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Abstract A Thomas-Fermi-Weizséacker type theory is constructed, by means of which we are able
to give a relatively simple proof of the stability of relativistic matter. Our procedure has the
advantage over previous ones in that the lower bound on the critical value of the fine structure
constant, «, is raised from 0.016 to 0.77 (the critical value is known to be less than 2.72). When
a = 1/137, the largest nuclear charge is 59 (compared to the known optimum value 87). Apart
from this, our method is simple, for it parallels the original Lieb-Thirring proof of stability of
nonrelativistic matter, and it adds another perspective on the subject.
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1. Introduction

The ‘stability of relativistic matter’ concerns the N-body Hamiltonian (in units of %c)

N
H=> |p|+aVe, (1.1)

=1

where V; is the Coulomb potential of K fixed nuclei with nuclear charge Ze, with locations
R; in R3, and with N electrons. The Coulomb potential is

Ve=-V+R+U, (1.2)

where

Vi=2Y > |z - Ry, (1.3)

1=1 j=1
Hi= Z |Ll$‘1 = Q?j[_l y (14)
1<i<j<N
U=2* > |R-R;. (1.5)
1<i<j<K

As usual p = —4iV and |p| = v/—A, and the z; are the electron coordinates. The
electrons are assumed to have ¢ spin states each, ¢ = 2 being the physical value. This
means that the Hilbert space for the N-electron functions is the N-fold antisymmetric
tensor product of L?(R3; C?). The constant a = e?/fc is called the fine structure constant.

We can easily include a magnetic field, which means replacing |p;| by |p; + A(z;)|. The
vector field, A, is the vector potential (in suitable units) of a magnetic field, A = curlB,
and can be arbitrary, as far as the present work is concerned. A mass can be included as
well, i.e., |p; + A(z;)| can be replaced by +/|p; + A(z;)|? + m? —m. The inclusion of a mass
or magnetic field, while it changes the energy, does not affect stability. The reason for this
and the requisite changes will be pointed out in the final section. It is for simplicity and
clarity that we set m = 0 and A = 0.

‘Stability of matter’ means that the operator, H, is bounded below by a universal
constant times N + K, independent of the R; and A. In our case, because everything
scales as an inverse length, the lower bound for H is either —oco or 0. Thus, we have to
find the conditions under which H is a positive operator.

Many people worked on various aspects of this problem, including J. Conlon (who
gave the first proof [C84]), I. Daubechies, C. Fefferman, 1. Herbst, T. Kato, E. Lieb, R. de
la Llave, R. Weder, and H-T. Yau. A careful, and still current, review of the history is
contained in the introduction to [LY88], to which we refer the reader. For present purposes
it suffices to note the current state of affairs concerning the best available constants needed
for stability, as derived in [LY88]. We can list these in a sequence of remarks as follows:
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1. Stability for any given values, o, and Z,, implies stability for all 0 < o < o, and
Z < Z. In fact, we can allow the nuclei to have different charges Z;, 1 < ¢ < K,
provided Z; < Z, for all <. This follows from some simple concavity considerations
and has nothing to do with the nature of the proof leading to «, and Z,.

2. Theorem 2 of [LY88] has the strongest results, but it is limited to the case of zero
magnetic field, A = 0. The result is that stability occurs if

ga <1/47 and Za<2/7. (1.6)

It is not clear to us how to incorporate a magnetic field in the proof of Theorem 2,
and we leave this as an open problem.

3. Theorem 1 of [LY88] has weaker results, but a simpler proof. That proof generalizes
easily to the A # 0 case, as pointed out in [LLS95]. The result is complicated to state
in full generality, but a representative example is that stability holds if

qau <0.032 and Za<l/xw. (1.7)

It is possible to let Za — 2/m at the expense of g — 0.

4. Instability definitely occurs if Za > 2/, or if Z;a > 2/m for any 4. It also occurs if
o > 128/(157) ~ 2.72 (1.8)

for any positive value of Z and any value of q. In other words, if @ > 128/(157) and
if Z > 0 then one can produce collapse with only one electron, N = 1, by utilizing
sufficiently many nuclei, i.e., by choosing K sufficiently large.

5. Instability also definitely occurs if ([LY88], Theorem 4)
a > 36q /3z27U3 (1.9)

which implies that bosonic matter (which can always be thought of as fermionic matter
with ¢ = N) is always unstable. (Note: there is a typographical error in Theorem 4
of [LY88].)

2. Main Results

The proof of the stability of nonrelativistic matter in [LT75] uses a series of inequalities
to relate the ground state energy of the Hamiltonian to the Thomas-Fermi energy of the
electron density, p(z). The chief point is the kinetic energy inequality for an N-electron
state ¥, namely

N
(\If| E Ipi|? |\IJ> o const./ps/?’ :

i=1
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The same approach will not work in the relativistic case because the corresponding in-
equality [D83] is, for dimensional reasons,

N
(T Z pi| | @) > const.fp’l/3 .
i=1

While [ 5/ can control the Coulomb attraction —Za [ p(z)/|z|, unfortunately [ p*/3
cannot do so. For this reason no attempt seems to have been made to imitate the proof
in [LT75] of stability in the relativistic case.

However, the Coulomb singularity can be controlled by a Weizsidcker type term,
namely (1/P ,|p| v/P). The relativistic kinetic energy can, in turn, be bounded below by
a term of this type plus a term of the [p*/? type. This and other essential inequali-
ties will be explained more fully below. With the ‘Coulomb tooth’ now gone, TF theory
with [ p%/3 can deal adequately with the rest of the Coulomb energy (with the aid of the
exchange-correlation energy inequality [LO81], whose remainder term also has the form
2173

Before going into details, let us state our main results. First, we define Thomas-Fermi-
Weizsdcker (TFW) theory as follows: The class of functions (‘densities’) to be considered,

denoted by C, consists of those nonnegative functions p : R® — R* such that /p and
\/|p|p have finite L2(R3) norms, i.e.,

c={r: pe)20 and [ (1+1p) Whw)Pds <oo} . (2.1)

where +/p(p) = (2m)=3/2 [, exp[—ip - ]y/P(z)dz denotes the Fourier transform of the
function /p(x).

Next, we define the functional

7(0) = [ | blVA®)d = (V5 .12l vP) - (22)

The TFW functional, with arbitrarily given positive constants 8 and vy, is then

£(p) 1= BT(P) + 5 f P43 () dz — o L V(@p(@)ds+aD(p,p) +al  (23)

R3
with

D) i=(1/2) [ [ ple)pt)le -yl dady
R3 R3
The quantity of principal interest is the energy

ETFW .= inf{€(p) : p€C} . (2.4)



978 Lieb, Loss and Siedentrop

This quantity depends on the parameters o, 8 and v and on the nuclear coordinates, R;.
If, however, we try to minimize E over all choices of the nuclear coordinates then the result
is either 0 or —oo, as can be easily seen from the fact that all the terms in £ scale, under
dilation, as an inverse length.

THEOREM 1. (Stability of TFW theory). The TFW energy, ET*W  in (2.4) is
nonnegative if

B>3Za, and vz 48158 2% (2:5)

On the other hand, if 8 < (n/2)Za then E = —oo for every choice of the nuclear
coordinates.

For the next theorem we have to define the density corresponding to an N-body wave
function. If ¥ is an antisymmetric function of N space-spin coordinates, normalized to
unity in the usual way, we define

Py(z):=N Z ’/RS(N_I) |\I’(a:,01;a:2,02;...;a:N,aN)|2d$2---dJ:N . (2.6)

1<oy,...,o0n<q

THEOREM 2. (TFW theory bounds quantum mechanics). Let ¥ be any nor-
malized antisymmetric function, with py defined in (2.6). Choose

= gZoz and = % [1.639'_1/3 (1 — gZa> —1.68 a] . (2.7)

Assume that vy s positive. Then, with this definition of the TFW functional (2.3),

(V| H |¥) = E(py) - (2.8)

A corollary of these two theorems is that our Hamiltonian, H, tn (1.1) is stable if
(g)z +2.2159 ¢/32%/3 +1.0307 /3 < 1/a . (2.9)

(Cf. (1.9)) In particular, with ¢ = 2 for electrons, relativistic matter is stable if
a < 0.77 and if Z is not too large. When a = 1/137 the allowed Z is 59, which
compares favorably with the best possible value 87 =~ 137(2/m).

We leave it as a challenge to improve our method so as to achieve the value 137(2/m)
(with a magnetic field present). As noted above, this value has been achieved in [LY88],
but without a magnetic field. The most noteworthy point is the large value of the critical
fine structure constant: criticar = 0.77 when q = 2.

The bound in (2.9) is, in some respects, similar to Theorem 1 in [LY88], but it is far
simpler, clearer and gives the correct g-dependence of « (note that (1.9) gives a similar
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bound in the other direction). The chief methodological difference is that Theorem 6 is
used in [LY88], which bounds the Coulomb potential below by a one-body potential. Here,
we use the exchange-correlation inequality (3.9) instead. We repeat that the results above
also hold with a magnetic field.

It is to be emphasized that our stability result is really contained in Theorem 2.
Theorem 1 only gives a condition for which £(p) > 0. A better estimate on the TFW
functional will, via Theorem 2, yield a better stability bound.

3. Some Essential Inequalities

There are five known inequalities about Coulomb systems that will be needed in our proof
of our main theorems. We begin by recalling them.

KINETIC ENERGY LOCALIZATION, [LY88] pp. 186 and 188.
Denote by I'; the Voronoi cell in R?3 that contains Ry, 1.8, the set
I'j:={zeR®: |z—R;| <|z— Ri|forall k} , (3.1)

and let D; be half the distance of the j-th nucleus to its nearest neighbor. These I'; are
disjoint, except for their boundaries and, being the intersection of half-spaces they are
convex sets. The ball centered at R; with radius D, is denoted by B;. Obviously, B; C I';.

For any function f € L?(R3) there is the inequality

ATE 2 [ e Ze-ri - gy (5 e 62

J

The function Y is given, for 0 < r < 1, by

2 1+ 3r? 1-—r? 4r
¥Y(r)= ————In(l-r)— ————<Inr. (3.3
(r) w(l+r) T wr(1l + r?) 1 +7) 7wr(1 4 r2) n(l-r) (1 +r2?) nr. (33)
Numerically it is found that [LY88] (2.27)
1
4 / Y (r)*r?dr < 7.6245 . (3.4)
0

RELATIVISTIC KINETIC ENERGY BOUND FOR FERMIONS, [D83].
Let ¥ and pg be as in (2.6). Then

N
(¥ Y (il |w) > 1.63g71° /R pa/3(z)dz . (3.5)

i=1
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A generalization of this, of importance if we wish to include a mass, is

N
(¥ 3 o+ m2—m) |92 m'C [ o ((u(@)/0)om ") da,  (36)
with C' = 0.163¢ (sic) and with
g(t) = (1 + £2)1/2(1 + 262) — §t3 ~In [+ @+ . (3.7)

GENERAL KINETIC ENERGY BOUND, [C84], p.454, (and [HO77| for the nonrel-
ativistic case). The following bound follows from a judicious application of Schwarz’s
inequality.

N
(T > lpsl |2) = (VPw L lpl VPw) - (3.8)
i=1
This bound holds irrespective of the symmetry type of the wave function.

EXCHANGE AND CORRELATION INEQUALITY, [LO81]. If ¥ is a normalized
N-particle wave function there is a lower bound on the interparticle Coulomb repulsion in
terms of its density:

(@] > -7 ®) > D(ew, pe) - 1-68f Py (x)da . (3.9)
1<i<j<N R?
(Once again, the antisymmetry of ¥ plays no role in this inequality.)

ELECTROSTATIC INEQUALITY, [LY88], p.196. First, we define a function, ® on R®
with the aid of the Voronoi cells mentioned above. In the cell I';, ® equals the electrostatic
potential generated by all the nuclei except for the nucleus situated in I'; itself, i.e., for
T in Pj
K
(z):=2 Y |e—Ri|™". (3.10)

1
i#]

If v is any bounded Borel measure on R? (not necessarily positive) then

1 | L5 = —1
L[ e-uaea) - [ e@am+uz 20t G

F=1
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4. Proofs of Theorems 1 and 2

'To prove Theorem 1 we take 8 = nZa/2 (if 8 > mnZ«/2 we simply throw away the excess
positive quantity). Using (3.2) with f replaced by +/p, we have that

E(P) = £1(P) + a&s(P) , (4.1)

where, by adding and subtracting a term [ ®p, with ®(z) as in (3.10),

£1(0) 1= 3 4 fR PR —o [ Wy +a | e@pads (42

and

£(p) == D(p ,p) — fR B(@)p(a)z+U . (4.3)

The function W(z) is defined as follows: In the Voronoi cell I'; it is given by

Z|SL‘-—RJ'|_1, if |$—Rj‘ >Dj
W (z) := ®(z) + (4.4)
(nZ/DDYY (jo - Ryl/Dy), i o - Byl < D; .

Note that while the terms + [ ®p that appear in (4.2), (4.3) are merely ’'strategic’, the
presence of the term ®(zx) in (4.4) is properly part of the potential energy of the electron
and is not arbitrary. Actually, this strategic decomposition of £(p) is the one used in the
easy part of Fenchel's duality theorem (see [R70], p. 327). This duality principle was used
in connection with Thomas-Fermi theory by Firsov [F57] (see also [L81]); the full blown
duality theory is not needed for our purposes, so we omit it.

We can now seek lower bounds for £ (p) and &;(p) separately. Using Holder’s inequal-
ity, for example, one easily concludes that the absolute minimum of & (p) is

E(p) > —_—/ (W (z) - )]+

_leZ) ; g) fBi Dj_4Y(|:c—Rj|/Dj)4dw+f |z — R;|*dx (4.5)

4® Li\B;

_ (fo { (3) am) fol Y (r)4r2dr + 377} XK: D;? (4.6)

> _(fo {7 6245 ( ) —|—37r} ZD— (4.7)

The last formula uses (3.4). The second integral in (4.5) is evaluated in (4.6) as 3w/D;,
and the explanation is the following: If we integrate |z — R;|™* over the exterior of B;
we would obtain 47/D; as the result. However, we know that the Voronoi cell I'; lies on

v




982 Lieb, Loss and Siedentrop

one side of the mid-plane defined by the nearest neighbor nucleus. This means that the
integral over I'; \ B; is bounded above by the integral

Dj—lfl dzf8°(27rrd'r)[r2 + 2%|7% = 3x/D;

The & term can be bounded using (3.11) with dv(z) = p(z)dz. Thus,
B o
£ > 2y D5 (48)
Jj=1

Combining (4.1), (4.7) and (4.8) we have proved Theorem 1. [

Theorem 2 is proved by splitting the relativistic kinetic energy |p| into S|p| and (1 —
B)|p|, with the choice 8 = 7Za/2. The inequalities (3.5), (3.8) and (3.9) immediately give
us Theorem 2. |

5. Inclusion of Mass and Magnetic Fields

INCLUSION OF MASS. We replace |p| by 1/p? + m? — m and, in the corresponding
TFW theory, we replace the right side of (3.5) by the right side of (3.6). It is not easy
to carry out the rest of the program in closed form with this more complicated function,
however. Moreover, it unfortunately gives a slightly worse constant than before, even when
we set m = 0; instead of 1.63¢~1/2 in (3.5) we now have C~1/3 =~ 1.37¢~'/3. The new
energy will not be positive in the stability regime, as we had before. Instead, it will be
a negative constant times N. This new value for the energy is in accord with stability of
matter and represents the binding energy of the electron-nuclear system.

Another way to deal with the mass is to observe, simply, that 1/p? + m2—m > |p|—
the effect of which is to add a term —Nm to the energy estimate. This term satisfies the
criterion for stability, but it has the defect that is huge in real-world terms, for it equals
the rest energy of the electron.

INCLUSION OF MAGNETIC FIELD. Theorem 2, with a magnetic field included, is a
consequence of the following two inequalities (proved below) which replace (3.6) and (3.8):

N

(¥ 3 Wl AP+ —m] [9)2 gt [ g ((pule)/C)m ) de, (5

=1

and
N

(U] > Ipi + A(z:)| %) > (VPw L |p| VPu) (5.2)

i=1
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As in (3.8), inequality (5.2) holds irrespective of the symmetry type of ¥.

To define \/|p + A|? + m2, note that if A € L% _(R3*R3), then f — |(p + A)f||3
is a closed quadratic form with C§°(R?) being a form core [K78], [S79-1],[LS81]. Thus
it defines a selfadjoint operator and it is then possible to define /|p + A|2 + m? via the
spectral calculus.

The diamagnetic inequality for the heat kernel [S79-2] is the pointwise inequality

| exp [~t(p + A)?] f(2) | < exp [-tp°] |£](z) . (5.3)

o—lal — _[ 2/4t dt (5.4)

which holds for any real number a (and hence for any selfadjoint operator), we obtain the
diamagnetic inequality for the ’relativistic heat kernel’

Using the formula

I exp [—t\/(p + A)2 + mz] f(z) ’ < exp [—t p? + mz] |fl(z) . (5.5)

By using (5.5), and following the proof of (3.6) in [D83] step by step, we obtain (5.1).
Likewise, (5.5) and the formula

(f, V(p+ A2 +m? f)—hm { (f, f) = (f, exp [—-t\[(p—l-A)z—}-mz] f) } , (5.6)

yields
(f, e+ AL £) = (1], 1pl 1f]) - (5.7)

To prove (5.2) we apply (5.7) to the function |¥| and then use (3.8).
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