \\HoMH) - iP(H0)}gt\\

< \\tp(H0)\\\\9t - ht\\ + \\[<p(H) - tp(H0)}gt\\ + \\Vv(H)gt\\. (3.7)

The required estimate for the first term on the R. H. s. follows immediately from (3.6). For
the second term we use Proposition l(b,d,e) to get for any 7 > 0 and any t e R:

\\[iP(H) -iP(H0)]gt} < j[iP(H)- ip(H0)}(Qfl\\(QY2UtiP(H){Q)-2\\l(QYü+hj

^c5(l + |i|)-2+ï.

Finally the last term in (3.7) is estimated similarly by using Proposition l(c,d.e):

\\ViP(H)gt\\ ç \\Vv(H)(Qy\\\\(Q)-aUtiP(H)(Q)-2\\\\{Q)2Çl+h\\

<cJl + \t\r2+A m

Propositions 2 and 3 show that, if V satisfies (Hi) with a > 2, then (2.9) is satisfied for
each initial state vector / such that h Sf belongs to %>p for some p > 2. On the other
hand, as shown in the Appendix, the proof of (2.5) given in [7] goes through for h G 3>p

with p > I + l11^] (i-e. p > n for n even, and p > n+ 5 for odd 71 *). Thus we have:

'If v eR. then [v\ denotes the largest integer $: v.
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Theorem 1: Assume that V satisfies (Hi) with a > 2. Then (2.10) holds for each f such

that Sf e % for some u > max(2, § + [^]).

The preceding result has the inconvenience that the condition imposed on the state vector
is in terms of the final state vector h Sf rather than in terms of the initial state vector.
To transcribe this condition into a requirement on the initial state vector /, one has to
know suitable mapping properties of the scattering operator S. For a more restricted class

of potentials, such properties have recently been obtained in [10]. More precisely: Assume

that V has the form (3.1) with a > 2 and (i) Wx of class C*°°(Rn) with \daWi(x)\ ^ ca(x)'M
for each multi-index a', (ii) (:r)max(1'n+2-a+£>Iv'2 G L°°(R") + Lq(Rn) for some e > 0 and

some q satisfying q ^ 2 and q > \. Then, if /G $p, one has Sf e 9„ for p min(n+l,p) (see

Theorem 1.4 of [10]). So, under these assumptions, (2.10) holds for each / G $>p with p > n
for even n and p > n + 5 for odd n ^ 3.

We end this section with a comment on the bound (2.2) on TR. Its verification is

based on the following identity which is rather easy to compute (see e.g. Chapter 8 in [11]

or §5.4 in [12]):

r*rR —^ w-lim (/ + P)"1 \(Q2 -R2- ie)'1 - (Q2 - R2 + is)-1] (I + P)"1.

(2.2) is obtained from this identity by using the fact that there is a constant c such that for
all R ^ 1 and all e > 0:

||(/ + P)~l(Q2 - R2 ± ie)-l(I + P)"1! ^ ^ (3.8)
11 " rt

(the proof of (3.8) can be reduced to that of Lemma 5 in § XIII.8 of [13] by interchanging
the roles of P and Q and by taking into account the A-dependence of the constants of the

proof in [13]).

4 Short range potentials of slow decay

In the preceding section we had to assume that V satisfies (Hi) with a > 2. Under stronger
regularity assumptions on V, it is possible to prove (2.10) also for potentials decaying like r~°
with 1 < a ^ 2. We now mention some results on this. The assumptions on the potential
are as follows:

(H2) V is a real-valued function of class Cm on R", with m max(ti + 1,4), and for each

multi-index a with 0 ^ |o| ^ m and some a > 1:

|[9aU](x)| $c(l + r)-|a|-a VzgR", (4.1)

where c is a constant.

*If a (a, an), then (daf)(z) (^)"' • ¦ • (gf;)""/^). za z?--- z? and \a\ a, + + a„
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For t € R, we define Xt to be the following operator in &(JF):
roc

Xt - j V(2sP) ds (4.2)

Then one has

fi+ s-lim UWÌ s-lim U'U?e~'Xl ¦ (4.3)

The arguments of Sections 2 and 3 can be repeated in the present situation with the free
evolution [7° replaced by the modified free evolution U°e~lXt. More precisely, we here
let 0E (h,t) be the flux associated to the modified free evolution of h, i.e.

(j)lR(h,t) ^R(Ule-^h).

As indicated in the Appendix, this modified free flux still satisfies (2.5) if h is of class Cn+l
and has compact support in Rn\{0}. Furthermore the estimates (2.7) and (2.8) hold for
ht U?e~,Xth, gt UtÇl+h. Hence we have:

Theorem 2: Suppose that V satisfies (H2). Then (2.10) holds for each f such that

S/GCom(Rn\{0}) wif/im max(n + l,4).

Again one may use the mapping properties of 5 given in [10] to replace the condition
Sf € C™(Rn\{0}) by a condition on the initial state vector /. We omit the details but indicate

briefly how to prove (2.7) and (2.8) under the assumption that (H2) holds with m 4

(the condition m ^ n + 1 in (H2) is needed only in the verification of (2.5)).

The verification of (2.7) in the present situation is done by repeating the arguments of the

proof of Proposition 2, with Ut replaced by U\e~xXt. To obtain the analogue of (3.4) for p <Z 4

(and hence (3.5)), it suffices to observe that the partial derivatives of order ^ 4 with respect
to k of Xt(k) — /(°° V(2sk)ds are bounded (uniformly in t G R) on each compact subset

of Rn\{0}. In part (iii) of the proof one has to know that (QfÇl+ip(H0)(Qyc'e 3ê(Aif) for
some e > 0 and some e' ^ 3e. This is obtained (for 0 < e < 1 and e' > 2e) as in the proof
of Corollary 1 from the fact that Çl+ip(H0) maus ®p into D((Q)) if p > 2 (see Lemma A.8
in [14]).

The proof of (2.8) in the situation considered here is based on Theorem A.3 of [14]. It is

seen from the proof of that theorem that, for each 77 > 0 and he &p with p > 3, there is a

constant c, such that for all t ^ 0:

\\utÇl+h-Ute'lX'h\\ ^ cI(l + t.)-a+". (4.4)

This establishes (3.6) in the present situation. To estimate ||P0(5t — MIL one can use (3-7)
but write

\\[tp(H) - tp(H0)}gt\\ + \\ViP(H)gt\\ ^ \\\{tp(H) - ^(P0)](Q)a|| + \\ViP(H)(Q)a\\}\\(Q)-agt\\ ¦
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The first factor on the R. H. S. is finite by Proposition l(b,c), and

\\(QYa9t\\ < \\(QYaTp(H)Utçi+ip(H0)(Q)~a\\\\(QYh

< supl{QYarp(H) Ut-, U°iP(H0)(QYa\\\\{Q)ah\\
s>0" "" "

^c2(l + \t\)-a+*\\(QYh\\

by Lemma 9(b) of [9].

Appendix

We indicate the proof of (2.5) with 0E (h, t) <§>E (M. where

ht U°te~'Xl(P)h

and Xt is a real-valued function of class C"+1 on R" satisfying, for each ò > 0 *:

Kb= max sup sup|(öQA:()(fc)| <co. (A.l)
0<|a|^n+l tgR k^b

We refer to Case 1 if Xt 0 (this covers the situation of Section 3) and to Case 2 if Xt ^ 0.

In Case 1 we assume that heS>p for some p > | + [^], and in Case 2 we require

that kCon+1(M"\{0}). We set

h^e-'X'^h,
and we shall use the Dollard decomposition of the free evolution:

U°t ZtGtZt (A.2)

where

\Ztf\(x) è 4( f(x), \Gtf](x) (2it)-nl2j(ft). (A.3)

The basic ideas of the proof are the same as in [7].

By part (i) of the proof of Proposition 2 or its modification mentioned in Section 4, we

have

[u°te-lXt(p)h] (x) ^c(l + |<|)m(l+r)-m for m 0,1,2,...,n.

This implies that
|$ER(M|^c1(l + |r.|ni + P)-1,

hence for any fixed Ti and T2 (7\ < T2):

/ 2

|òv (ht)\dt ^ —^—
h, I^e*v '\ 1+R

'In this Appendix we set fc |fc|.
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So it is enough to prove (2.5) for T 1.

Since h has compact support in R", hl is of class C°°. Moreover, for each multi-index ß
there is a constant c(3) such that

sup|(l + r)'aW(*)| <c(/J) (A.4)

for p ^ u in Case 1 and for p ^ n +1 in Case 2 In C7ase 1 this holds because hl h e 3tp

(observe that d0h i^Pßh G % also). To check (A.4) in Case 2 write

-1/31 (2tt)"/2 (l + rn+1) cW(a:) jdnkelkxe-,x'{k)kß h(k) + rn+l jdnkeik-*e-iXt(k)kß~h(k).

In the last integral, we use the identity (a: ^ 0):

e** (-i)'r<--" -Vfc ett- (A.5)

(with £ n + 1) and integrate by parts. If b > 0 is such that h(k) 0 for k ^ 6, then one
obtains (A.4) with

c(ß)=c3(Kb + l) £ |öafc^(fc)|

The following consequence of (A.4) will be useful:

sup |(l + rr9W(x)| <</(/?) VKlf]. (A.6)
(6R " ML lK

Now define (with & the Fourier transformation and j 1,..., n):

0(h;k,t) (2itr"/2[d"xe~'k~e'i: hl(x) [&Zthl\(k)

Oj(h;k,t) (2Ttyn/2fdrlxe"'"xe4t X]hl(x) \&ZtQ3h%k)

i—
r](h;k,t) (27t)-n/2jdnxe~tkx(e4t - l)/i((x) [&{Zt - I)hl\(k).

We shall need the estimates

sup sup \\km9(h;k,t)\ + |fcm_1%(/i; fc, t)\ + tyAkmn(h; fc, t)| < c < oo

(A.7)

(A.8)

(A.9)

(A.10)

valid for m 1, 2,..., [^]. The proof of (A.10) is similar to that of (A.4); for example

xf
kmn(h; k,t) im(2TT)-"/2fdnx{e il - l)h*(x)(f • V.)me~**
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and the last estimate in (A.10) is obtained, after integrating by parts, by taking into
account (A.6) and the inequalities

fi — 1 < \t\S

^ cf'(l+r) l«l if 1 ^ levi ^ m and t > 1

We also observe that, by the Riemann-Lebesgue lemma:

lim
fc—>oo

\km6(h;k,t) + \kmn(h-k,t) 0 for m 0,1, 2,..., [*£\. (A.ll)

We now use (A.2). Since \P„Zt\ ± ZtQ„ one has QjP, U°t Zt[QjPjGtZt + ^Q)GtZt].
Hence

J(R)= [~ <bT.R(.ht)dt 2*£ j~dt ^ R"~ldw [U?h'](Ru>) £[&P,-U?hf^Ru,)

Ji(R) A J2(R),
i=i

with

JX(R) 2Re Tdt j R"-2dw [G,Z(/i(](Pu>) {Q-PGtZth'](Ru>),

/OO
(if f i r t 12

Tj/2 P"dü,|[G(Z(/i(](Äu,)|

To estimate JA\(RZ), we remark that

[G«ZtÄ'](x) (2it)-n,29(h;ft ,t)

[QjPjGtZMx) -(2ityn/2(2t)-lxjej(h;ft,t),
so that

i=i'
By (A.10) the integrand is bounded by a constant independent of R and r., and by (A.10)
and (A.ll) it converges to zero as R —> oo. Hence

lim Ji(R)=0.R—rOQ
(A.12)

In J2(R) we write GtZ, =GtA Gt(Zt - I). Then

+rfiR"(L'w^9^ <ai3)

r°° rit f 1 7 r



14 Amrein and Zuleta

The last two terms converge to zero as R —? oo, as can be seen by an argument similar

to that given for ^\(R) (in both terms, use the fact that f^J n(h; ^ ,t)\ ^ ct' l2 and

converges to zero (for fixed f) as R —>• oo; in the last term observe that |[^"/i'](y)| |Ä(y)|,
and that h has compact support in R"). For the first term of (A.13) one makes the change
of variables 11-» k jt, which leads to

So

lim JAR)= f dnk\h(k)\2. (A.14)
R-K» Jc

This proves the equality of the first and the third term in (2.5). A simple adaptation of the
preceding arguments leads to the equality of the second and the third term in (2.5).
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