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Statistical mechanical methods and continued fractions

By O. E. Lanford III and L. Ruedin

Mathematics Department, ETH-Ziirich
ETH-Zentrum, 8092 Ziirich, Switzerland

(6.V,1996)

Abstract. For ay, ..., a, a finite sequence of strictly positive integers, we denote by g, (a1,...,a,) the
denominator of the finite continued fraction [a1, . . . , a,] written as a quotient of two relatively prime integers.
We show that the sequence of functions log gn(ai,...,an), n = 1,2,..., have the formal properties of
a Hamiltonian for a one-dimensional lattice system, to which the methods of statistical mechanics can be
applied, and we investigate the properties of the system so defined.

1 Introduction

We are going to discuss here a one-dimensional statistical-mechanical system constructed out of
continued fractions. We will write continued fractions with the notation [ay, . . ., a,] instead of the
typographically inconvenient

1
5 1
a
! 1
as +
1
Op-1+ —
n
Formally, we can define this notation recursively:
1 1
a1| == —, l|ay,ag,...,a,]:=
[a1] - [a1, az n] ]
a; +

las, ..., an)



Lanford IIT and Ruedin | 909

From this definition, it follows easily by induction that
[@1, ... 0k, ...an) = [a1,. .., (@k + [aks1, ..., a5])] forany k < n.

In general, the entries a; can be elements of an arbitrary field (but it is then necessary to pay atten-
tion to the possibility of encountering a zero denominator.) In our application, the a; will almost
always be strictly positive integers; the only exception will be that it is occasionally convenient to
let the last entry a,, be a real number > 1. In these cases, there are no problems with zero denomina-
tors. Infinite continued fractions are defined as limits of finite ones: It is well known that, if all a;,
as, ... is a sequence of numbers all > 1, then the sequence of finite (“truncated”) partial fractions

[ai,- .., a,] converges as n — oo; we denote the limit by [ay, . . .].
A finite continued fraction [a,, ..., a,] with positive integer entries is a rational number be-
tween O and 1; we define p,(a,, .- ., a,) and g,(a4,. .., a,) as the numerator and denominator of

the reduced-form representation of this number:

pn(al, ey an)
Gn(B1y v ey Gn)

[+ 5 558} = .

with p,, ¢, relatively prime positive integers.

The starting point for the work reported here is the observation that the sequence of functions

Hologs o 0 58n) 7= 108 000 wre s G

can be taken to be the energy functions for a one-dimensional classical lattice system, with single-
site state space Ny = {1,2,...}. In essence what this means is that this sequence of functions is
extensive in the sense that

Hn—i-m(al: ey a'n+m) ~ Hn(ala o 7an) + Hm(an+11 ey an+m)'

In the case at hand, the “~” sign in the above equation can be taken to mean that the difference in
the two sides is bounded uniformly in n, m, and a4, .. ., @, (although a bit less would suffice
for the construction of a statistical mechanical system.) In many respects, this Hamiltonian defines
an extremely well-behaved statistical-mechanical system; notably, the interaction is exponentially
decreasing. On the other hand, since the single-site state space is infinite, this system isn’t quite
covered by the standard theory, and does indeed turn out to display a few — inessential — pathologies.

The investigation of this system is the subject of the second author’s Ph.D. dissertation (Ruedin,
1994). This dissertation contains results of two different kinds: On the one hand, extensions of
many standard results to a a general framework adequate to cover the Hamiltonian H,, = log g, as
well as many others, and, on the other hand, proofs of a specific results for this Hamiltonian. We
will concentrate here on results specific to this system, referring to Ruedin (1994) for the general
theory.

This article is organized as follows: Section 2 reviews a few facts about continued fractions used
in the remainder of the article, and the most basic properties of the specific Hamiltonian are estab-
lished in Section 3. In Sections 4 and 5 respectively, we summarize the properties of the canonical
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Figure 1: The thermodynamic functions

and microcanonical partition functions, and we introduce some ideas about “letting the size of the
system fluctuate,” which are natural for applications to continued fractions. The effect of letting
the size of the system fluctuate is to fix the temperature at the particular value at which the pres-
sure vanishes; in the present case this turns out to correspond to inverse temperature § = 2. By
applying ideas about equivalence of ensembles, we show that, among rational numbers between 0
and 1 with reduced-form denominators not larger than some given large integer ¢, an overwhelming
majority have continued fraction expansions [a;, . . ., a, ]| whose length n is approximately equal to

(€*)"'log g, for a constant €* (which we later show is equal to 127r0g 5 .)! In Section 6, we investi-

gate the question of how thick the energy surface has to be made in order to get the microcanonical
ensemble to function for our model, and in Section 7 we show that our system has no zero-point
entropy, i.e., satisfies the third law of thermodynamics.

In Section 8, we introduce a second observable (in addition to H,,), the sequence
F.(ay,...,a,) =a;+ -+ ap,

and we investigate the joint distribution of H,, and F,, for large n. The quantity F;, has an inter-
esting interpretation: it is the depth in the Farey tree enumeration of the rational numbers at which

[ai, ..., ay] occurs (see e.g. Kim and Ostlund (1989), §3). Ideas about equivalence of ensembles
in statistical mechanics suggest that there should be a constant & such that most rational numbers
la1, ..., an] (n variable) with reduced form denominator g, ~ q have F,, = krlogg. One of the

stimuli for this investigation was a considerable body of numerical evidence that this is not the case;
in Section 8, we show that, in fact, typical values of F;,/ log g,, go to oo as gy, does (i.e., loosely, that
kr = o0.) In Section 9, we introduce an alternative representation for our system which is conve-
nient for some kinds of computation, and we evaluate the constant ¢* referred to above. In Section
10, we state — without proof — the solution to the problem of maximizing the ¢, (a1, . . . , a,) for fixed
nand a; + - - - + a,, and we use this result to determine explicitly the “set of compatible values of
H,/n and F, /n for large n,” i.e., the set of points in the plane representable as limits of values of
(Hp/n, Fy/n) as n — oo.

For completeness, we show in Fig. 1 the microcanonical and canonical thermodynamic func-

! As we learned after this work was nearly completed, sharper results in this direction were proved more than twenty-
five years ago by J. D. Dixon. See the discussion at the end of Section 5.
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tions for our system. Aside from a few qualitative features — e.g., p(8) — oo as § — 1 — which
will be explained in the course of the development, these graphs seem entirely unremarkable.

The work reported here certainly has some connection with classical ideas about “ergodic prop-
erties of the Gauss map,” as presented, for example, in Cornfeld et al. (1982), §7.4. Exactly what
the connection is remains something of a mystery for us; we do not see any strict mathematical im-
plications in either direction. There is a more transparent connection with the work of D. Mayer
(Mayer, 1990), who investigates an operator which turns out to be exactly the Ruelle transfer op-
erator for our system and proves a number of striking results about its spectrum. Mayer, however,
approaches the subject from a different point of view, and his results and ours seem to be more
complementary than overlapping.

The first author thanks D. Ruelle for a number of helpful remarks in the course of this work and
H. Epstein for many fruitful discussion.

2 Continued fractions

It is a standard fact from the classical theory of continued fractions? that, if we write p,, /¢, as before
for the reduced-form representation of the rational number [ay, ..., a,], then the p, and ¢, both
satisfy the same recursion relation, namely

Pn = QnPn_1+ Pn-2; qn = QnGn-1+ qn-2.

Hence, given the a,’s, and given p, (or ¢,) for two successive values of n, we can determine all
other p,’s (respectively g,’s) from the recursion relations. It is immediate that p;(a;) = 1 and
¢1(a;) = a;. Although py and g are not defined by the above, it is easy to check that, if we set
po = 0 and gg = 1, the recursion relations give the correct p» and g2 and hence all later ones as
well. Thus, we can alternatively define the p,’s and ¢,,’s by:

Pn = QnPp-1+DPn-2; Po=0, p1=1,
Gn = QnQn-1+qn-2; Go= 17 g1 = ax.

From these formulas it is clear that ¢, (a4, . . ., a,,) is a strictly increasing function of each of its argu-
ments, and that p, (a,, ..., a,) is independent of a; but strictly increasing in all its other arguments.

The smallest value of g, (a1, ...,a,) is thus g,(1,...1), and these numbers are the Fibonacci
sequence. To fix the normalization, we define the Fibonacci sequence F,, by:

F,=F,_ 1+ F,» withFy=F =1;
it then follows from the recurrences for p, and g, that

gn(1,...,1) = F,, andalso
pn(l,,l) = F’n-l'

ZResults quoted in this section without proof or explicit citation can be found in any of the standard classical texts,
e.g., Hardy and Wright (1960), Chapter X
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The Fibonacci numbers can be written explicitly via the Binet formula

n+1 —1)"(1 n+1
F, = 7+ ()M , Wwhere vy := S+1 , the golden number.
V5

Since vy > 1, we get F,, = y"+!/ /5 for large n and, in particular,

n

1
I B 57 for large enough n.

We prove here a simple result which we will need later concerning exponential falloff of depen-
dence of [a4, ..., a,]| on arguments “far to the right.”

Proposition 2.1 Let

!/ !/
A1y ey QnyOpgly -G ARd Q1 ... 0p, Gy gy - Gy

be two sequences of strictly positive integers, both of length at least n, which agree through the nth
place. Then

0, om] ([ L
[a}_, e aml] q-n,pn

The right-hand side of this inequality is majorized by 1/(F,,F,_,) and hence by 4y~2""! for large
enough n.

Proof. Let
[Gnt1y- - - Gm) form>n
g =
0 form=n
Then
[543 By s wsillog] == [y 5500 3 B )
and we can write [a4, . .., a] ] similarly. The proof of the recurrences for p,, and ¢,, shows that
[al a ] — Dn T IPp—1
’ " Gn &% Tqn—1
where p,, and gq,, denote p, (a1, . ..,a,) and g, (a4, - . ., a,) respectively. Hence
a1, ..., am) 1
L L
[ala SRR )am’]

(Pn + 2Pn—1)(gn + 2'¢n—1) — (Pn + T'Pn—1)(gn + T¢n—1)
(¢ + Tqn—1)(Pn + &'Pn-1)
TPn-1qn + x’an'nAI — IPnqn-1 — xlpn—IQn
(gn + ZGn—1)(Pn + T'Pn-1)
(:C, — x)(pHQn—l - pn—lqn)
(¢n + 2¢n—1)(Pn + 2'Pn-1)
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Now |pngn—1—Pn-1¢»| = 1and,since 0 < z,2' < 1, |2’ —z| < 1,and (g, +x¢n—1)(Prn+2'Pn1) >
gnPn, SO the desired estimate follows. O

It is a classical fact, and not difficult to prove, that ¢, (ay, .. -, a,) is symmetric under reversal
of its arguments, i.e., that

Proposition 2.2 ¢,(ay,...,a,) = gu(an,...,a1).

This equation follows easily from the Euler bracket function representation for g, also known as the
Euler-Minding formula. See Roberts (1977), Ch. XIII, or Perron (1954), §3. None of our proofs
actually depend on this fact; we mention it only to avoid having to justify some otherwise odd-
looking choices for orders of arguments.

3 The statistical mechanical system

We consider the sequence of functions
H,(a1,...,0,) =loggn(an,...a1) onN}.

forn = 1,2,3,... (The reversal of the order of arguments on the right is inconsequential in view
of Prop. 2.2.) The first thing to be seen is that this system of functions is “extensive,” in the sense
explained in the introduction. Once this has been established, we can interpret H,, as the “energy”
of a lattice system with n sites occupied by identical molecules with countably infinite state space.
We start by defining

holay,...,an) = Hyplai,...,a,) — Hoo1(ag, .. .ay)

log qn(an: ey al)
Gn—1(an, . .., a2)
forn > 1 and
hi(a1) = log(a1)
Then

H,(ai,...,a,) = hyp(ay,...a) + ho_1(az, - -, a,) + - -+ hi(an)-
We now have
Proposition 3.1

Gl B 5 3 1) _ 1
anl(ana-“aaZ) [als"-aa'nr

(with qy := 1) and hence
hn(al, v e ,an) = — lOg [al, ce ,an].
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Proof. By induction on n. The asserted formula is true for n = 1. The recursion for the g; gives
qn(a'na co0501) = A1Gn-1(An, . . - 02) + Gn-2(an, ..., a3)-

Dividing by g, gives

dn = a s dn—-2
n-1 Gn—1

= a1+ by the induction hypothesis.
[az, ... a,]
1 ) .

= ——— by the definition of continued fraction.

[al, ‘e an]
This proves the induction step and hence the formula. O

We now split the energy into an self-interaction part H(®) and a remainder H!) by:

H,(lo)(al,...,an) = hl(a1)+h1(a2) +---+h1(an)
H’J'(l[)(aI.)“‘rran) = Hn(al,..‘,an) —H,(lo)(a,l,...an)
= hg)(al,...an) —E—---+h§l)(an_1,an),

where

B (@, a5) = hylar,.. . a5) = k(@)

= —log(a - [a1,-..,q])
log( -
= =lg
& ay + [as, ..., q;]
- log(1+—[a2"a'1"aj])

for j > 1 and hgl)(al) = 0.

Proposition 3.2 We have
0 < hay,...,a,) < log2,

and there is a constant c such that, for all n > 1, and all pairs of sequences
d : €N
a1, .-, 0p,0p41,--.0p an A1y Oy Qpyyy--- Qpy e

both with length > n, and agreeing in the first n places, we have

1
WD(ay, ... am) — K ar,...,d.)| < T
Proof. The first estimate follows at once from the formula
a2, ...,0m
rY(ay,. .., an) = log(1l + L2———])

a1
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The second assertion follows from Proposition 2.1 and the preceding formula, together with the
observation that the derivative of the logarithm is < 1 on the interval [1, 2. O

Note that it follows that
H® < H, < HY +nlog?2

for all n.

The proof that the sequence of functions H,, is extensive is now nearly immediate.

Proposition 3.3 The difference

Hn+m(a1, v ey an+m) - Hn(arl, .o ,an) - Hm(an..l.l, ey an+m)

is bounded uniformly inn, m, a4, ..., Gnim.

Proof. Since H,(fzm = H® + H — with the obvious arguments — we get

Hpym(ay, ... aan-f-m) — Hp(ayye- -, an) - Hm(an+1; o Opym)
= H{)m(ar, .., Gngm) = H (a1, ..., 0n) — HD(@nss, -, Gngm)
I
= ( 'St—)%m(a'la v am+n) - hg)(ala s aan))

oot (B (s, - Gngm) — B (Gn1, 0n)

+h.§,?+1 (Gny -+ - Q)

The modulus of the right-hand side is majorized by
S
log2+ ) —,

which is finite and independent of n, m, and the a;. O

It is now also easy to give a potential from which the sequence of H,,’s can be reconstructed:
We put

®jy(a;) = logay,
Q{j,___,k}(aj, Qs ak) = h;cllj+1(aj, coom ak) == hgzj(aj, w0 ak_l) fOI‘j < k,

and ®; = 0 for finite subsets J of Z other than intervals. It is then easy to check that

Hu(ar,...,an) = Y. ®s(als),
Jc{l,..,n}

and it follows from Proposition 3.2 that
”(I)J”oo — 0(,),—2diam(.f))’

and hence, in particular, that the interaction is exponentially decreasing.
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4 The canonical ensemble

The first observation we need to make is that the canonical ensemble only makes sense for inverse
temperature 3 > 1. This is already true for the finite system. The canonical partition function for
a finite system with n (adjacent) lattice sites is

o0

Zn(B)= Y. exp(—BHu(ai,...,an)).

al,..an=1
We denote — temporarily — the corresponding sum for H{®) by Z{?). From the inequalities
HY < H, < HY + n-log2,

it follows that
ZO(B) = Za(B) = 27 Z(B).

But ®
Z0(8) = (L ey = (3 )" = (o),

and ((f3), the Riemann zeta function, goes to infinity as 3 decreases to 1. Hence, the same is true
for the finite-system partition function for any n.

On the other hand, for 8 > 1, the finite-system partition function is finite for all n. Using the
bound on H,, — H'", it is easy to adapt the standard proof of the existence of the thermodynamic
limit of the canonical partition function for lattice systems — which assumes that the system at each
lattice site has only finitely many states, rather than countably many as in the case at hand — to show
that

p(8) = Jim, = log Zu(6)

n—oo

exists for any G > 1. The limiting function is convex on (1, o), since this is true before passing to
the limit. From the estimates proved above we get the bounds

log C(8) > p(B) > log((B) — Blog2.

It is a standard and simple fact that the zeta function has a simple pole with unit residue at 1; from
this it follows that

p(f) =log(B—-1)+0O(1) asf —1.

Remark. The above lower bound can be improved — for 3 near its minimum value 1 — as follows:
Since

hjas, - .., an) = log(a; + [aj11, .. -, a;,]) < log(a; +1),

we get
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and hence i

p(B) = log(¢(B) — 1) = log ((B) — B

These estimates do not however tell us much about the behavior for 5 — o0; the upper bound
goes to 0 and the lower bound is asymptotic to — 3 log 2. We will get better information about this
limiting regime later. :

We will need here generalizations of a certain number of results which are standard for one-
dimensional lattice systems with finite single-site state spaces to our model (which has N, as single-
site state space.) We referred above to one such result, the existence of the thermodynamic limit
for the canonical partition function. The generalization for that particular result is easy, but we will
require here generalizations of two other circles of ideas — Gibbs states and the transfer-operator
formalism — which are not quite so straightforward. These extensions have been carried out in all
detail in Ruedin (1994); we summarize the results here:

Proposition 4.1 1. For each 3 > 1 there is a unique Gibbs state og, (which is then necessarily
translation-invariant,) and

p(B) = s(op) — B,

where s(o) is the Kolmogorov-Sinai entropy of 03 and €5 the mean energy per lattice site of 0.

2. p(B) is a real-analytic function of 3 on (1, 00) and is strictly convex in the strong sense that its
second derivative is everywhere strictly positive.

S The microcanonical entropy

Once again we need an extension of some standard results to our slightly-nonstandard technical
situation. The standard results can be found in Lanford (1973); an extension adequate to the present
situation is given in Ruedin (1994). To formulate the result we need, we use the following notation:
Let —oo < € < € < 00; then V, (€1, €) will denote the number of sequences ay, . . ., a, of length
n with )

€1 < HHn(al, ceey Gp) < €

Proposition 5.1 There is a non-negative concave function s(e), defined on an open interval
(Emin, €max), (Where €yin may be —oc and €y, may be +00) such that

L lim, o % log Vy (€1, €2) = SUP,, ccce, S(€) for all intervals (ey, €2) intersecting (€min, €max)

2. Vyp(€1,€2) = 0 for all sufficiently large n for intervals (e, €2) whose closures do not intersect
the closure of (€min, €max)-
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The formulation of the preceding proposition is a little dense, and it may be helpful to elaborate on
it a bit. For purposes of this explanation, let us say that € is an asymprotically excluded value for
H, /n if there exists a neighborhood of € which is disjoint from the image of H,, /n for all sufficiently
large n and an asymptotically allowed value otherwise. The set of asymptotically excluded values
is manifestly open. The first non-trivial assertion of the proposition is that the complementary set
of asymptotically allowed values is an interval; its interior is the interval (€min, €max) Of the propo-
sition. We will accordingly — if not quite precisely — refer to (€min, €max) as the allowed interval.
The idea is then that, for any “sampling interval” (e;, €5), the number V, (€1, €5) of configurations
- with H,, /n € (€1, €2) should be asymptotically — for large n — about exp(nse, ,), with a particular
form for the dependence of the exponent s, ., on the sampling interval. Part 1. of the proposi-
tion says that this behavior does hold for sampling intervals which overlap the allowed interval,
and part 2. says that a natural — and rather strong — variant holds for sampling intervals which stay
away from the allowed interval. It turns out, however, that the asserted exponential behavior can
fail — or at least is much more delicate to prove — if the sampling interval touches but does not over-
lap the allowed interval, i.e., if €3 = €y, OF €1 = €4ax; the proposition says nothing in these cases.
We remark that the proof of this statement depends not just on the “extensivity” of the sequence
of functions H,, in the sense described above; it is also necessary that they “grow at infinity” in an
appropriate way so as to guarantee, in particular, that V, (€;, €2) is finite for all finite n, €, and €.
An appropriate general formulation of the growth at infinity condition is given in Ruedin (1994);
we note here only that, in the case at hand, adequate growth at infinity is guaranteed by the fact that
H, > H" and that h, (a) grows adequately fast as a — oo.

The above proposition is a general result, using only qualitative properties of H,,. In the case
at hand, we can be more specific.

Propesition 5.2 For H,(ay,...,a,) =logg,(ay,...,a,), we have:

— €min = log~y (with, as above, v = ﬁ;—l ),
— €max — OO,

— s(e) is strictly increasing on (logy, 00), and s(€) — oo as € — oo.

Proof. We have already noted that
Gl Gl = » 3 8] = Wslss + 1 5} = 5, B GTIREL 97,
Hence,
Vau(—00,€6) =0 for large n, if €5 < log 7,

and
Va(—00,€2) > 1 forlarge n, if €3 > log .

From these two assertions it follows that €,,;, = log 1.

We now claim that

sup s(e) — oo as €; — 00.
€<¢€]
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From this claim, it follows that s(¢) is not bounded; hence, since it is concave, that it it is strictly
increasing on its whole interval of definition and goes to co with €, and these are the remaining
assertions of the proposition

To prove the claim, we begin by considering the sequence ¢,(p, . . ., p) for general p € N, . By
the recursion relation
@n(P - s0) =PGu-1(Ps- -, D) + Gu—2(p, .- ., P)-
It follows from simple standard arguments — generalizing the derivation of the Binet formula for
the Fibonacci numbers, see also §10 — that
@n(p,-..,p) = const - 77,
where v, is the positive root of the quadratic equation t* — pt — 1 = 0, i.e.,

1
Vo = 5(:0 +4/p? +4)(=p for plarge.)

Thus, if €; > logy, and n is large enough,

1
—1loggn(p,....p) < e,
and hence the same inequality holds for ¢,(ay, . .., a,) provided that all the a; are < p. Thus:
Vp(—00,€) > p* fore; > logy, and n sufficiently large.
Taking logarithms, dividing by n, and letting n — co gives

sup s(e) > logp for ¢, > logy;

e<e;

letting €; decrease to log vy, gives

sup s(e) > logp.
e<logvp

By letting p go to co we see that s(e) is unbounded, as asserted, and this completes the proof of the
proposition. We can now in fact say a little more about the behavior of s(e) as € — oo. Now that
we know that s(e) is increasing, we can simplify the above lower bound to

s(logy,) > logp,

On the other hand, y,/p — 1 as p — o0, 50 s(€) in fact grows at least as fastaseas € —+ oc0. O

The next step is to argue that p(3) is the Legendre transform of s(¢) and to deduce analyticity
and strict concavity for s(e) from analyticity and strict convexity for p(f3).

Proposition 5.3 s(¢) is real-analytic, strictly increasing, and strictly convex on (€min, 00). The
function 3(€) = —s'(€) maps (€min, 00) diffeomorphically onto (1, 00); its inverse is €(3) = p'(B).
For every (3 between 1 and oo,

p(6) = Sgp(S(ﬁ) — Be);

the supremum is taken on at € = €(3), and nowhere else.
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Proof. The argument is standard, but we give it in detail anyway, since there are a few places where
special features of the situation at hand have to be invoked to rule out pathologies. We begin from
the fact that, since s(¢) is concave, it is differentiable except at most at a countable set of points and
its derivative — where defined — is monotone decreasing. We define temporarily

v B NRET '
Bt 1= E1_1‘)1(13103 (e) and B i= lm+1 s'(e),

6—}€min

with the understanding that the limits are to be taken along the set where the derivative exists. Noth-
ing said so far rules out the possibility that 3.,;, = Bmax. Nevertheless, the microcanonical analysis
leads to

Proposition 5.4 1. If Bin < B < Bmax then
p(B) = sup(s(e) — Be),

and the supremum is taken on.

2. Ifﬂ < ﬁmin: then
il
lim —log Z,(8) = +o0.

n—oo n,

3. If B > Buuax, then
p(ﬁ) = S50 — ﬂfmim

where so denotes lim,_, .+ s(e).?

min

Again, we refer to Ruedin (1994) for the proof. The argument is essentially the standard one,
but a little extra effort is needed to work around the fact that V, (¢, 00) is infinite.

It follows from 1 and 2, together with what we know about p(3), that B, = 1. If Gy Were
finite, p(3) would have to be linear from Sy, to 00, and this violates the strict convexity of P(3);
hence, Bnax must be infinite. Thus, the Legendre transformation formula

p(B) = sgp(S(E) — Be)

holds for 1 < # < oo, with the supremum taken on. Furthermore, except for at most a countable set
of 3’s, the supremum is taken on at a single point. We denote this point by €(£3); if the supremum is
taken on at more than one point — i.e., on an interval of non-zero length — then ¢(3) is not defined.

For all relevant € and 3, we have
p(B) + B < s(e),

with equality for ¢ = €(8). Out of this we can read the following: Let (3, be such that ¢(f5,) is
defined; this excludes at most countably many values. Put ¢ = €(3,). Then § — p(8) + Beo

3We are in fact going to show in §7 that so = 0, but we don’t need this fact for the moment.
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takes on its maximum at 3 = fy, which implies p’(3) = —ep. In other words: €(3) = —p'(B)
whenever ¢(5) is defined. But the only way €(/3) can fail to be defined is for the graph of s(e) to
contain a linear segment with slope 3, and this implies that €(() has a jump discontinuity there.
This, however, is ruled out by the fact that p(3) is real-analytic. The conclusion is that €(3) is
defined for all § € (1, 00), and that €¢(3) = —p'(3) for all these values of (5.

Substituting into an earlier formula, we thus get the parametric representation

s(=p'(8)) = p(8) - 8P (8),

which, together with the analyticity and strict convexity of p(3), ensures that s() is real-analytic on
the image of the mapping 8 — —p'(3). By continuity, this image is an interval. Since p(8) — oo
as § — 17, the same must be true of —p/(3), i.e., the image interval must extend to co. On the
other hand, the fact that Bp,,x = oo means that s'(€) goes to oo as € approaches eni, and hence
implies that there exists a sequence €,, converging to €, such that s'(e,) exists for all n. Denoting
§'(€,) by B, we get that s(e) — (3¢ takes on its supremum at €,,, i.., that €, = €(8,) = —p'(8n)-
Hence, the image interval also extends to €y, S0 the above formula represents s(e) over its full
range of definition. Thus, s(e) is real-analytic where defined, and differentiation of the formula
gives s”(e) < 0 everywhere.

We have just argued that 3 — ¢(8) = —p'(3) sends (1, co) diffeomorphically onto (logy, 00).
We denote the inverse mapping by ((¢); a standard calculation shows that 3(e) = s'(¢). We then
have:

p(B) = s(e(B)) + B-€(B) forall g € (1,00).
This completes the proof of Prop. 5.3 o

Everything said so far has used only qualitative properties of H,, = log ¢,. We will now make a
first contact with “number theory.” The argument is the reverse of what we ultimately want to do —
we will use some classical facts from number theory to prove something about s(e). The argument
is also illuminating as a simple example of how to compute more concrete quantities in terms of
s(€). The question we want to address is:

Question. How does the total number N (q) of sequences ay, . .., a, with

Qn(a17~-~aan) <4q

(n variable) behave as g — 00?

Determining N (g) is almost the same as counting rational numbers between 0 and 1 with reduced-
form denominator < q. There is in fact exactly a factor of 2 difference between the two question:
A rational number has exactly two continued fraction representations:

— the “standard” one — given by the Euclidean algorithm — which has the form [a,, . . ., a,] with
an > 2,and

— asecond one [ay,...,a, — 1,1]
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(e.g., 1/2 = [2] = [1,1].)Furthermore, the number of rational numbers between 0 and 1 with
reduced-form denominator ¢ is exactly ¢(q), the Euler p-function. Thus, we have the exact for-
mula

Ng) =25 ().
j=2

By classical number theory (e.g. Hardy and Wright, 1960, Theorem 330) this sum is asymptotically
a constant multiple of ¢%. We now proceed to compute the asymptotic behavior of N(g) in terms
of the function s(e); comparing that answer with the one just obtained will tell us something about

s(e).

We start from the fact that the number of sequences of length n with log g, < ne is, by defin-
ition, V,,(—00, €). Unraveling the notation: The number of sequences of length n with ¢, < ¢ is
Vn(—00, (log ¢)/n). Thus, the total number of sequences — of arbitrary n — is

i lo
N(g) = 3 Va(—o00, =24).
n=1

Although we have written the sum as running to oo, there are in fact only finitely many non-zero
terms for given ¢: ¢,(a1,...,a,) > Fy, so

V. (=00, 10ﬁ) =0 forF, >gq,
n

i.e., for
1 1
—log F,, > —logg,
n n

i.e., for

n logg
log F, ~ logv’

n > loggq

In particular: The number of terms in the above sum is O(log ¢) for large g. From this, we want to
argue that for our purposes, it is adequate to approximate the above sum by its largest term. The
justification for this assertion runs as follows: For given g, let n(g) be such as to make

logq
Vi) (—00, ——
as large as possible, and put
_ n(qg)

Then y(q) is certainly not much larger than 1/ logy for large g. We will argue later that y(g) con-
verges to a finite non-zero limit as ¢ — oo; for the moment, we accept this without proof to see
how the rest of the argument goes. The largest term in the sum is then

Viia) (—00, ﬁ) ~ exp(n()s(1/y(2))) = exp(t(g) loga)
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where t(g) denotes y(q)s(1/y(q)). Taking logarithms and dividing by log ¢ gives a sequence which
has a chance of remaining of order unity as ¢ — co. We can now justify the claim that the largest
term is an adequate approximation to the sum: We have

1 1 1 = log g
2 og Vg (=00, =) < ——log( S Vi(—c0, 24
logg 8 V(=0 o) S og g(n; ( =)

1 i log log g
< ——1og Vi) (=00, —) + O 1
log g @l y(q)) ( loggq )

so the sequence built from the sum and the one built from its largest term do have the same limiting
behavior in the sense that their difference goes to zero.

We now make a heuristic argument, intended as motivation for a subsequent precise result: As-
suming that y(gq) converges to a limit y*, and assuming also the validity of an obvious exchange of
limits, we would expect that

! 1 1, ,
qlgglo@logN(q) = qll,rgogg—q-logvn(q)(—oo, @) =y"s(1/y").

Furthermore, n(q) was chosen to make the corresponding term in the sum as large as possible, and
y* is the limit of the n(q)/ log¢’s, so it should be at least plausible that

y's(l/y") = Supy s(l/y) = sup s(e)/e.

On the other hand, we showed above that

1
N(g) = t - g li log N(q) = 2,
(9) ~ const -¢° so  lim Togg %8 (9)
so, finally, we expect that
y*s(1/y*) =2, ie., sup alg) = 3,

€

With this as introduction and motivation, we formulate the following result:

Proposition 5.5 The function p(3) has a unique zero, which we denote by 3*. The function s(€) /e
takes on its supremum at € = €* := €(*). This is the only place where the supremum is taken on,
and the function is strictly increasing to the left of €* and strictly decreasing to the right. We have,
furthermore,

s(e) . 1
2 = * e _— = l _ 10 3
B =fm= = gN(qg)
where N(q) denotes as above the number of sequences ay, . . . , a, (n variable) with

Gl s wwy ) <€ G
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Proof. The logic is:

— We investigate first the problem of maximizing s(¢)/e. We show that on the one hand the
supremum is taken on exactly at e(3*) and on the other hand the supremum is also equal to

g

— We then fill in the gaps in the earlier heuristic analysis to show that

which completes the proof.

We will prove later — by quite different methods — the explicit formula

2
. e

€= 12log2’

That s(e) /e takes on its supremum at €*, and that the value of the supremum is 5*, can be moti-
vated by putting the derivative of s(¢)/e equal to zero. For a proof, it is more convenient to proceed
less directly.* From the fact that p'(3) = —¢(8) < —logy < 0, it follows that p(3) — —oo for
B — co. We know, on the other hand, that p(3) — +oo for 7 — 1. Hence, there is a 3* such that

p(87) =0,
and since p'() < 0 everywhere, this 3* is unique. From the Legendre transform
0 =p(f7) = sup(s(e) — F¢),
and the supremum is taken on exactly for € = ¢*. In other words:
s(e) < B¢, with equality if and only if € = €*.
Since all relevant €’s are > €,,;, = log~vy > 0, we can divide by ¢ to get

s(e : o :
sl9) < 3%, withequality if and only if € = €*,
€
which is the desired assertion about where the supremum is taken on and what its value is. To show
that s(e)/e is strictly decreasing with increasing separation from €*, we use the general fact that

(strict) concavity of s(€) on (€y;,, 00) implies (strict) concavity of

1
gly) = ys(;) on (0,1/€min)-

*The argument we are about to give is standard in the application of statistical mechanics to dynamical systems.
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This is true without smoothness assumptions, but can be proved particularly easily in the smooth
case by verifying that
8” 1 y)
g'(y) = 20,

3
Y

Since s(€)/e takes on its supremum at an interior point of its interval of definition, the same is true

for g(y); since g(y) is concave, it is strictly monotone decreasing with increasing distance from the

place where it takes on its supremum, so the same is true for s(e)/e.

This completes our analysis of the behavior of s(¢) /¢; we turn now to the behavior of N(g) for
large g. We have already given an outline of the argument; what remains to be shown is

, s(€e*)

E*

1 log g
lOg Og vn('])( n(q) )

b

(where, as before, n(g) denotes a value of n maximizing V, (—oo, log ¢/n).) The first step in prov-
ing this is:
Lemma 5.6 Let m(q) be a sequence of integers such that

log q
m(q)

— € € (€min, 0)

Then

1
—1
Toga 08 Vin(g) (—00,

Proof. Let €; < €. Then, for sufficiently large g, log g/m(g) > €, so

log q
' m(q)

again for sufficiently large ¢. Taking logarithms and dividing by log g gives

vm(?)(_oo ) > Vm(q)(_oog 61)7

1 logq) 5 ml9)

3(61)
log - 1og V() (—00 ) 10g Vin(g) (—00, €1) — ——

~ loggq m(q) €

Hence,

logg ) 8(51) _

" m(g) €

This holds for all €; < €, and s(€) is continuous, so we can replace €; on the right by €. In exactly
the same way — starting with ¢; > € — we show that

11(}1_1) inf -— log log Vpn(q) (—00

logq, _ s(€)
log Vin(g)(—00 m(q)) = _""a

lim sup —— -
€

= log

and the lemma follows. It is clear that this argument also works, with the obvious modification in
the formulation, if m(q) is only defined for a subsequence of ¢’s going to oo. O
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As a consequence of the lemma, we note that the sequence (log ¢)/n(q) — with n(g) defined as
above — cannot have any accumulation point in (€ny;,, 00) other than €*. Otherwise, letting 72(g) be
a sequence such that (log ¢)/n(q) — €*, we would eventually encounter a ¢ for which

log q logq

Vﬁ(@)("OO: @) > Vn(q)(—oo, W)’

contradicting the assumed maximizing property of n(q).

By the same sort of argument as used in the proof of the preceding lemma, we see that if

lo
lim sup ——~ ! S €min,
q—00 m(q)
then . ;
lim sup —— 1og V() (—00, qu)g lim f—(e—)<supﬂ,
g—o0 log m(q) e— xm € € €

Thus, it is also impossible that (log q)/n(q) have an accumulation point in [0, €min], so the only
remaining possible accumulation points for the sequence log ¢/n(q) are ¢* and +oc. If we eliminate
the second possibility, it will follow that log g/n(q) — €* and hence, applying again the lemma, that

logq) . s(e*)

1
—— log Vi) (—00, ;
logg V@05 g) €*
as asserted.
Lemma 5.7 Let m(q) be a sequence such that
—m(Q) —3l,
logg
Then |
. 0gq
lim su log Vi <1
P logq 1 ogg 8 Vri (=00 1 gy) <

Proof. Fix 8 > 1, and let B denote an upper bound for the Z,,(53)'/™. For any m and any real
number r, we get

B™ > Zn(8)= Y. exp(—BHn(ai,...,am))
> Z {exp(=BHn(ay,...,a,)) : Hp(ay,...,an) < rm}
> exp(—frm)Vy,(—o0, ),
Vin(—00,7) < exp(Brm)B
Thus, g )
log g
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The first term on the right drops out as ¢ — co, so we get

: 1 q
lim sup —— log Vi) (—00, ——) < B.
q—>ooplogq g V(o) ( )) p

Since this holds for all 3 > 1, the lemma — and hence also the proposition — is proved.

log
m(g

We can expand on the above argument to establish a statistical relation between n and g. Let

€min < €1 < €* and let N(<)(g, ¢;) denote the number of n-tuples a;, . . ., a,, (n variable) with
lo A1y...,0Q
qn(a1,...,a,) < q and B n ; n) <€,

i.e., with
gn(ay,...,ap) <gq and n> (61)_110gqn(a1,...,an).

The proof of Proposition 5.5 can easily be generalized to show that

1 s(e)  s(e)
(<) =
qll>n°1° log q log N™=(g, 1) §]<l£ € = e*
Hence, in particular,
N
llm (Qa 61)
g=+o0  N(q)

The ratio N(<) (g, ¢;)/N(q) is the fraction of sequences ai, .. .,a, with ¢, < g which satisfy the
further condition that n > (¢,) ! log g,. Thus, we can say that, for g large, the overwhelming ma-
jority of sequences with g, < g have n < (¢;) ! log gy, and this holds for all ¢; < €*.

In exactly the same way, we argue that, for all e, > €*, the fraction of these sequences with
n < (e2)~*logg, also goes to zero as ¢ — oco. Hence:

Proposition 5.8 Let ¢ < €* < ¢3. Then for q sufficiently large, an overwhelming majority of
configurations with q, < q satisfy

(e2) 'logg, < n < (e1) " loggn.

Loosely formulated: For g large, nearly all configurations with g, < g satisfy n = (¢*) ! logg.
We have already observed that the number of configurations with ¢, < ¢ is twice the number of
rational numbers between 0 and 1 with reduced-form denominator < ¢; each rational number has
exactly two continued-fraction representations. The two representations of such a number have
lengths differing by one, which is unimportant at the resolution at which we are working. Thus, we
can reformulate what we have shown to say: For q large, nearly all rational numbers with reduced-
form denominator < q have continued fraction expansions of length =~ (¢*)~!log q.

After we had obtained the result formulated in the preceding paragraph, we learned that a sharper
assertion had been proved in Dixon (1970). (See also Knuth (1981), §4.5.3, for a readable survey of
work in this direction.) Part of what Dixon proves can be formulated as follows: For any ¢ > 0, and
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for ¢ large, the overwhelming majority of rational numbers r between 0 and 1 with reduced-form
denominator ¢(7) < ¢, have continued fraction expansion with length n(r) satisfying

In(r) — Alogg(r)| < (logq(r))/**,

where A denotes 12713 2 Loosely: For typical rational numbers r, with large ¢(r), n(r) differs

from A log ¢(r) by something not much larger that (log g(r))*/2, whereas our results show only that
the difference is typically o(log ¢(r)). Dixon also gives an estimate for the number of configurations
which do not satisfy the asserted inequality. Although Dixon’s proof is based on detailed estimates
in the spirit of analytic number theory, rather than the general statistical mechanical ideas we have
used, there are many points of resemblance between his argument and ours.

6 Full entropy

We are now going to explore the possibility of improving, e.g., Proposition 5.8 by replacing the
phrase “the overwhelming majority of configurations with ¢, < ¢” by “the overwhelming major-
ity of configurations with g, ~ ¢.” This is a version of a standard problem in statistical mechan-
ics: How thick must the energy shell be to get the microcanonical ensemble to work properly? We
can formulate the question somewhat more precisely as follows: Suppose we choose, for each g,
a quantity d(q) between zero and one, and we let N(g) denote the number of configurations with
qg—46(q) - ¢ < gn < q. If we can show that

.1 ey 1
qlggg@ng(q)—qlggoigg—qlogN(Q),

i.e., if we can show that the set of configurations with g—4d(¢)-q < g, < g has “the same entropy” as
the larger set of all configurations with ¢,, < g, then the argument of the preceding section applies to
show that the overwhelming majority of configurations with ¢—d(¢)-q < g, < ghaven = €*logg.
The question thus becomes: How small can §(¢) be without excluding too many configurations? In
particular: Is d(¢) small and constant allowed?

We will cast this question in slightly more general terms: We consider two sequences €!) and
(2) wi
€, with

— el) < €2 for all n, and

- €@ 5 ¢, with ey < € < 00,

and we ask for condition sufficing to guarantee
1
b (1) 2y —
Jim —logVu(en”s €n”) = s(e)-

The following proposition gives such a condition:



Lanford IIT and Ruedin 929

Proposition 6.1 Let the general setup be as described in the preceding paragraph, and assume that
€2 — ¢V goes to zero, if at all, more slowly than exponentially in n, in the sense that

—log(el? — 1)
llm Sup Og(ﬁn En ) g

n—00 n

Then ,
lim — log V, (e, e®) = s(e).

n—oo n

Proof. We note first that it is always true that
1 1
limsup — log V, (e, e®) < lim = log V,(—00, €?) = s(e),
n—oo T n—oQ ny
so we have only to prove

1!
im inf — (1) 2)
llgg{gfnlogvn(en J6:7) > s(e).

We can thus assume without loss of generality that ¢ — e{l) — 0. Fix € < ¢; we are going to argue
that, for n sufficiently large, any configuration a4, .. ., a,_; of length n — 1 with

1Oan—1(a'la 4w 1a"n—1) < (Tl - 1)€
can be extended, by proper choice of a,, to a configuration of length n with

nell < loggu(ay, .. .,an) < ned.
This will imply

Va(ed), e) > Voo1(—00,8),
and hence 1 1
lifggglfﬁ log Vo (elD) €®)) > Jim - log V,,—1(—00, €) = s(€).

This holds for all € < ¢, so .

lim inf — log V,, (e, e®) > s(e),

n—oo n

which is what we want to prove.

It remains only to prove the assertion about extension of configurations ag, ..., a,—1 with

loan——l(ala i aa'n—-l) < ME

For any a,, we have

Qn(al; R an) = a'nQ'n—l(ala sy an—l) + q'an(alla Y afn—2)-

Clearly, by taking a,, large enough, we can make g,, > exp(ne(!)). We choose the smallest a, which
accomplishes this and show that then g, < exp(ne!?)), provided that n is large enough. Note first

that
dn 9n—2

> exp(n(ef)) —€)) - 1,

ap =
On-1 gn—1
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which is > exp(an) for all sufficiently large n, for an appropriately chosen o > 0. Next,

qn(ah"':an—lvan) = 14 1
s RN e =
< 1+ O(exp(—an)).

Hence,
log Q'n(a'la v :an) - IOg Qn(ala N 1) = O(BXP(_an));
since — by the choice of a,, —
log%‘e(ala veeyp — 1) S nfg)»
and since, by assumption,
e? — ) > exp(—na) for large n,

it follows that

log gn(ay, . . ., a,) < net?  for n large enough.

This completes the proof of the proposition. O

It is easy to translate this result to apply to the statistical relation between g and n:

Proposition 6.2 Let 6(q) be a sequence in (0, 1] such that
log(1/(g))

li ——— =),
lflri)scgp log q

(i.e., §(q) goes to zero, if at all, less rapidly than any inverse power of q), and let N(q) denote the
number of configurations a,, . . . , a, with

(1-46(9))g < gn(ay,...,an) <gq. (%)
Then ; ©
) ~ s(e

Jim, @log N(q) = sup =~ (1)

Hence: For any n > 0, and for large q, the overwhelming majority of configurations satisfying (*)
have continued-fraction expansion of length between (1 — n)(¢*) ™' log g and (1 + n)(e*) ' log g.

We omit the proof; it is a straightforward adaptation of the proofs of Propositions 5.5 and 5.8, using
Proposition 6.1. We remark that the condition that §(g) decrease less rapidly than any inverse power
of q is also necessary for (1); this follows from the elementary upper bound

g

N@ <2 Y j=0().
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7 The third law of thermodynamics

We are going to show here that

Proposition 7.1

lim s(e) = 0.

+
E“‘)Gmin

In other words: Our statistical mechanical system has no zero-point entropy, i.e., it satisfies the
third law of thermodynamics. There are available general methods for proving the third law; see,
for example Simon (1993) §II1.9 or Schrader (1970). Although these methods could certainly be
used here, we will instead give a simple “bare-hands” argument. In general terms, the argument
goes as follows:

— We show that our system has, in a particularly clean sense, a unique ground state and a “mass

gap-?’

— From this, we argue that the unique Gibbs state o3 converges to the point mass at the ground
state as  — oo. Intuitively, this means that the entropy of o3 should go to zero, and we show
that convergence takes place in a sufficiently strong sense that this expectation is realized.

— To finish the argument, we invoke a version of the “variational principle,” saying that the
entropy of og is equal to the microcanonical entropy for ¢ = €g, where €z means the mean
energy per lattice site in o3. (For this conclusion, we need only the “easy” half of the varia-
tional principle, i.e., the fact that Gibbs states maximize the free energy, and not the converse
assertion that states maximizing the free energy are Gibbs states.)

The heart of the matter is the “mass gap.” Recall that the Hamiltonian of an n-site finite system is
log gn (a1, - . .,a,), and that g, is strictly increasing in each a; separately. Hence, the unique ground
state of the n-site system is the configuration (1,...,1). Something much stronger is true in our
case: If we start from a non-ground state (ay, . . ., a,), pick any i for which a; # 1, and replace the
corresponding a; by 1, keeping all the other a;’s fixed, then the energy decreases by at least a fixed
nonzero amount independent of n, ¢, and the configuration.

Lemma 7.2 There is a strictly positive number €, such that,

loggn(ai,- .-, @i-1,0i,Git1, .. . 0y) > loggn(ar, ..., 01,1, i1, .- 0n) + €g
for alln, all i between 1 and n, and all configurations (ay, . . ., a,) with a; # 1.
Proof. Since ¢, (ay,...,a;-..,a,) is nondecreasing in q;, it suffices to consider a; = 2. We will
write g; for gj(ai,...,a;_1,1,ai41, .. .a;) (with the obvious simplifications for j < ¢ + 1), and we
put
dj = qj(al, ey @i, 2, [/ Ty R aj) — g fOI'j > and

d;i = 0 forj <.
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Since
g(ar,...,ai-1,2) = 2¢;—1+¢i-2 and
Qi(a‘lu"'aai—lal) = di—1 +Qi—2:
we get
d; = gi_1.

The d;; satisfy the recurrence
ditk = Qivkdith—1 + ditr—2,
i.e., the same recurrence as the gx(a;11, . - ., a;1%). In view of the initial condition
di-1 =0 and d; =gy,
(which differs only by a factor of ¢;_; for that for g (a;11, . - -, aitk)), We see
divk = Gi-1Gk(@it1, - - -, Qitk).
Hence, setting ¢ + k = n,
gn{ai, .y 2,00 0000) — Gn = gio1(ay, - -, Gi—1)Gn—i(Gig1, - - -, Qn),
so we have only to show that

%—1(01, ceey a'i—l)Qn—i(a'i+la ceny an)
(%)
a1, .- a1, 1, Qip1, ... Q)

is bounded away from zero.

Now let g, and Py, denote gx(a; 41, - - ., @irx) and pg(a;y1, - . ., a;4x) respectively. The gy, and py
satisfy the same recurrence as the g;,, but with initial conditions

Il

go=1 g-1=0
15{):0 ﬁ_lﬁ "

It follows that
Gitk = QiQk + Qi—1Dk.

Setting £ = n — %, we see that we can rewrite () as

Gi—19n—i _ 1
QiGn—i + Gi—1Dn—i @/ Qi1 + Pr—i/ Gns
1 )
= - . since ¢; = ¢;—1 +g;—2
14+ gi2/qi—1 + Pn—i/@n— ' ‘ ’
_ 1
2 (et g 5 oy s] =[G Tpe « 5 G

I

1
L
3
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so the assertion is proved O

The next step will be to show, using this lemma, that as 3 — oo the Gibbs state converges
to the point mass on the unique ground state configuration in a strong enough way to ensure that
the entropy of the Gibbs state goes to 0. We first need to recall the definition of entropy in the
present context. Let u denote a translation-invariant probability measure on {1,2,...}%, and let
p(ao, - - -, an—1) denote the u-probability of the configuration (ag, .. .,a,—;) in the finite subset
{0,...,n — 1} of the index set (“lattice”) Z. We then define

Sn(#) = Z _U'(a'():""an—l) log,u(ag,. "Jan—l):
@Q,---8n—1
with, as usual, the convention 0log0 = 0. Then S, is a subadditive function of n, so
lim,, o 15, (1) exists and is equal to inf, 15,(); the common value is the entropy s(u) of p.
We can now formulate:

Proposition 7.3 Let o4 denote the unique Gibbs state with inverse temperature 3. Then s(og) — 0
when 3 — oo.

Proof. We are going to show that, in the notation of the preceding paragraph, S; (o) converges to
0 as # — oo; since
0< s(0p) S+ < Salop) S -+ < Sulog),

the assertion follows. We will need some notation related to Gibbs states. For A any subset of Z, we
denote by X the set of configurations in A, i.e., of mappings A — {1, 2, ...}. For A afinite subset
of Z, the interaction gives rise to a function ¥, defined on X5 x X, with the interpretation that
W (ap, apc) is the sum of the self-energy of the finite configuration a, and its energy of interaction
with the outside configuration a,..> A Gibbs state with inverse temperature 3 is a probability mea-
sure on Xz with the property that, for any finite A, the conditional probability of finding a, inside
A given that the configuration outside A is ae is

exp(—p¥a(ap, ase))
ZA (/6: G,Ac)

with
Za(Bran) = Y exp(=BYa(ay,anc)).

ey €Xp
It follows from the considerations of §3 that

Ua(an, ane) — 3_log(as)
i€A

is bounded (for fixed A.)

We apply these considerations in the very simple case A = {0}. We define
V(ag, @) :== Yoy (a0, a) — ‘I’{o}(lyd):

where @ denotes a general configuration of Z \ {0}. Then

® Although these individual energies are not unambiguously defined, the sum is unambiguous, at least up to an ad-
ditive constant.
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-V(1,a) =0
— V(ap, @) > ¢ for ag > 1, by Lemma 7.2

- V(ap, d) — log ag is bounded.

We put
Zo(B,a) := ) exp(—BV(ag, @) =1+ Y exp(—BV (ao, a)).

ap>1 ag>1

By the preceding remarks, exp(—3V (ag, &)) converges to zero for any fixed ay > 1 and is further-

more < ag aie (for example) for any sufficiently large ag, all uniformly in a. Hence, in particular,
Zy(B,a) = 1 as B — oo. From the definition of Gibbs state, the conditional probability of finding
ao at the origin given the configuration @ away from the origin is

exp(—BV (a0, d))
ZO(ﬂaa‘) ,

which converges to 1 for ap = 1 and to O for ap > 1, and is bounded by a, B1% for all sufficiently
large ag, again uniformly in a.

<

Now let o3(ag) denote the probability, with respect to the unique Gibbs state o of having ag at
the origin. Since this probability is a convex combination of the above conditional probabilities, it
follows that

o5(l) = 1, os(ag) =0 for ap>1, as [ — oo,

and

B2

og(ag) < ay for all sufficiently large ay.

Hence,
—os(ag) log os(ao)

converges to zero with 3 — oo, for all ag, and furthermore is < a, A% for all sufficiently large ao
(since —tlogt < t}/2 for t positive and sufficiently small.) From this it follows that

Si(og) = Y —op(ao)logog(ag) — 0 with [ — oo.
ap=1
O

It remains to relate s(og) to the microcanonical entropy. To avoid confusion, we will, for this
section, denote the microcanonical entropy by sy,c(€); s without subscript means the entropy of a
translation-invariant measure, as defined above.

— from Proposition 4.1,
p(B) = s(op) — BE(B),

where €(3) denotes the mean energy per lattice site in the Gibbs state o4.



Lanford IIT and Ruedin 935

— from the theory of thermodynamic limits for partition functions and the Legendre transform,
we have

P(B) = smc(€(B)) — Be(B),

where ¢((3) is defined as the unique € for which sp,(€) — Be takes on its supremum,

— and finally, from a standard argument using Propositions 4.1 and 5.3

&(B) = €(B),

Putting all this together, we see that

s(0p) = sme(e(F))-

As 3 — 00, one the one hand s(05) — 0 — by what was shown above — and on the other hand, €(3)
is continuous and strictly decreasing, and converges to £, This completes the proof of Proposition
7.1

8 Joint distribution of log ¢ and the Farey depth

We consider here, in addition to H,, = log ¢, (a,. .., a,), the function
Fo(ay,...,a,) =a1+ -+ an

on N} . As noted in the introduction, F, has a number-theoretic significance: It is the level in the
Farey-tree representation of rational numbers at which [ay, . .., a,] appears. We will accordingly
refer to F,, as the Farey depth. The sequence of functions F, is trivially extensive; if interpreted
as an energy, it corresponds to a non-interacting system. We put the two quantities log g, and F;,
together and regard them as components of a single R?-valued extensive quantity

gn(ar, ..., an) == (loggn(ai, ..., an), Fulas, .., an)).

The theory of the microcanonical entropy of such vector-valued extensive quantities is developed
under technically favorable assumptions in Lanford (1973) and has been generalized to apply to the
present situation in Ruedin (1994). To formulate the results, we will use the following notation: For
J asubsetof R* andn = 1,2,...,V, p(n, J) will denote the number of configurations (ay, . . . , @),
of length n, with
g(ah % Wiy an)
n

& dJ.

The main results are as follows:

Proposition 8.1 There exist:

— a (non-empty) convex open set D, r in B and
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— a non-negative concave function sq p on Dy

such that:

— If J is an open convex subset of R* with J N D, p # 0, then

1
lim —logV,p(n,J) = sup s,r(z).
ey B 0.r(n,J) ermIJ)q,p o.F ()

— if J is an open convex set whose distance from D p is strictly positive, then V, p(n, J) van-
ishes for all sufficiently large n.

The intuitive meaning is: If (¢, f) € D, p C R, then there exist, for arbitrarily large n, con-
figurations with — simultaneously — log ¢, = n ¢ and F,, ~ n f; the number of such configurations
is furthermore ~ exp(ns, r (€, f)). If, on the other hand, (e, f) is outside the closure of D, r, then
(ne,n f) is excluded as a value for (log q,,, F},) for large n. As in the single-observable case, this
proposition evades the potentially delicate question of the behavior of V, g(n, J) when J has dis-
tance zero from D, r but does not actually intersect it. Comparing the defining properties of s,
with those of the single-observable s, we see that

#(6) = sup sgr(e, ).

Furthermore, s, r has the following interpretation: If I is any interval for which
sup sq.r(e€, f) < s(e),
fel

then, for large n, among configurations of length n with g, =~ exp(ne), only a vanishingly small
fraction have F, /n € I. Somewhat less precisely: For large n, among configurations with ¢, =
exp(ne), the values of F,,/n are strongly concentrated around values of f where s, r(€, f) is max-
imal.

The preceding proposition is a version of a result which holds with great generality. A first
special feature of the particular situation we are considering is

Proposition 8.2 Let (ey, fo) € Dy, and let fi > fo. Then (€, f1) € Dy r, and sqr(€o, f1) >
Sq,F(anfo)-

Roughly: s, r(¢, f) is non-decreasing in f for fixed e.

Proof. For purposes of this argument, we denote by Rs(e, f) the open square of side-length 20
centered at (e, f) € R2. We are going to argue:

Claim. For sufficiently large n,

vq,F(n 4 17R26(€07 fl)) 2 vq,F(na R5(607 fO))
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Before proving the claim, we show how it implies the proposition. In the first place, it follows
at once that (o, f1) must be in the closure of D, r; otherwise, for small enough 4, Vg r(n +
1, Rys(€o, f1)) would have to vanish for large n whereas V, p(n, Rs(€o, fo)) is non-zero. By ap-
plying the same argument, with ¢, moved a little, we see that a neighborhood of (e, f1) lies inside
the closure of D, p. But D r is a convex open set, so this implies that (e, fi) itself is in Dy p. It
then follows that s, r is continuous at (ep, f1) (as it is at (g, fo)). Thus,

P 1
Sq,F(EOa fl) = %Eg,}ﬂgo m log vq,F(n -+ ]-) R25(60, fl)))

but, on the other hand, applying the claim again,

Jim — log V, r(n + 1, Ras(e€o, f1))
> lim =5 log V, r(n, Rs(€o, fo))

= sup{sqr(e, f) : (¢, f) € Rs(eo, fo)}
Z Sq,F(GO, fD)J

so the proposition follows from the claim.
Proof of Claim: Let (a4, ..., a,) be a configuration with

1
H(Iog qn(afl: s iy a’n)a Fn(a'la LR a'n)) € RJ(CO: fO)

We are going to make a configuration of length n + 1 by adjoining a single large a,, and show that,
for sufficiently large n, the augmented configuration always has

] (lOan+l(a1: . -,an+1), Fn(ah . 'an+l)) € Roys(€o, f1);

this will establish the claim. We choose a, 1 to be the smallest integer witha; +. .. +an +any1 2
(n+ 1) f,. Since a; + ... + a, = nfy, it is easy to find upper and lower bounds for a1 both of
which go to infinity linearly with n (We need to assume here, as we may without loss of generality,
that ¢ is chosen small enough so that fy + 6 < f;.) Since

Qn+1(a1, vy an+1) = Qp+41Gn + qn-1,

we get
U410 < Qi1 < (Gny1 + 1)gn,
and hence - in view of the growth rate of the a,,’s —

log gn+1 = log g, + O(logn).

Since 1
'T;]'qun = (60 - 5; €o + 5):
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it follows that, for n sufficiently large,

—— log gny1 € (60 — 26, €9 + 20),

which completes the argument. g
This gives us at least a rough picture of D, r: We know from the outset that it lies to the right
of the vertical line {€ = €y, }, since smaller values of e are asymptotically excluded without any

condition on F'. It also extends arbitrarily far to the right, since s(¢) is defined for arbitrary large e.
In view of the preceding proposition, it is a union over e of semi-infinite vertical lines:

Dyr = {(€,f) : € > €min, [ > fmin(€)}-

The function fmin(€) defined in the preceding formula is convex — since its epigraph D, r is — and
hence continuous. It is not difficult to see that f;,;,(€) is monotone non-decreasing and not constant;
hence, by convexity, that it goes to co with e. We will in fact determine f.,;,(¢) explicitly in §10;
somewhat surprisingly, it turns out to be piecewise linear.

We turn next to the canonical ensemble. We set

Zo(B,7) = Y. exp(—BHy(a,...,an) — YFu(a1,...an)).

Q140,00

In view of

H, = loga; +---+logay, + bounded,
F, = a1+ +ay,

it is easy to see that the sum converges for all 3, positive and negative, for v > 0; for § > 1 for
v = 0 — the case already studied — and not at all for v < 0. We refer to Ruedin (1994) for the proof
of the following result, which involves only straightforward generalizations of standard results:

Proposition8.3 I. Forvy >0,

1
lim —log Z,(8,7) =: pe.r(B,7)

n—oo n

exists, and is given by the Legendre transform of s, p:
pq,F(ﬁ) ’Y) = Sup{sq,F((':: f) - 66 - FYf : (6’ f) = Dq,F-}

2. pg.r(B,7) is a real-analytic and strictly convex function of (3,7) in {y > 0}.

By “Legendre duality,” s, ¢ is the inverse Legendre transform of p, . To be precise:

For (¢, f) € D, F,
Sq,F(Er f) = iﬁnrqu,F(ﬁy 7) + ﬁé + ’Yf;
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the infimum on the right-hand side is —oc for (e, f) outside the closure of D, .

(There are a number of versions of “Legendre duality.” The preceding assertions follow from The-
orem 1.6.4 of Simon (1993) and the following observation: We have taken the definition domain
of s, r to be open. If we extend s, r to the closure of the domain by defining it at boundary points
to be the lim sup of values at nearby interior points, then the subgraph of the extended function is
convex and closed. Hence, except for a sign, the extended function and the closure of the original
domain form a Fenchel pair in the sense of Simon (1993).)

In particular, if we define

0 %)
fq,F(ﬁa ’Y) = —%Eﬁ(ﬁa ’Y)a fq,F(ﬁa ’Y) = —‘%’}:F(ﬂ’f}’),

for v > 0 and 3 arbitrary, then p(3, v) + B¢, #(B0, Y0) + 7 f4,7 (B0, Y0) has vanishing gradient — and
therefore a minimum — at 3 = (3,, v = . Hence, by Legendre duality, (¢, (5o, 70), fq,7(Bo,Y0))
is in the closure of D, r, and this holds for all (5, 7o) with o > 0. By strict convexity of p, , the

mapping
(8,7) = (€,#(8,7), fo.r (B, 7))

is open and injective. Its image must therefore lie in D, r, not just in its closure, and we have

sq,F(€,r(8,7), fo,r(B,7)) = p(B,7) + Begr(B,7) + 1fo.r(B,7)-

The right-hand side is a real-analytic function of (3, y), and the inverse of

(ﬁ)’)’) — (Eq,F(ﬁ, 7)J.fq,F(ﬁa fY))

is real-analytic by the inverse function theorem, so s, r is real-analytic and, by a straightforward
computation, strictly concave on the image D((IO}, of the upper half plane {~ > 0} under

(8,7) = (eqr(8,7), fo.r(B,7))-

Our next task is to determine the image domain D(S?l)w of the “analytic” Legendre transform. We
do this in a way which produces some extra information which we will need later.

Lemma 8.4 For any«y > 0 and any € > €yp, there is a unique (3 with
Eq,F(:Ba ’7) = €.
We will denote this 3 by 3(¢, ).

- B is a real-analytic function of e, .

- fa, #(B(e, ), 7) is strictly decreasing in .

- a—gﬁbﬂ(e,fq,p(ﬁ, M) = 7.
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A

— For € > emin, O(€,7) — B(€) as v — 0%, convergence is uniform on compact sets in
(Gmin: OO)

X fmin(€) ¥ — 00
— for(B(e;7),v) — § f(B(e)) v — 0%, 8(e) >2
. 00, v— 0%, 8(e) < 2.
Here, f(3) means the means value of F,,/n in the Gibbs state with inverse temperature 3
(and v = 0.).

Proof. For fixed v, ¢, r(3,7) is a strictly decreasing real-analytic function of 3. We are going to
argue that it converges to €p;, as § — oo and co as § — —oo; continuity then implies that it takes
on every intermediate value exactly once, i.e., that 5(e, v) is defined. For this argument, we use the
fact that €, (3, ) is equal to the mean value, in the unique Gibbs state for (3, ), of the function

—log([ao, ay, - . .]).

— An easy extension of the arguments of §7 shows that, as § — oo with fixed -, the corre-
sponding Gibbs state converges to the point mass at (..., 1,1,...), in a strong enough sense
to allow us to conclude that €, (3, v) — —log([1,1,...]) = €min.

— The difference between — log([ay, - . .]) and log ay is bounded, so it is enough to show that
the mean value of log ay goes to co as § — —oo. By the arguments of §7, the Gibbs state
assigns a probability to ay which can be written as

c1(B) exp(—yao — B(logag + c2(5, ap))

with ¢z ([, ag) uniformly bounded in ay, 3. From this form, it is clear that, as § — —oo, the
probability distribution becomes concentrated on large values of ¢y and hence that the mean
value of log ay goes to oo.

Thus, the existence of ﬁ(e, 7) is established; real analyticity follows from the inverse function the-

orem (using the strict convexity of p, (. ).) Strict positivity of the derivative of f,, F(ﬁ(e, 7),7)
with respect to +y follows from the strict convexity of p, s (. ) by a straightforward computation.

The formula
Bsq, F

( F(IB% 7)’fq,F(ﬁ,7))

o
=
|

v

holds for all (3, ) by the elementary properties of the Legendre transform; inserting {3 for B and
remembering how 3 was defined gives

BSQ,F

5 (e far(B) =7

As v — 0 with g fixed > 1, ¢, r(0,7) — €(3) and the convergence is uniform for 3 is any
compact set in (1, 0o). Hence, for fixed € > €5, and any 8y < B(€) < fa,

€o.r(B1,7) > €(B) > €,.#(B2,v) for all sufficiently small .
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For +y small enough so that these inequalities hold, 8, < 3 (€,7) < [a; this shows that [}(e, v)
converges for v — 0% to ((¢), and it is easy to see that the convergence is in fact uniform on
compact subintervals of (eqin, oc). It is also easy to see that, for y — 0, f(3, ) converges to f(3)
for 3 > 2andto oo for 1 < B < 2; the convergence is uniform on compact subsets of (1, 00).
Hence, also for v — 0, f, r(8(e,7),y) converges to f(B(e)) for € < ¢* and to oo for € > €*, as
asserted. a

Proposition 8.5 Dé?}- ={(e,f) € Dyr : € > e or f < f(Be)}. Fore > €, f — sqr(c, f)
is strictly increasing and real-analytic on (fuin(€), 00); for €min < € < €, f = s.p(e, f) is
real-analytic and strictly increasing on (fuin(€), f(B(€))), but constant — equal to s(e) — for f >

F(Be))-

Proof. The image under the inverse Legendre transformation of the parametrized curve

A

v (ﬁ(€0a7)’7)

is a vertical segment above ¢ in the (¢, f) plane which evidently lies D((I?};. As v runs from O
to oo, the segment is traversed downward. The f-coordinate of the upper end of the segment is
lim,_,o+ f;,7(3(€0,7),7), which, by the preceding lemma is co for €y > €* and f(8(¢)) otherwise.
We temporarily denote the lower end of the segment by (g, foo)- foo is evidently > frin(€0); We
want to show that equality actually holds. To see this, we note that f — s, (€, f) is concave
and nondecreasing on (fmin(€o), 00). At f = f, r(B(€0),7), its derivative is equal to ~v. Hence,
as f — f1, the derivative goes to co. This is not compatible with concavity unless foo = fmin.
Furthermore, in the case ¢, < €*, the derivative approaches 0 as f — f(B(eo)); concavity and
monotonicity then imply that the function must be constant for f > f. As aconsequence: If ¢y < €*
and f > f, then (e, f) cannot lie in the image ’Dﬂ; of the analytic Legendre transform, i.e., the
set of points above ¢; in Df]?,); are exactly those with fmin(€0) < f < f(B(&)). Together with the

analyticity and strict monotonicity of the analytic Legendre transform onto D((I?%, this proves all the
assertions of the proposition. O

Our intuition about statistical-mechanical systems suggests that fixing the energy — in the ab-
sence of phase transitions — determines all other extensive quantities. In the present context, this
suggests that fixing log ¢,,/n — within some appropriate thickened energy surface — ought to deter-
mine F), /n statistically. We will argue here, on the basis of the above results, that this is not the
case, if we allow the size of the system to fluctuate. What happens instead is that the typical values
of F,,/n go to infinity as the size of the system goes to infinity.

We consider a ¢ — which will tend to co — and a fixed parameter y and denote by p(gq,y) the
fraction of set of configurations — of whatever length — with ¢,, < ¢ which also satisfy F,, < ylogg.
Since configurations with g, < ¢ nearly all have logg, =~ logg, this means roughly the set of
configurations with F, /logg, < y. The kinds of arguments used in the proof of Proposition 5.5
show that

Sq,F (67 Gy) S(G)

lim = logp(g,y) = su su
Jim 1o g () = sup == 1p ==,



942 Lanford IIT and Ruedin

provided that y is large enough so that the line f = ye intersects D, . We are going to argue that
the right-hand side is < 0 for all values of y, i.e., the probability that F,,/ log g,, is < y — given that
gn < g — becomes exponentially small at ¢ — oo for all y. The argument goes as follows: It is
always true that

sq.1(€ f) < 5(e),

and it follows from Proposition 5.3 that s'(e) — 1 for ¢ — oo and hence that s(e)/e — 1 in the
same limit. Hence, if
€

is not taken on at a finite ¢, then it is < 1, whereas sup, s(¢)/e was shown earlier to be equal to 2.
Thus, the assertion is proved if the supremum is not taken on. Suppose now that the supremum is
taken on, at, say, €;. If ¢; # €*, then

sq.r(€1, Y€1) o s(er)  s(€")
€1 Toq €*

the last inequality is strict since s(¢) /e takes on its supremum only at €*. Thus, the assertion is also
proved if the supremum is taken on at any € other than €*. Finally, if the supremum is taken on at
€*, then we have . .
sarl€,ve) _ 5(e)
€ €
since f > s, (€", f) is strictly increasing on ( fmin(€*), 00) with asymptotic value s(e*). Thus, the
assertion is proved in this case too, so all cases are covered.

L]

9 The continuum representation

We describe here a neat and convenient representation for the Ruelle transfer operator for our sys-
tem. We deviate here from Ruedin (1994), where the theory of the transfer operator is extended to a
general class of systems including the one we are treating. This extension turns out to be technical
and complicated. What we do here is to use the special features of our system to give a simple, if
limited, treatment.

We start from the observation that the mapping
(ap, a1, ...) — [ag, aq,. . .]
sends the space of semi-infinite configurations
Q. :={1,2,...}}

bijectively onto the irrational numbers in [0, 1]. We will use this mapping to transport various ob-
jects from the configuration space to the unit interval, where they may be easier to work with. We
start by looking at

— the Gibbs state of the semi-infinite system (index set {0, 1,...})
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— the Gibbs state for the two-sided infinite system (index set Z) projected onto the semi-infinite
configuration space.

These are both probability measures on €2 ; the second of them is shift-invariant and the first pre-
sumably not. However, as Ruelle observed, the Gibbs state for the semi-infinite system has the ad-
vantage of satisfying a relatively simple equation. This comes about as follows: We can construct
the semi-infinite Gibbs state by

— Constructing the semi-infinite Gibbs state “with one fewer lattice site,” i.e., on configurations
labeled by 1,2, 3, ... rather than 0, 1, 2, 3, . . .. Because of uniqueness, this is the same as the
semi-infinite Gibbs state of €, shifted one place to the right.

— appending a new lattice site at the left-hand end,

— assigning weights proportional to exp(—A(aq, a1, . . .)) to the possible state ag at the new lat-
tice site, and

— normalizing.

In other words, the assertion is that
e~ Ae0,a1,) g o4 (day,day,...) = Aoy (dag,day, das, . . .). (%)

Here,

— o4 denotes the semi-infinite Gibbs state

— A(ap, a1, ...) denotes — 3 log[ao, aj, . . .| (or —3log|ay, . . .| +Yao, if we are talking about the
two-observable situation.)

— the da;’s appearing inside o are “symbolic,” but the da, on the left stands for counting mea-
sureon{1,2,...}.

— A —or perhaps its reciprocal — is the normalizing factor.

The left-hand side of (x) defines a linear operator £* from measures on {2, to measures on {2 ;
(%) says that o, is an eigenvector for £* with eigenvalue \. Iterating (*) n times corresponds to
adding n sites to the left. It is easy to see, using standard ideas from the theory of Gibbs states, that
the semi-infinite Gibbs state o is the unique probability measure satisfying (%), i.e., the unique
probability measure which is an eigenvector of £*. The same set of considerations shows that the
partition function Z,(/3,y) admits upper and lower bounds of the form cA", c a strictly positive
constant independent of n; hence, that

p(8,7) = log .

We now transport this whole picture to the unit interval. We will generally use the same notation
for objects on the sequence space and the corresponding transported objects on the unit interval; for
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example, o will also denote the measure on the unit interval obtained by transporting the semi-
infinite Gibbs state. We recall that the left shift

(ap, a1, as, ...) — (ay,as,...)

carries over to the Gauss map

t— fract(—i—).

The construction on the right-hand side of (*) translates into the following: Given a measure p
on [0, 1] (assigning measure zero to the rational numbers), we construct a new measure L*u by
specifying that the £*u-measure of any set contained in one of the intervals (1/(ap + 1),1/ap) is
the integral of €7 /(ay + t)? over the preimage of the set in question under ¢ — 1/(ag + t). Then
o, is characterized as the unique probability measure transformed into a multiple of itself by £*.

We now have:
Proposition 9.1 For =2 andy = 0,

— o4 is Lebesgue measure on [0, 1], and

— The transported projected two-sided infinite Gibbs state o is the Gauss measure lﬁi_d—ﬁ
e 7r2
12]og?2

Proof. o, is uniquely characterized by the fact that it is transformed into a multiple of itself by the
operation of the preceding paragraph. To prove the first assertion, it is therefore enough to show that
Lebesgue measure is unchanged by this operation. Concretely, it is enough to show that Lebesgue
measure itself and the transform of Lebesgue measure assign the same measure to any interval J
contained in some one of the intervals (1/(ag+1),1/ag), ap = 1,2,. ... In other words, we want to
show that the length of J is the integral of the function (aq + )2 over the preimage of the interval
under ¢t — 1/(ag+1), and this follows at once from the fact that the absolute value of the derivative
of t = 1/(ap + t) is (ag + t)~2. Thus, the transform of the one-sided Gibbs state is identified with
Lebesgue measure, and the rescaling factor A is shown to be one.

We now turn to the determination of the image of the projected Gibbs measure for the doubly
infinite system under the mapping

(a'Oyaly # ) = [G’U:a'la e ]

We denote both the projected Gibbs state and the corresponding measure on [0, 1] by ¢. From the
general theory of Gibbs states, we know that

— o4 and o are equivalent, i.e., have the same null sets.

— o 1s ergodic (with respect to the left shift respectively the Gauss map)
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From these facts it follows that o is the only invariant probability measure equivalent to o,. For
f = 2, in the unit interval representation, this means that o is the only probability measure on the
unit interval equivalent to Lebesgue measure and invariant under the Gauss map. But it is well
known - and in any case follows from an easy computation — that the Gauss measure is invariant
under the Gauss map; hence, the Gauss measure must coincide with o. Since €* is the mean value
of — log[ay, a1, . . .] with respect to the projected Gibbs state, we conclude that

. jllogtdt_ e
~ log2Jo 14+t  12log2’

It is easy to see that the operator £* on measures described above is the adjoint of an operator
on continuous functions given by

€N = 3 s )

This operator — with v = 0 — has been studied extensively in Mayer (1990). It is easy to see from
the preceding formula that this operator is compact when restricted to act on a Banach space of
functions bounded and analytic on an appropriate domain. A relatively elementary version of the
Perron-Frobenius theorem applies and says that the eigenvalue of largest modulus is positive and
simple. As might be expected, it can be shown that this eigenvalue is exactly A. Efficient numerical
methods are available for the computation of this principal eigenvalue; this provides an effective
method for the numerical computation of the thermodynamic functions of our system.

10 Determining D,

'We need the solution to the following elementary (finite!) optimization problem:
Given n and F', find the maximum of ¢, (a1, - . . , a,) over all configurations witha, +- - -+a, = F.

To formulate the answer, we need to introduce some notation. We write
F=mn+r, with0<r<mn;

in order that there be any configurations at all, it is necessary that m > 1, and this will always be
assumed in what follows.

Proposition 10.1 Ifr = 0, there is only one maximizing configuration — the one with a; = m for
1 <2 < n. Forr > 0, the configurations

gr=m+1l, 8= =041 =M, Oz =" "=Gup=mMm+1

is maximizing, as is its reversal, and there are no others. Thus, there is a unique maximizing con-
figuration for r = 0 and r = 2, and exactly two maximizing configurations for each other value of
P,
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Although this fact must be known, we have seen no trace of it in the literature. The proof we have
found is relatively straightforward but neither short nor particularly enlightening, so we will not
give it here. We will nevertheless use the result to get a simple description of the right-hand bound-
ary of the domain D, ¢ of asymptotically allowed values for ((log ¢,)/n, F,,/n).

Corollary 10.2 Let n; — oo and F; — oo, with

F
L pta, wihp=12,..ad0<a<l,
J

and let H; .y denote the maximum of log(qnj) over all configurations of length n; witha; + - - -+
an; = F;. Then

s

;§E-+ﬂ-%ﬂbgh+abgwﬂ,

j

where

Yy 1= (p-l— p2+4).

Do =

Proof. Let M, denote the 2 x 2 matrix

Then, if ¢; satisfies the recurrence

gji+1=p¢+¢1 fory=n,....n+m-1,

dn+m - M™ an )
In+m—1 F Gn-1

A simple computation shows that the eigenvalues of M (p) are , (as defined above) and —v,*. We
let &, and ¥, denote eigenvectors of M, and its transpose respectively with eigenvalue -y,; we can
take these vectors to have strictly positive entries and to be normalized so that their scalar product
is unity. (There is no particular difficulty in writing explicit formulas ...) Then

we get

M; =72, @¥,+0O(y,") forn— oco.

The case o = 0 requires a slightly special argument, and we treat first the contrary case o > 0.
Then, if we define 7; by
Fy =pn; + 15, (*)

we get r; — oo and n; — r; — oo. By Proposition 10.1, and denoting by e, the 2-vector (1,0),

exp(Hjmax) = @u(p+1,p,...0,p+1,...,p+1)
e —

-~

n;—rj ri—1

_ ri=larnj—r;
= (60,MP+1 MpJ JM;,,+160)

= 7;{;117? _rj_l(eﬂs q’p+1)("1’p+1= @p)(q’pa Mp+160) +o(1)
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Since the coefficient (eg, ®p11)(¥ps1, Pp)(¥,, Myi1€0) is non-zero, it follows that
Hj,ma.x =Ty 10g'7p+1 o (nj - 'rj) 10g'7p = O(l)a
so, since 7;/n; — «,
1

;‘Hj,max — (1 — a)logy, + alog vt
]

as asserted.
For a = 0 we can still use (*) to define r;, but this time all we know is that r;/n; — 0. By
passing to subsequences, we can reduce to the cases

- 7 — 00, in which case the above argument works as it stands.

- 1 — —o00, in which case a straightforward modification of the above argument — replacing
p,p+ 1byp—1,p—works.

— r; = r independent of j, in which case we write
- -1
exp(Hj,ma,x) = (60) Mp+1M;J TM;+1 60)

and argue as before.

O

It follows easily from the preceding corollary that the intersection of D, r with the horizontal
line f = p + « is the interval (emin, (1 — @) log v, + alogyp41) In other words:

Proposition 10.3 The right-hand boundary of D, r is the polygonal arc consisting of the segments
Joining (log vy, p) to (1og Yp11,p+ 1), forp=1,2, ...
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