Zeitschrift: Helvetica Physica Acta

Band: 69 (1996)

Heft: 5-6

Artikel: The Falicov-Kimball model : a review of exact results and extensions
Autor: Gruber, Christian / Macris, Nicolas

DOl: https://doi.org/10.5169/seals-116981

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 24.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-116981
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Helv Phys Acta 0018-0238/96/060850-588%1.50+0.20/0
Vol. 69 (1996) (c) Birkhiuser Verlag, Basel

THE FALICOV-KIMBALL MODEL: A REVIEW OF
EXACT RESULTS AND EXTENSIONS

Christian Gruber and Nicolas Macris

Institut de Physique Théorique
Ecole Polytechnique Fédérale de Lausanne

CH - 1015, Lausanne
(23.V.1996)

Abstract

The Falicov-Kimball model is a simplified version of the the Hubbard model in which only
one type of electron (e.g. spin down) is allowed to hop. It describes in particular a system of
spinless quantum particles interacting with classical particles (Ising spins). In this review
we present the progress which has been accomplished in the last decade concerning this
model, with an emphasis on rigorous results. Our discussion includes the one, two, and
three dimensional cases. We also show how certain techniques can be applied to other
related models such as the static Holstein and Kondo models. Their common feature with
the Falicov-Kimball model is that they consist of itinerant spinless electrons interacting
with a classical field, associated with either a discrete Ising spin, a continuous scalar spin
or a vector field. Finally we discuss a generalized Falicov-Kimball model of spin one-half
electrons with on-site Hubbard interaction and interacting also with classical particles, as
well as different models where the fermions are replaced by hard-core bosons. For the last
class of models the interactions are truly many body but a limited number of rigorous
results can be obtained using reflection positivity. The main issues discussed in this review
concern the structure of ground states for the classical particles, and how they are affected

by magnetic fluxes (via orbital couplirig) and quantum statistics. Perturbative as well as

non perturbative methods are used.
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1. INTRODUCTION

Phase diagrams of quantum statistical lattice models are much less understood than
their classical counterpart. In the quantum case, because of quantum fluctuations, not only
the low temperature properties are difficult to extract but also the ground state behaviour.
Recently much interest has been devoted to models of interacting (or ”correlated”) itinerant
electrons. A prototypical system of this type is the twentyfive year old Hubbard model
where spin one-half electrons hop on the sites of a lattice A and interact when they are on
the same site. The hamiltonian is in second quantization (see sect. 2 for the notation)

He- Y t@alap +U Y (ahyaet — 3ol 001 — 5) (11)

z,y€A,0=T1,] T€A

The usual Hubbard model corresponds to tgy) = t&ly) = tgy. Initialy it was introduced to
discuss metal-insulator transitions and itinerant magnetism [1,2]. In this case U is posi-
tive, which corresponds to a repulsive on-site interaction between electrons favoring local
magnetic moments. More recently it was thought to be a good candidate to understand
high temperature superconductivity (again with U > 0). Although the investigations have
not fulfilled all the expectations, it remains a very important model to describe strong
electron correlations. Rigorous results concerning (1.1) are rather few and we refer to [3]
for a recent review (see also [4] for a review of the Hubbard model and its generalisations).

A much more tractable model, which is the subject of this paper, is the so called
Falicov-Kimball model (FK), which corresponds to tgy) = 0, t&ly) = t,y with either U > 0
(repulsion) or U < 0 (attraction). In this model only one type of particle hops while the
other one can be considered classical. In other words we have a family of hamiltonians
depending on a configuration of classical particles {alTaﬂ =n%} with n¢ = 1 or 0. For a
given configuration {n¢'} we have to solve a one electron problem in an external poten{:ial,
but of course one allows the configuration of classical particles to vary, which makes the
analysis highly non trivial. One can hope that a good understanding of this simpler model
might lead to new insights for the Hubbard model.

The interpretations given to the FK model, and the motivations to study it, are
quite diverse. Roughly speaking they fall into four categories that we descibe in the four

paragraphs below.
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It was first considered by Hubbard [1] and Gutzwiller [2] as a mathematical simplifica-
tion of the Hubbard model (1.1), and thus it is sometimes refered to as ”simplified Hubbard
model”. Another very interesting and more recent interpretation of the FK model is related

to a Hubbard hamiltonian in which the hopping term of (1.1) is replaced by

Y. tmal,au (2.1)
z,y€No0'€T,]
which allows for hopping processes with spin flip. This model, introduced by Montorsi and
Rasetti [5] can be shown to be equivalent to the FK model (see [4] for a review). An exact
solution for this model was proposed in [5], but was shown later to be incorrect [6, 7].

Falicov and Kimball [8] introduced the model* to investigate metal-insulator transi-
tions in mixed valence compounds of rare earth and transition metal oxydes [9]. These
transitions are thought to have a purely electronic origin and the static particles are in-
terpreted as f— electrons, while the itinerant ones correspond to the d— electrons of the
conduction band. Later it was again considered to investigate ordering in mixed valence
systems and binary alloys [10-13].

The model was reinvented by Kennedy and Lieb [14,15] as a very primitive model of
matter to study crystalization and was called ”static Hubbard model”. In this interpre-
tation the classical particles are thought of as ions and the fermions as spinless electrons.
Relevant questions concern for example the formation of atoms, molecules, crystals.

Here we introduce a fourth point of view. One can view the FK model as a special
case of a more general class of models where the electrons interact with a classical field. If
this field is a discrete spin variable taking values +1 we recover the usual model. If it is
a continuous scalar variable representing the configuration of classical oscillators we have
the static Holstein model which is used to study electron-phonon interactions in molecular’
crystals. In this framework one can discuss the Peierls instability. When the classical
field is vectorial we can interpret the model as a static lattice Kondo model. The vector
field then models the spin of the impurities. If furthermore the amplitude of this vector

field is allowed to vary we get a model which is equivalent to the Hubbard model in the

* The original model of Falicov and Kimball in [8] has extra complications.
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Hartree-Fock approximation. Relevant questions then concern the ordering of the vector
field, i.e. ferromagnetic, antiferomagnetic order and continuous symmetry breaking.

Let us recall that one of the great achievements of classical statistical mechanics was
to show that a single two body potential is able to produce a variety of different phases
from the gazeous up to the crystaline as one increases the density. However this two body
potential has to be injected by hand in the theory and is usually chosen to be independent of
the density and temperature of the system. In reality the forces between atoms, molecules,
or magnetic impurities, have a more microscopic origin in quantum mechanics: they arise
from the subtle combination of the Coulomb potential and the Pauli principle. The two
body potential of classical statistical mechanics should really be considered as an effective
potential, depending on the density and temperature. A priori it is not even clear that
such a potential is a well defined notion. In the FK model one can adress the question of
defining and calculating this potential in some regimes of density and temperature.

In this paper we review rigorous results obtained in recent years. We have also included
some material which has not appeared in the literature, although ideas and techniques are
certainly not completely original (sect. 5 and 6).

Let us briefly mention aspects that are beyond the scope of this paper. Many results
which we shall not discuss were obtained using exact diagonalisation and quantum Monte
Carlo methods (see [4,16,17]). The exact solution of the FK model in the limit of high
dimension d — oo [18] has been found [19-22]. In analogy with spin lattice models a mean
field hamiltonian which becomes exact in the limit d = oo has been considered [23, 24].
Furthermore an argument has been proposed [13] suggesting that the phase diagram for
the two dimensional FK model should be qualitatively the same as for d = co. Several
authors have also considered mean field methods and the limit of high dimensionality (e.g.
[13], [25-29]). Other extensions which we do not discuss here are, the FK model with long
range hopping [30], the spin 1/2 FK model [31,32], and the FK model in the continuum
(33].

The first rigorous results were obtained by Kennedy and Lieb [14,15], and indepen-
dently, by Brandt and Schmidt [12], for systems on bipartite lattices at the symmetry point
(half-filled band). They proved that at low temperatures the ions tend to arrange them-
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selves on one sublattice, therefore forming a crystal. These results were then extended by
Lebowitz and Macris [34] to a domain of chemical potentials around the symmetry point.
It was pointed out in [14] that the Pauli principle is important to get a crystaline state
since this state cannot be obtained if one replaces fermions by ordinary bosons. However
we show that hard-core bosons can produce a crystaline state, so that an on site repulsion

in real space is sufficient.

Other rigorous results which will be discussed in the following sections concern the
one dimensional ground state phase diagram [13, 35-48], the question of segregation
(36,39,43,49], and general properties of the one-dimensional system [16,46,50-52]. The
two dimensional model is much more difficult because there is no analytical expression for
the total energy of periodic configurations (see [50,51] for one dimension). General prop-
erties of the phase diagram have been obtained on the square lattice [16,34,35,37,53-57],
and on the triangular lattice [55]. Furthermore in the case of two dimensional systems
an interesting question is related to the so-called "flux phase conjecture” and this was

investigated both for bipartite lattices and for the triangular one [55,58].

The paper is organised as follows. In section 2 we give a precise definition of the
model, the ground state energy, the effective potential, and dicuss symmetries. The zero
temperature phase diagram in one dimension is described in section 3. Section 4 concerns
the two and three dimensional cases. There we review some basic theorems of Kennedy
and Lieb which are non perturbative in the sense that the method of proof does not involve
perturbation theory and the results hold for all U. These concern only the half-filled band
however. We also give more detailled information for other fillings, and large U, and discuss
the flux phase problem. The low temperature phase diagram is discussed for densities close
to one-half. Section 5 concerns results on interacting systems. We discuss spin one-half
fermions (with Hubbard interaction) as well as hard-core bosons. We explain how to use
reflection positivity techniques to get information on the ground state of the half-filled
band for all U. For the case of hard-core bosons we also give results valid for other fillings,
but they are limited to large U. Section 6 deals with the static Holstein and lattice Kondo
models. We discuss the finite temperature behaviour of the Holstein model for densities

close to one-half, and the ground state of the static Kondo model at half filling.
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2. THE MODEL AND MAIN DEFINITIONS

The systems under investigation consist of identical quantum particles on a finite, but
arbitrary, d dimensional lattice A = {z}, with vertices z in R%, together with a family
B = {(z,y)} of bonds (z,y) C A describing the allowed hoppings of the particles on
the lattice. The number of vertices is |A|. We shall always assume that the lattice is
connected. Most of the time we shall be concerned with regular, periodic lattices, such as
a cubic lattice A C Z¢ with B the bonds formed by nearest neighbours < zy >, but some
statements hold more generally*.

To introduce the kinetic energy of the particles, we associate with the lattice a |A| X |A|

complex, hermitian, matrix T with elements t,, with z and y in A,

Loy = ty, = [teyle’®, Ozy = —0ys (2.1)

such that t,, = 0 if (z,y) ¢ B. When A € Z the matrix elements are non vanishing
only for nearest neighbour sites (unless specified otherwise) and are sometimes denoted by
tezy>.

In the framework of the tight binding approximation t;, is related to the matrix
element of the Laplacian between atomic orbitals localised around z and y, and is alter-
natively called overlap, transfer integral, hopping. We adopt the last terminology. If the
hoppings are real they can have any sign and if they are complex the phase usually models
the orbital coupling of the electrons to a magnetic field. One can think of the phase 8.,
as the integral of a vector potential [’ A.dl along the bond (z,y) of B.

Given a circuit C = (zy,...,2;), i.e. an ordered sequence of sites in A such that
(ziyzit1) € B for i = 1,2,...,1, 2141 = z;, we define the magnetic flux ®¢ through the
circuit as

de = Zﬁzwiﬂ, mod 27 (2.2)
=1

For a (two-dimensional) planar lattice, given a set of magnetic fluxes through all faces,

one can always find corresponding phases. These are uniquely determined up to a gauge

* ie. one can forget that the lattice is embedded in R? and view (A, B) as an abstract

graph.
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transformation, i.e. a unitary transformation with matrix elements U, = eit= 62y where ¢,
is a real function on A, which gives 6,y — 8, = 0.y +(¢: —¢y). This gauge transformation
leaves the spectrum of T unchanged. In higher dimensions given a set of magnetic fluxes
across all faces it is not always possible to find phases 6,, satisfying (2.2) (see [58] for more
details).

We will be particularly concerned with bipartite lattices. These are the union of two
disjoint sublattices, A = A U B, such that the edges of B never connect two sites of the
same sublattice. In particular the matrix elements of T are non zero only if z and y are
not on the same sublattice and the elements of T? connect only A to A or B to B. On such
lattices T' is unitarily equivalent to —T', the unitary transformation being €,6,y, €, = +1
or —1, according to z € A or B. Thus the spectrum of T is a symmetric set about the
origin (the set may contain zero).

With each site z in A is associated a random variable s, with values +1 or —1. If
sz = +1, one can think of z as being occupied by a classical particle (ion, impurity, spin,
localized f electron) and, if s, = —1 as = being empty. With each ion configuration
s = {s;} on A, we associate the diagonal matrix S with elements s;6,,. Note that .S is left
unchanged by the unitary transformation e;6,, as well as by any gauge transformation.

In the following N; = N;(s) denotes the number of ions in the configuration s, i.e.

¥ = i) = % S (50 4+ 1) (2.3)

TEA
The hamiltonian for one quantum particle in a specified ion configuration s (or external
potential) is

ha(s)=-T +US (2.4)

where the coupling constant U is a given real number. If U > 0 the potential is repulsive
and if U < 0 it is attractive. In (2.4) ha(s) is a |A| x |A| matrix acting on the one-
particle Hilbert space I?(A) of wavefunctions (¢.,z € A) with 37, [t:]* < oo. It has |A]

eigenvalues ¢;(s) < ey(s) < ... < ejp|(s) with the following useful properties.

Structure of the spectrum: Let maz|t;y| =t and |U| > zt, where z is the maximal coordi-

nation number of the lattice. Under these conditions, we have :
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a) ei(s) € [—|U| = 2t,—=|U| + 2t U[|U| — 2t,|U| + 2t] , 1+ = 1,...,|A|. Thus the spectrum
consists of two "bands”, one on the negative axis and one on the positive axis, and has a
gap of width at least 2(|U| — 2t).

b) For U > zt (resp. U < —zt) the number of negative eigenvalues is equal to |A| — N;
(resp N;).

Here we have used the word "band” for convenience although the spectrum is discrete
on a finite lattice. For periodic s on an infinitely large periodic lattice, this spectrum goes
over to a continuous one consisting of several bands. Lattices of particular interest are the
d-dimensional cubic ones which are bipartite and for which z = 2d, with or without periodic
boundary conditions for ;4. On such lattices if s is one of the chessboard configurations
(i.e. s; = €; or 3, = —€;) the spectrum consists of two continuous bands.

The associated second quantized hamiltonian for spinless fermions (conduction elec-
trons) is the Falicov-Kimball hamiltonian

Hj(s) = — x%;j\ teyalay +U IezAsx(aIax — —;—) (2.5)
where @} and a,, the creation and annihilation operators of a fermion at sites z and y,
satisfy the usual anticommutation relations. This is a 2/! x 214l matrix acting on the Fock
space of totally antisymmetric wave functions (EBE)AI I2(AN))_. Strictly speaking the second
quantization of (2.4) is (2.5) with ala, instead of (a{a, — 1), however it turns out that
the definition (2.5) is more convenient in the present setting, and amounts to redefine the
chemical potential of the ions. Let us remark that the potential energy in (2.5) is

1

2 Y (miem - 2 )abar — 3) (2.6)
TEA

which is the convenient form to exploit particle-hole symmetry. For a specified configura-
tion s (2.5) is the hamiltonian of a free Fermi gas in the external potential Us,. However
this is not true if we consider s to be a random variable, whose mean value will be such
as to minimize the free energy. This induces an effective interaction between the electrons
which makes the problem highly non trivial. Alternatively one can also consider that the
electrons induce an effective interaction between the classical spins. The nature of this

interaction and many of its properties will be elucidated.
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We will also consider models where the spinless fermions are replaced either by hard-
core bosons or by interacting spin one-half fermions. In the first case this amounts to
replace af, a, in (2.5) by bl, b, where the b’s satisfy anticommutation relations if they are
on the same site and commute if they are on different sites (see sect. 5). We remark that
this algebra introduces an interaction between the bosons, which is very different from
the Pauli principle. Indeed one can view this system as the limit of usual Bose particles
with an infinite on-site repulsion. For the interacting spin one-half fermions (one can also
take ”spin one-half bosons”, i.e. two independent species of hard-core bosons) a typical

hamiltonian will contain a Hubbard interaction

1
B Y e tU Y slelions— )
z,yEA,0=T1,] zEA U”T 1 (2.7)
; L
+U' Z(alTazT — 5)( Ilarl )
€A

However the results for the interacting cases are much more restricted and we will deal

with them in section 5. The rest of this section concerns mainly the hamiltonian (2.5).

2.1. Ground State Energy and Gap

Canonical ensemble
For the FK hamiltonian (2.5) the ground state energy of N electrons in the configu-
ration s is given by the sum of the lowest N eigenvalues

N

En(s) = Z ej(s) — % Z Sz (2.8)

=1 zEA
A general expression valid also for the interacting bosonic or electronic models is En(s) =

infspec(HY (s)) where HY (s) is the relevant hamiltonian (for example (2.7)) restricted to

the N particle sector. We define the ground state energy for N electrons and N; ions as
En N; = ming n,(s)=N; En(s) (2.9)
and the absolute ground state energy

Ey = miny sEn(s) (2.10)
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One of the main problems addressed in the next sections is to analyse the nature of
minimizers sg in (2.9) and (N, sg) in (2.10). For U < 0, the case N; = N is of particular
importance since it corresponds to a ”"neutral” situation in the electron/ion interpretation
[14]. On the other hand for U > 0 the case N; +N = |A| is important since it corresponds
to the half filled band in the purely electronic interpretation [8].

Another quantity of interest is the "charge gap” defined as

GNN; = it — - (2.11)

where uy = Enyi,n;, — En,n; and g = En n, — En—1,n, are respectively the energy
variations when we add and remove one electron without changing the number of ions.
G N,N; > € means that a finite energy is needed to create an excitation corresponding to an
infinitely separated electron-hole pair when there are N; ions. Therefore it is reasonable
to expect that the system is an insulator if there is a finite charge gap*. We make the
trivial remark that even in the non-interacting case Gy n; # en+1(So) — en(So), where sg
is the minimizer of En n,(s) in (2.9), because sy can be modified when we add or remove
a particle. Therefore the proof of the existence of a charge gap is not a one body problem
(even if s¢ is known) and this makes it non trivial.

In the rest of this paragraph we collect some useful formulas for (2.8) and (2.9).
The discussion is valid for any dimension and lattice A, unless explicitely mentionned.

Obviously we always have the lower bound

En(s) 2 ) ej(s) - % D s (2.12)

e; <0 €A

Moreover

S )= 5( T lestsll = 3 i)

e; <0 e; <0 ej <0

= ——% (tr|hA(s)| — tThA(S)> = ‘——;‘t’rlhA(SN -+ g‘ Z Sz

TEA

* We are not aware of any precise relationship between this notion of an insulator and

transport properties.



860 Gruber and Macris

and therefore [14,15]
En(s) > —%tr|h/\(s)| (2.13)

In (2.13) the absolute value of the hamiltonian means y/hp(s)2.
If maz|t;y| = t, and U < —zt, by property (b), (2.12) and (2.13) become equalities
for N = N;(s) (neutral situation). Therefore

1
En=ns)(s)=— -itrﬁz + U2 4+ U(TS + ST)

= -—Lgltr\/I +U-Y TS+ ST)+ U—2T?

(2.14)

We can expand the square root in (2.14) to obtain the U™! expansion of En=n,(s)(8)

[37]. Another more systematic way to obtain the same expansion is to use the representa-

tion (by property (b) and (2.8))

En=nNis) = —7 Z Sz ] 5 rlz — ZA(S)] (2.15)

where C is a contour in the complex plane enclosing all the negative eigenvalues, and to

iterate the resolvent identity

S S P
z—ha(s) z—US 2z-US" z— ha(s)

(2.16)

which yields

En=ns)(s) = se+ ) (=1) / ;) (lz —1UST] kz jUS)

T€EA k>0

= —1A|+2( l)k,/ %TT(L—IUST]:_ZUS)

k>2

(2.17)

The contour integral in (2.17) equals

k

dz z 1
188 b g .
Z ( ) T1Z2vToL3" k 1]‘:27” (Z_U‘Sm)zjl____'[QZ—U'SIj

T1,..4,.Tk
1 !

(k—2)!  k+1-2p
(p — 1)!(k - p)! 2

x (—=1)P~1
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where 3" means that (z;, ..., Tk ) contains at least one empty site and one occupied site
and p is the number of z; with s;; = —1in (2, ..., 2k, z1). Introducing m, the number of
zj with s;; = —1in (21,...,2x) (i.e. the number of empty sites in zy,...,zx) the formula

(2.17) can be written as

1 1 oo
EN=Ni(5)(S) =2U[Z|A| - Z (2U)k Z (_1) teizoleszg-etapry

k22 T1,.+,Lk (2.19)
(k —2)! 1

“m_Dk—m—-11k

and this expansion is convergent for U < —zt. We should also remark that the constraint

on the sum over X = (z1,2,...,z) and the factor (—1)™ can be taken care of with the

function

1 _
k=1 (2'“ P-1- > Sy) Sx,  Sy=][5 (2.20)

0£Y CX,|Y|even yeY

which leads to an explicit formula for the coefficients K x(U) in

EN:N.‘(S)(S) = Z I{X(U)SX (221)
XCA

On a bipartite lattice the first sum in (2.19) is only over even values of k and thus the energy
of the neutral ground state is invariant under a particle-hole transformation. The expansion
(2.19) has been used by Lemberger [36] to study the ground state configuration in one
dimension (see sect. 3). A similar expression can be given for U > zt with En—|x|—ni(s)(S)
replacing En—n;s)(s).

Remark: one can show the convergence of the sum over k only for contours C enclosing all

negative eigenvalues. In other words this method is not applicable in the non neutral (or

non half-filled) situation.

Grand canonical ensemble

In the grand canonical ensemble we fix the chemical potentials (i, ;) of the electrons

and ions and minimize over all possible ion configurations s the function (from (2.5))

Ex(s,pep) = Y. (es8) — ) = 5 3 52 = pili(s) (2.22)

ej(s)<pe z€A
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By the same argument as in (2.13)
1
En(s, pe, ui) = —5trlha(s) = pe| — pilVi(s) — %IAI (2.23)

Again one can derive the U~! expansions in a similar way. Indeed if U < —zt and if the

chemical potential p. is in the gap (recall properties (a), (b)) the number of electrons is

equal to N; so that

En(s, pte, i) = En=ny(s)(s) — (i + pe)Ni(s) (2.24)

Thus the U™! expansions in the canonical and grand canonical settings are equivalent. For
U > zt, and p. in the gap, one has to replace the neutrality conditions N = N;(s) by the
half-filling condition N = |A| — N;(s) and (2.24) becomes

EA(s, pes i) = En=|a|=Ni(s)(8) = (1i — pe)Ni(s) — pre|A| (2.25)

For bipartite lattices the origin (0,0) is an important point in the (u., ;) plane. There
(2.23) becomes Ej(s,0,0) = —3tr|ha(s)| which is an even function of s. In other words
for pe = pi = 0 the energy is invariant under the particle-hole transformation for the ions
(s = —s). Indeed under the unitary transformation €;6;4, ha(s) = —ha(—s). As we will
see this property persists at finite temperatures.

The reader may wonder why we do not perform small U expansions. The reason is
that an expansion of [T?+U?+U(TS+ST)]'/? involves [T?]~'/? and since in general T has
zero eigenvalues in the thermodynamic limit, the radius of convergence of the expansion
goes to zero as the lattice size goes to infinity. For the moment there does not exist to our

knowledge any analytical approach specific to small U, except for the one used in the one

dimensional case ([46], sect. 3).

2.2. Finite Temperatures and Effective Interactions

The partition function at inverse temperature § and chemical potential ., y; is

ZA(B pres i) = »_ Trexp (—ﬁ(HA(S) — peNe — Mz‘Ne'(S))> (2.26)
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The sum is over all possible 2/4l ions configurations and the trace is over the electronic

Fock space.

Effective interaction between ions

The effective interaction Fj between ions, induced by the electrons, is defined by

e AFA(SBukesti) = Trexp ("‘ﬁ(HA(S) — e N, — M]\Q(g))) [2.27)

With this definition (2.26) becomes

ZA(B ey i) = Y e FFneFnerntd) (2.28)

S
which is the partition function of a classical spin system with a complicated tempera-
ture dependent interaction. It should be remarked that Fj is invariant under any gauge

transformation. We can always write it as

Fao(s,Brter i) = Y Tx(B, per i) [ 5 (2:29)

XCA reX
and the problem is to obtain some information over the potentials Jx. Then one may
apply results and techniques of classical statistical mechanics. This approach is general
and covers also the models with hard-core bosons and electron-electron interactions, but
of course the practical computation of Jx is much more difficult.
For the FK hamiltonian (2.5), since the electrons do not interact (except for the Fermi
statistics) for a given s we can perform exactly the trace in (2.27) and we get

1

FA(SoﬁvﬂeaHi) = ,6

trlog(1 4 e~ Plhals)=re)y _ %(,u,- +U) Z Sg — %IAI (2.30)
TEA

which can be rewritten as

1 8 1 1 A
N L p _ — _ 2 DA = =llog2
Fa(s, B, pey 13) ﬁtrtogcosh[z(h,\@ #e)] Q#ZZEEAjsI 3 (e + )IA] = “Ztlog
(2.31)

This formula is the generalisation of (2.23) to finite temperatures. Indeed cosh is an even

function so we can replace ha(s) — p. by

[ha(8) = pel = V/(ha(s) — pie)? (2.32)
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This enables us to take the low temperature limit and to verify that limg_ oo Fa(S, B, fte, i)
is equal to (2.23).

2.3. Symmetries

The hamiltonians (2.5) and (2.7) have symmetry properties which are related to the

particle-hole transformations for ions and for electrons. Writing explicitely the U depen-

dence we have

Hn(s,U) = Ha(=s,=U)  Ni(s) = |A| = Ni(—s) (2.33)
and thus
En(s,U) = En(—s,~U) (2.34)
En(s, pie, i, U) = E(—S8, pe, —pi, —U) — pil Al (2.35)
Fr(s, B, thes iy U) = Fa(—s, B, pre, —pi, —=U) — pi| Al (2.36)

which shows that we can restrict the discussion to U > 0 (or U < 0).

Discrete Symmetries on a Bipartite Lattice

We discuss the spin flip, electron-hole, and time reversal, transformations on bipartite
lattices A = AU B. The spin flip (or particle-hole transformation for ions) F' is defined by
FSF = —8. The electron-hole transformation W is unitary, with W' = W, and

WalW = epa,,  Wa, W = e,al (2.37)

x

with €, = 1 for bosons, and ¢, = 1, z € A, ¢, = —1, ¢ € B for fermions. The time
reversal transformation is an antilinear operator J. For any matrix A, JAJ = A* where
A* is obtained by replacing the elements of A by their complex conjugate. So J? is the
identity and for any operator A, Tr(JAJ) = (TrA)*. In particular since the creation and

annihilation operators have real matrix representations, for any complex number «
J(aal)J = a*al, J(aaz)J = a*a, (2.38)
We then have FH(s)F = Hpy(—s), WHp(s)W = Hp(—s)*, JHp(s)J = Hp(s)* and

JW[HA(s) = pre N — piNi(s)]WJ = Ha(—s) + pe N + pilVi(—s) — (pe + pi)|A]  (2.39)
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which implies

En(s) = Ejzl-n(-s) (2.40)
.EA(S,,(Le,,LLi) = EA(_Sa —He, —,uz) - (,ue <o }'-Lz)IAI (241)
Fa(s, By thes i) = FA(—5, 8, —pre, —pi) — (e + pi)|Al (2.42)

These relations show that the origin of the chemical potential plane, (g, #:) = (0,0) is the

symmetry point of the system
FA(SMBaOaO) = FA(—S)ﬁaOaO) (243)

Ea(s,0,0) = Ex(—s,0,0) (2.44)

i.e. the effective interaction and the (grand canonical) energy, are invariant under the
particle hole transformation for ions.

Combining (2.35-2.36) and (2.41-2.42) we obtain
FA(S’ 167 Hey Hiy U) = FA(S') )87 —He, [, _U) = He |A| (245)

E/\(Saﬁa ey iy U) = EA(S767 — e, i, —U) - #B‘A| (246)

1.e. the origin of the chemical potential plane is also the symmetry point with respect to
the transformation U — —U.

Finaly we remark that
FIW[HA(S) — peN — piNi(s)|WIF = Hp(s) + peN + piNi(s) — (e + pi)|A] - (2.47)

and thus at the symmetry point p. = #; = 0 on a bipartite lattice the hamiltonian Hx(s)
(2.5) or (2.7) is invariant under F'JW.

Continuous symmetries
The hamiltonians (2.5), (2.7) commute with the total electron number N =3 ., ala, or

N =3 rero=t] al_azs. They are thus invariant under the U(1) transformation

G = B gy O (2.48)
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One can show that the U(1) symmetry is not broken in one and two dimensions, using a
method devised by McBryan and Spencer [59] for classical systems, and adapted to the
quantum case [60], [61]. We denote by < — > the average in the thermodynamic limit for
fixed (8, pte, pi)- The following results have been proved [61] for A C Z¢ and t,, # 0 even

if  and y are not nearest neighbours:

a) d = 1: if |t;,| decays faster than |z — y|™®, @ > 2, then < al,a,, > tends to zero
faster than |z — y|~(®~1) and thus there is no off-diagonal long range order. Also <
alTallaylayT > tends to zero like |z — y|~2(®~1) and there is no superconducting long
range order. Moreover, if t;, decays exponentially then these correlations also do. These

results remain valid in the zero temperature limit.

b) d =2: if & > 4, then both type of correlations decay algebraically (even if the hopping
decays exponentially) with a power depending on the temperature. The power tends to

zero as 37!, for B — oo, and thus we do not have information for the ground state.

These results, and the same proofs, extend also to hard-core bosonic systems.
The hamiltonian (2.7) also conserves the electronic spin. The same methods, and also
older ones [62], [63], give similar results concerning the absence of magnetic long range

order. We refer the reader to the literature.

2.4. Observables
The average value of an observable O({al,a;,s:}) is

al.az, s 3 -_'L & : .
< O({az,az,8:}) > (B, pe, pi) ZAXS:T O({az,as,5:}) (2.49)

x exp(—B(Ha(s) — peNe — pilNi(s))

If the observable does not depend on al, a, we can again integrate the electrons and the

average reduces to

< O(52) >a (By s i) = Zl—A S Tr0(s,) exp(—BFa(s, By ptes i) (2.50)

When boundary conditions are not specified, like in (2.50), (2.51), it is understood that

we have free boundary conditions. On a bipartite lattice, the averages at the symmetry
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point (ge = 0,u; = 0) will be denoted by < — >, (8). In particular for free boundary

conditions, on any finite bipartite lattice

<ala, >5 (B) = %, all zeA (2.51)
<ala, > (6) =0, r#y if =xzyeA o z,y€B (2.52)
<sp;>A(8)=0, all  z€A (2.53)

Proof of (2.51) - (2.58) : 1t uses the electron-hole symmetry and the time reversal operator,
discussed in section 2.3. Let ¥ = JFW be the combination of the electron-hole W,
spin flip F, and time reversal J transformations. We have Y? = I (the identity) and
Tr(YOY) = (TrO)* because J is antilinear. On a bipartite lattice H(s) is invariant
under Y, thus

Tralay, ePHAG) = (TrYaleayYZe_ﬁH”‘(s) Y)

" 54
= €€y (Trazaze_ﬁH"(s)> (254)

= e,6,Tr(b;y — ala,)e ™ PHs®
In the last equality the cyclicity of the trace and the anticommutation relation for fermions
were used. Finaly (2.54) is equivalent to (2.51), (2.52). For (2.53) we use that < s, >4 (5)

is real and Ys,Y = —s;.

Remarks :
a) In the case of hard-core bosons a similar discussion yields (2.51) and (2.53) (but not
(2.52)).
b) These formulas are valid for any finite bipartite lattice and thus there is no finite size
effect on these correlation functions at the symmetry point. Moreover the amplitude of
the hopping can be arbitrary and one can replace the coupling constant U of the on site
interaction by local ones U,. They are valid for a more general class of hamiltonians than
(2.5) or (2.7). However they are not true if we break the symmetry by an external field or
special boundary conditions. We refer to [64] for a detailled discussion.

We mention without proof the following formula [65] which holds for the hamiltonian

(2.5) on a bipartite lattice and for any boundary condition (so that (2.51)-(2.53) are not
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necessarily satisfied),

<al L >A (B) == —g(B,U) < 5. >5°(8) (2.55)

with

g(B,U) =t tanh[E \/WD (2.56)

1
T‘ —_—
( VI? +U? 2
This formula shows in particular that the critical behaviour of the average electronic density

1s the same than that of the spins.

3. ONE DIMENSION : GROUND STATES

A large number of investigations [13,35-52] have been devoted to the study of the
ground states of the one dimensional Falicov-Kimball model with nearest neighbour inter-
actions (t;y =t if |z — y| = 1 and zero otherwise), using either the canonical or the grand
canonical formalism. To be specific we restrict the discussion to the attractive case U < 0

and define the electron and ion densities as p, = I_A_I and p; = TA_LI

Following [36,39] we introduce the definition:
for p. = 2 with p relatively prime to ¢ and p; = P—- (p' not necessarily prime relative to g),

the ~ most homogeneous configuration of ions” is the periodic configuration with period ¢

where the positions {k;} of the ions in the cell [0,1,...,q — 1] are given by the solutions of

phy =14 mod g, 7=0,1,..,p =1 (3.1)

3.1 Canonical Ensemble

On the basis of numerical evidence, Freericks and Falicov [39] formulated the following

two conjectures:

1) For neutral systems (p. = p;) the ground state is realised by the most homogeneous

configuration of ions (3.1).

2) For non-neutral systems (pe # pi), there exist an increasing function 0 < b(|U|) < 1
with b(0) = 0, b(c0) = 1, such that for p. < b(|U|)p; < p; the ground state is realised by

the ”segregated configuration”, where all ions clump together. This ground state can be
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understood as a mixture of the vacuum (p. = p; = 0) and the full configuration (p; = 1,
pe # 0). Similarly for p. > 1 — b(|U|)p; > 1 — pi, the ground state is the segregated
configuration, mixture of (p. = p; = 1) and the empty configuration (p; = 0, p. # 0).

Then, using formal second order Rayleigh-Schrédinger perturbation theory they ar-

rived at the following third conjecture [39]:

3) In the limit U — 0 and for (p. = %, pi = q’ ), with p relatively prime to ¢, the ground

state is realised by the most homogeneous configuration (3.1).

For large |U| the first two conjectures were proven by Lemberger [36]. In the neutral
case, for any rational density p. = p; = g—, there exists a function U**™(q) such that for
|U| > Ut°™(q) the ground state is the most homogeneous configuration of ions (3.1). His
estimates give U"*™(q) ~ a? with some numerical constant a. However the proof does not
give any indication about the optimal value of U°™, in particular whether it might be
independent of ¢. On the other hand, for the special value p, = p; = 1/2 it is known that
Uhem = () [14]. Thus following [39] it was conjectured that U”°™ = 0 for all densities, but
as we shall see this cannot be true for densities close to zero or one.

A qualitative explanation of this property was given in [52]. It was shown that for
large U, and to leading order in U~!, the energy of the neutral system is given by a two
body potential of the form 2(d + 1) exp(—A(2d + 1)), where d is the distance between two
ions, and A = |In 2[(U? +4)!/2 — U]|. In other words, for large U, an equal number of
electrons and ions will form neutral atoms which repel each other with an effective two
body potential, which is convex and decreasing. Using the result of Hubbard [66], it then
follows that the most homogeneous configuration yields indeed the minimum energy. With
this analysis it is again not possible to decide whether U*°™ is independent of q.

For the non neutral case p. # p;, Lemberger [36] was able to prove the second conjec-
ture for large U: if U > U2*9(pe/p:) then the ground state is the segregated configuration.
(See also [41,43,49]).

To investigate the validity of the conjecture in the small U limit a systematic numerical
analysis was initiated in [42] (see also [45] where canonical phase diagrams are obtained by

translating results from the grand canonical ensemble). For a large number of periodic and
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aperiodic configurations the energy was obtained by means of exact numerical calculations
and compared to find the configuration with minimum energy.

Looking at finite (512 sites) as well as infinite systems, it was established that the
first conjecture could not be correct for small |U|: for neutral systems with p. = p; =
p = p/q < 1/4 there exist periodic configurations, with period larger than ¢, and energy
smaller than the energy of the most homogeneous configurations. Furthermore, it was
observed that there exists a function U,.(p) which is, decreasing from % to 0 for p € [0, 1],
vanishing for p € [;i—, %], increasing from 0 to ﬁ for p € [%, 1], with the following critical
property. For |U| > U.(p) the ground state is the most homogeneous configuration, while
for |U| < U.(p) the ground state is a mixture of some periodic configuration (3.1) with
the empty configuration (p; = 0,p. # 0) if p; < 1/4, or with the full configuration
(pi = 1,pe # 0) if p; > 3/4. In other words there is phase separation. To see what
kind of periodic configurations appear for |U| < U.(p) all mixtures consisting of the empty
configuration with some periodic configuration of period ¢ < 10 were considered for p =
1/5,1/6,1/7,1/10. In this analysis the only periodic configuration which appeared were
made of equally spaced p-molecules (i.e. p consecutive sites occupied by ions followed by
g — p empty sites), with one electron per molecule.

These results were recently confirmed by an analytical calculation valid for U — 0 [46].
The Rayleigh-Schrodinger perturbation theory used in [39] contains, already at second
order small denominators which vanish for some values of the density, and thus is not
reliable. The correct approach is to use nearly degenerate perturbation theory (as in band
theory [67]). Then the ground state energy of a periodic configuration is of the form

1 [W(2mpe,s)|*
4rt  sin27p,

E(pe,s) = —% sin 27 pe — U pepi + U +0U?)  (32)

where |W|? is the structure factor of the configuration s evaluated at the wave vector 2mp,.
This formula is presumably rigorously true if Uq << 1 although in [46] it is not proven
that the remainder is indeed O(U?) for a given ¢ and uniformly with respect to s. The
U?1nU term (which is reminiscent of the theory of the Peierls instability [68]) is much
bigger than O(U?) and therefore the properties of the ground state are found by analysing

the structure factor.
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Let us describe the result obtained in [46]. Let p. ~ 0,3710 be the solution of 27 p, =
tanmp.. Given the integer ¢, let p/¢q be the largest rational in the set R, = {p'/q;p' =
0,1,...,q} which is smaller than p., and p/q the smallest rational in R, larger than (1— p.).

We then introduce

P 1;3 < pe if p satisfies (3.5) below (3.3)
q @—:ﬁ > pe otherwise '
p' % >1-—pc if p satisfies (3.6) below 44
? B (ﬁ—;l—)- <1~ pc otherwise (3:4)
with i
sint? > - - sinm? 1 (3.5)
q p+1 q
_ o172 51
sinc2 > (L2 _ ) sinnZ (3.6)
q g—p+1 q
Property:

Let p. = p/q with p relatively prime to ¢, and p', p" be given by (3.3), (3.4).

a) If p; = pi/q with p; € {p',p' + 1,...,p"} then for |U] sufficiently small the ground state
is the most homogeneous configuration (3.1). In particular this is the case for p; = p;/q
with p; € [pe, 1 — pcl, and thus also for neutral systems with pe = p; € [pe, 1 — pc)-

b) For all other rational ion densities p;, and |U| sufficiently small, the ground state is a

mixture of two most homogeneous configurations (3.1) with ion densities:

0 and p'/q if p; €10, %],

"

pi/q and (pi +1)/q if pi €], 5[,

p"/q and 1 if p; E]}—’;—,,l[.

In particular for p; < 1/4 and p; > 3/4 the ground state is always a mixture (in the limit
|U| — 0) and thus for neutral systems with density smaller than 1/4 or greater than 3/4,
the ground state is also a mixture.

This property shows that the periodicity of the pure phase is given by the denominator
of the electron density: it is the smallest period necessary to open a gap at the Fermi level.

It also follows from (3.2) that to leading order in U the electron density is uniform even

when the state is a mixture.
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For p; < p'/q and p; > p"/q the phase separated state is a mixture of a metallic
state (empty or full lattice) and an insulating state (period ¢ phase). If p. = p; = p and
p € lpe, 1= pel, or p=p'/q, or p=p"/q, the ground state is the same as the one found by
Lemberger for large |U|. It is therefore reasonable to expect that for these densities the
ground state does not have any phase transition when |U]| is increased from 0 to oo. This
seems to be confirmed for intermediate values of U by the numerical simulations. Moreover

there will be a phase transition as |U| varies for p € [0, p.] or [1 — p¢,1] p # B/q, B/q

3.2 Grand Canonical Ensemble

To extend these investigations to arbitrary values of U and densities, and to avoid the
difficulties associated with mixtures, it is more convenient to work in the grand canonical
formalism (sect. 2.1). This was done in [40,42] by means of exact numerical calculations.

Phase diagrams™® in the chemical potential plane are represented in figure 1 for the case

|U| > 2t and in figure 2 for |U| < 2¢.

ST / a
N/,

D \/A
t-'BUI 2t 2HUL

-2¢1U1

uc He

Figure la: Phase diagram of the one dimensional FK model,

for —2t < U < 0, in the (g, #;) plane.

* These phase diagrams have not been established completely rigorously.
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He

Figure 1b: A part of the domain D in fig.1a
for —2t < U < 0 and g < 0( here U = —0.3t).

Figure 2a: Phase diagram of the one dimensional FK model,
for U < —2t, in the (p., #i) plane.
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Figure 2b: A part of the domain D in fig 2a for U < —2t.
The origin of the (u., #;) plane is at the center.

One observes the following structure (fig. la and 2a). The chemical potential plane
(Ke, pti) is decomposed into three connected parts D_, Dy, and D. In the domain D4
the ground state is the full configuration (p; = 1) with p. increasing from 0 to 1 as
e increases from —2t — |U| to 2t — |U|; similarly in D_ the ground state is the empty
configuration (p; = 0) with p, increasing from 0 to 1 as p. increases from —2t + |U| to
2t + |U|. Furthermore there exists uf = pi(U) > |2t — |{U||, such that D appears only
in the strip [—p}, u7]. Outside this strip, the boundary between Dy and D_ is either an
horizontal line (p; = |U| if ge < =2t = |U|, i.e. pe =0, and p; = —|U| if pe > 2t + |U], i.e.
pe = 1), or consists of curves ending at +u%. For any (ue, ¢;) on these curves, the ground

state is a mixture of two "pure states”:
(pi =1,pe = p&(pe)) and (pi = 0,pe = 0) if pe < —pe,

(pi =1,pe =1) (pi =0, pe = pg (pe)) if pre < —puz.

Thus the ground state is the segregated configuration (sect. 3.1) with

pe = api <b(|Ul)pi  any  p; €[0,1] i pe < —pg (8.7)
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and
pe=1—ap; >1—b(|U|)pi any  p; €[0,1] if pe > —pl (3.8)

where o increases from 0 (for g, = —2t —|U|) to a maximum value b(|U|) < 1 (for g = pl)
and similarly for g, > 0. This is precisely the second conjecture discussed in section 3.1,
which thus seems to be correct for all U. A formula for p*(U) and thus b(|U|) was derived
in [42]; it relies on a reasonable argument, but it is not a proof (see also [49] for upper and
lower bounds).

Inside the strip [—pul, uk] the domain D separates D from D_. Again all electron

densities appear in D, and the ion density satisfies
b(|U|)pi < pe < 1 —b(U)p; (3.9)

If |U| > 2t, then for any (g., i) inside D the ground state is neutral (p. = p;) and
consists of neutral atoms homogeneously distributed. In this case p, = p; = cte along
the lines p. + p; = cte in D (fig. 2b). The linear boundary between D_ and D (for
pe € [pk,—2t + |U]]) describes the limiting case of neutral systems with p. = p; = 0.
On the other hand the curved boundary of D_ and D describes mixtures of the empty
configuration (p; = 0, p. € [0,1 — b(U)] with some periodic neutral configuration given by
(3.1).

For |U| < 2t, the domain D presents a very rich and interesting structure (fig. 1b).
One observes a partition of D into domains D,_ in which the electron density has a definite
rational value p. = p/q. These domains form curved stripes going across D from the
boundary with D_ to the boundary with Dy. Each domain D, is further partitioned by
horizontal lines into subdomains Dy,_ .y, with p; = pi/q, pi € {p',p' +1,...,p"}, in which
the ground state is given by (3.1). The horizontal boundary between p;/q and pit+1/g
describes mixtures of these two periodic configurations and similarly for the boundary
between D_ and D(,/4.0/q) and that between D(p/q p/q) and Dy. This is the property
established in the limit U — 0 (sect. 3.1). Restricting the rest of the discussion to p. <0
l.e. pe < 1/2 (since the case p, > 0 is obtained by a particle-hole transformation), one also

observes that D contains large connected domains Dy, n = 1,...,maz(v) corresponding
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to the most homogeneous configuration of n — molecules consisting of n consecutive sites
occupied by an ion with one electron per n — molecule (p; = np.). In particular because
of (3.9) nmae(U) < 1/b(U). In each domain D, the electron density varies continuously
between p™"(U) and p™2*(U). The atomic domain D; (p. = p;) always contains the
symmetry point (0,0) and, as we have seen, pT™(U) > 0 for U < t/+/3. On the other
hand p7'*(U) < 1 for n > 2. Finally it was checked that for any p inside a domain
Dy,, p:), the Fermi level . lies in a gap of the corresponding spectrum and the system is
an insulator. Very recent computations [] confirm these results except for the fact that for
some values of |U|, new structures might appear between D, and D, as well as between

D_ and D. Further computations are however necessary to draw new conclusions.

To conclude this section let us mention two types of analytical results (also valid in

higher dimensions) which have been obtained in the grand canonical ensemble:

1) For any U, using Tchebycheff-Markov inequalities [12,35], it is possible to find domains
Y CDy,D_CD_, D!, CD (D contains the origin) where one can rigorously prove

that the ground states are respectively the full, empty, and chessboard configurations

[37,38].

2) For very large |U| and p. in the gap [2¢t — |U|, —2¢ + |U]], so that p. = p; = p, using the
perturbation expansion (2.18) it is possible to find domains where one can prove that the
ground states are the most homogeneous configurations with densities 0, 1/5, 1/4, 1/3,
2/5,1/2, 3/5, 2/3, 3/4, 4/5, 1. This leads to the conjecture that the phase diagram (fig.
2b) has a devil staircase structure as first pointed out in [44]. Such a structure has been
found in the classical Frenkel-Kontorova model [82] and the Ising model with long range

interaction [83].

4. HIGHER DIMENSIONS

In two or three dimensions much less is known about the phase diagrams. Very re-
cently the FK model on the square lattice, with nearest neighbour hopping t<,y> =t and
no magnetic field, was investigated in the grand canonical formalism, by numerical diago-

nalisation of the hamiltonian [54]. Although the phase diagrams are more complex, they
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present surprising similarities with the one dimensional case: general structure, segrega-
tion for p. # p;, only neutral homogeneous configurations for large |U|, molecule formation
for small U, ground state configuration of ions similar to (3.1), devil staircase structure,
Farey’s sequence. A new feature which appears in two dimensions is the fact that for some
densities p = p, = p; the configuration of ions in the ground state changes as U is var-
ied. A similar property will be discussed below where we shall see that for some densities
p = pe = pi the configuration of ions changes with the magnetic field (at fixed U).

The ground states are rigorously known in two dimensions for a few simple rational
values of the density and in all dimensions only for the ionic densities p; equal to 0, 1/2,
1. For finite temperatures one can prove the occurence of long range order of chessboard
type in a neighborhood of the symmetry point. Long range order corresponding to other

periodicities probably exists but has not yet been established rigorously.

4.1. Ground States : Canonical Ensemble

The problem is to find the minima of En(s) given by (2.8), for the FK model.

The half filled band and neutral case for density p. = p; =1/2

The following theorem, due to Kennedy and Lieb [14], is the first rigorous result on
the subject and holds on any bipartite lattice in any dimension and any fixed flux. (In fact
one can view the lattice as an abstract graph, for that theorem.) We give a generalisation
to interacting spin one-half electrons and hard-core bosons in section 5 for special values

of the flux using a different proof.

Theorem 4.1.

For any finite bipartite lattice A= AU B :

(i) Let U > 0. Under the condition N + N; > |A|, the minimum of En(s) over N and s is
attained either for N = |A|, N; = |B|, s, = =1,z € A, s, = +1, z € B, and for N = |B|,
N;=|A|, s, =41,z € A, s, =—1, 2 € B. So we have at least two degenerate minima.
(ii) Let U < 0. Under the condition N + N; < 2|A| (resp N + N; < 2|B|) the minimum is
attained at N = N; = |A|, s, =+1,2 € A, s, = -1,z € B (resp N = N, = |B|, s, = +1,

r €D, s, =—-1,z € A). If |A] =|B| we have at least two degenerate minima.
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(iii) In each of the above cases these are the only minima (here it is important that A is

connected as we assumed in the introduction).

In particular for A C Z¢ the minimizing configuration is a chessboard. If the lattice
satisfies |A| = |B|, this theorem settles the minimization over s under the constraint
N = |A| = |B|, which corresponds to an electron and ion density equal to one-half.

Theorem 4.2 establishes the existence of a charge gap, under the additional condition
that A is fully connected [14]. This means that for every z,y € A there exist a path
connecting z and y such that on all bonds (a,b) of the path, |tss| > é > 0 for some fixed

number §.

Theorem 4.2.

Assume A bipartite and fully connected. There exist ¢ > 0 depending only on U,§, maz|t,,|
and not on |A| such that

(i) U > 0. There is a charge gap for N = |A|, N; = |B| and vice versa, i.e. Gy n; > € > 0.
(ii)) U < 0. There is a charge gap for N = N; = |A|and N = N; = |B|,i.e. Gyn;, > € > 0.

One can also solve the question of the minimization with respect to the flux in certain

cases. The theorem 4.3 has been proven recently in a more general context, namely that

of the Hubbard model (1.1) [69] (see also [70]).

Theorem 4.3.

Take a lattice A C Z¢ with periodic boundary conditions in one coordinate direction, say
the horizontal one. Assume that |t(1g,)|, o =1,], is invariant under reflections across all
planes that are perpendicular to the horizontal direction cutting the cylinder in two equal
halves. Then the minimum of the ground state energy over N3, N| and the flux is attained

for Ny =N = j%[ and ® = 7 through all square two dimensional faces.

For the Falicov-Kimball model one applies the theorem with tgy) = 0. One can gener-
alise to other lattices by letting |t;,| — 0, on some of the bonds, in a way which respects

the assumption. Then the optimal flux is 0 through each face with 4k + 2 sites and = for
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each face with 4k sites. For example for an hexagonal lattice in two dimensions ¢ = 0 on
each hexagon, for an octagonal one ® = 7. For a one dimensional ring & = Z(|A| — 2),
mod 27. Also on a cubic three dimensional lattice @ = 7 on all square two dimensional
faces. |

The significance of these results is that fermions and bosons behave very differently
when they are subjected to a magnetic field. For Bose systems there is a general result,
the diamagnetic inequality, which states that a magnetic field always raises the ground
state energy (see for example [71]). For fermions there is not such a general principle and
in fact the Falicov-Kimball and Hubbard models on a cubic lattice are examples where the

contrary happens, i.e. maximal flux ® = 7 is optimal at half filling. A continuous analog

of this phenomenon is not known.

Densities p; = 1/5,1/4, 1/3 (and 4/5, 3/4. 2/3) in two dimensions
In the rest of this section we consider a square two dimensional lattice with all t<zy> =

t real, and the constraint

N,=N i U<0Q, (4.1)

and

Ni=|Al-N if U>0, (4.2)

l.e. we are in a neutral situation in the electron/ion point of view, and in the half filled
band from the purely electronic point of view. The problem is to minimize En(s) under

the constraint (4.1) or (4.2). The following is due to Kennedy [56]

Theorem 4.4
For t<;y> = t real, |U| sufficiently large, and p; = 1/5,1/4,1/3 (and 4/5,3/4,2/3) the
minimum of En(s) under the constraint (4.1)-(4.2) is attained for the three periodic con-
figurations &y, Sz, Sz of figure 3.

In the paragraph 4.2 we indicate how this theorem can be partly extended to non zero
flux (i.e. t;y complex).

For p. = p; = 1/2, we know that the chessboard configuration occurs for all U. So a

natural question is whether or not the configurations of figure 3 are ground states for all
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U. The numerical results obtained in one and two dimensions [42,54] point to a negative

answer for small (or large) densities.
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Figure 3: Ground state configurations on the square lattice,
for p; = 1/5,1/4,1/3. lons are represented by black dots.
For the complementary densities 4/5,3/4,2/3 one exchanges
black and white dots.

For other rational values of the density Kennedy [56] obtained the following. Let p;
be some rational density and suppose there exists Uy(p;) and a configuration s(p;) such
that s(p;) is a ground state for all |U| > Up(p;). Under some additional mild assumption
on s(p;) when p; € [1/3,1/2] the ground states s(p;) consist of parallel line with slope 1
such that s, is constant along those lines moreover on every horizontal line each pair of
consecutive nuclei is separated by one or two empty sites; when p; € [1/4,1/3] then the
ground state s{p;) consist of parallel lines with slope 2, such that s, is constant along
those lines. The numerical results of [54] indicate that this pattern is obeyed in the range
pi € [1/5,4/5], but is no longer true outside this interval.

The starting point to prove the above results is the 1/U expansion (see sect. 1). For
the hamiltonian Hyync(s) obtained by truncating the expansion at order U2 one can find
the ground states of figure 3. To this end one rewrites Hirunc(s) as a sum over blocks B

(e.g. : three by three blocks) Hirunc(s) = > g Hp(s). Suppose that we find s
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which minimizes Hp(s) for all blocks simultaneously. Then obviously this s is a ground
state of Hirunc(s). Usually it is not possible to find such an s. In this case one tries
to find another decomposition of Hiyync(s). This can be done by replacing Hpg(s) by
Hp(s)+ Kp(s) with ) 5 Kg(s) = 0. It is even enough to require } | 5 Kp(s) proportional
to Y, s; since we work at fixed ion number. This kind of idea was first used in [37]
and we encounter it again in paragraph 4.2. Once the ground states of the truncated
hamiltonian are known one has to show that the higher order terms do not destroy them.

This necessitates the control of their magnitude and their range.

4.2. Ground States : Grand Canonical Ensemble

In this paragraph we consider the general problem of minimizing (2.22) for each
(e, pti). At the symmetry point (ue,p:) = (0,0) the minimization is achieved by the-
orem 4.5 (analogous to 4.1) and yields the chessboard configurations. In fact it is also
valid for the effective interaction Fj (s, 3,0,0). In section 5 we generalise this theorem to

some interacting systems for special values of the flux.

Theorem 4.5

Let A = AU B be a bipartite lattice. Then for any given flux, the minimum of Ex(s,0,0)
and Fj (s, 3,0,0), is attained at the two configurations s, = ez, ¢, = +1,z € A, e, = -1,
z € B.

We give the argument because of its generality and simplicity. Using the unitary €, 0,y

and the concavity of trv/ X , for X any |A| x |A| matrix we have

1 1
tr|ha(s)] :Etr\/(T +US)? + —2—tr\/(T - US)?
<tr\/T?2 4+ U2

(4.3)

Then by (2.23)
Ex(s,0,0) > —%tr\/ T? +U? (4.4)

The special configurations of theorem 4.5 always satisfy TS+ ST = 0, and thus their energy
is precisely ——%tr\/ T? + U?. So the equality is achieved in (4.4) for these configurations.
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In [37,38] it was shown that the chessboard persists in a neighborhood of the symmetry
point (for any dimension).

For |U| large enough (|U| >> zmaz|t;y|) one can predict a more complete phase
diagram by perturbative methods. In the rest of this paragraph we adress this problem for

two dimensions, on a square lattice with |t<;y>| = t and constant magnetic flux ® through

each 2 x 2 plaquette.

To this end one uses the U™! expansion (U > 0) for . in the gap [55]

t2 tt
TTARRTIE (74 2cos®)) z By

|lz—y|=1

1
E(s, fres i) =5 (e = i) ) 82+ (

t4 4

t
e (4 — cos D) z 828y + YiE} Z Sz Sy (4.5)
lz—y|=v2 lz—y|=2

5t it s
+ B cos@Zp};IPsr S B cos(I)ZP:I +O0(U™")

+

where the double sums are on pairs {z,y} C A and the last sum is over the 2 x 2 plaquettes
in A. Using the method explained in sect. 4.1, the phase diagram of figure 4 was obtained
[55] for the truncated hamiltonian where the terms of order U™° in (4.5) are neglected.
The phase diagram is symmetric with respect to p — —p (here p = p. — ;) as can be
seen from (4.5). Here S;, Sy, S3 correspond to the configurations of figure 3, Sy, Sa, S3 are
the complementary ones, S is the chessboard, S—, S the empty and full configurations.
The three lines separating phases 1/5, 1/4, 1/3 are infinitely degenerate and are given by
equating the corresponding energies. If one would neglect the terms of order U~2 in (4.5)
the phase diagram is that of the antiferromagnetic Ising model: the two vertical dotted
lines correspond to a family of infinitely degenerate ground states. When the terms of
order U~? are included this degeneracy is lifted leading to new regions of smaller width
in figure 4. We expect that the degenerate lines open up again when higher order terms
are taken into account. Probably a devil staircase structure appears in the limit of an
infinite number of terms. Having obtained the ground states of the hamiltonian truncated
at order U~5, one can show that the rest of the expansion does not modify this phase

diagram except around the boundaries (where the devil staircase will take place).
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Figure 4: Phase diagram to order U™ in the (u. — u:, ®) plane, for a

square lattice, and with Ferma statistics. The dotted lines correspond

to the phase diagram of the Ising model obtained to order U ™.

These results provide an extension of theorem 4.4 to the case of fixed non zero homo-
geneous flux, for @ ¢ [F, 37“] For ® € [Z,3], and ® # 7, the ground state configurations
are rigorously established for densities p; = 1/5,1/3,1/2. For ® = = only p; = 1/3,1/2
are rigorously known.

For all the rigorously established configurations it appears that, given a density the
configuration is unique and independent of the flux. Our guess is that this is always true
on a square lattice if U is large enough. As will be seen below it is not the case on the
triangular lattice.

If we plot the electron density as a function of the chemical potential for a fixed value
of the flux we see plateaux in finite intervals of chemical potential. Physically this means
that the system is incompressible and that the ground state energy as a function of the
density has cusps at the densities 1/5,1/4,1/3,1/2 (and the complementary ones).

A similar study can be achieved also for the triangular lattice. This is not a bipartite

lattice and therefore one might expect that qualitatively different features appear.
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For example the particle-hole symmetry is lost and this is clearly reflected in the phase di-
agrarh. Here we summarise the results in order to show what are the qualitative differences
with the square lattice.

In.[55] a U~! expansion is derived up to order U~3. To order U~?! we get the Ising
hamiltonian, and there are terms of order U2, in contrast to (4.5), which break the spin
flip symmetry. To this order the phase diagram can be analysed exactly, and is plotted on
figure 5. The configurations 7_, 7, correspond to the empty and full lattice, while T, 7 s

have density 1/3, 2/3 (see fig. 6) and correspond to those of the Ising model with a small
magnetic field.

e

He— M

CO____________“
SENe

Figure 5: Phase diagram to order U~2 in the (e — i, ®) plane, for a
triangular lattice, and with Fermi statistics. The dotted lines correspond

to the phase diagram of the Ising model obtained to order U™".

To order U2 the lines separating the different phases open up and a variety of new
configurations appear. The phase diagram becomes complicated and we refer to [55) for the
details. Here we just mention one interesting feature. There exist regions in the (pe —p;, ®)

plane corresponding to densities 1/4 and 1/2 where the ground states are those of figure
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6, and it appears that given a density (1/4 or 1/2) the configuration changes (from 73 to
n or from T3 to Ty as the flux is varied. As said before, on the square lattice this does
not seem to occur, and therefore the effect might be related to the fact that the triangular
lattice. is not bipartite.

Finaly we note that for a flux & = n/2 or 37 /2 per triangle the particle-hole symmetry
1s recovered and therefore for these fluxes the phase diagram is symmetric around g, — p; =

0, to all order of perturbation theory.
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Figure 6: Ground state configurations on the triangular lattice,
for p; = 1/4,1/3,1/2. Ions are represented by black dots.

For the complementary densities 3/4,2/3,1/2 one exchanges
black and white dots.

4.3. Low Temperature Phase Diagram

For finite temperatures the stability of the chessboard phase at low temperature has
been studied on Z¢, d > 2, for t, = t real (i.e. zero flux). These results which we describe
below can be extended straightforwardly to non zero flux.

At the symmetry point, Kennedy and Lieb succeeded to analyse the phases of the
model for all values of U [14].
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In this situation the density of electrons and nuclei are both equal to 1/2 at all tempera-

tures.
There exist 8j(U) with Zi(U) =~ |U|?|lnU| for U — 0 and Bi(U) ~ ¢3|U| for U — oo,
such that for g > £;(U) the low temperature phase is characterised by

(_1)|x|+|y| < Sply Az e 0 (4.6)

for some constant ¢, independent of z and y and A. In (4.6) periodic or free boundary
conditions are used to define < — >4. Choosing appropriate boundary conditions we can
select the two pure phases corresponding to the two chessboard ground states.

Moreover there exist B,(U) with Bx(U) ~ [U|~/(*2) for U — 0 and Bu(U) ~ 1 |U]|,
for U — oo, such that for # < Sp(U) the high temperature phase is characterised by the

exponential decay of correlations
| < 828y >a | < Cexp(—m|z —y|) (4.7)

with C and m positive, independent of z, y and |A|.

We do not expect that other phases separate the high and low temperature behaviour.
This picture is confirmed by the exact solution of the Falicov-Kimball model at half filling
in the limit of infinite dimension, where a single line 3.(U) separates the high and low
temperature phases [23]. It is found that 3.(U) ~ U~2|InU|™! for U — 0 and B.(U) ~ cU
for U — oo. This behavior for U — oo holds in fact in all dimensions since §;(U) and
Br(U) are asymptotically linear for large U.

From the U~! expansion it is expected that the model behaves as an Ising antiferro-
magnet for large U. The proof given in [14] involves a non trivial adaptation of the Peierls
argument. Here unlike in the Ising hamiltonian the energy of a spin configuration is not
given explicitely so that the hard part consists in proving that one gains a positive energy
by removing a Peierls contour. More precisely if s contains a Peierls contour v, and s* is

obtained by a spin flip transformation inside v, one proves that
FA(S,ﬁ,O,O)—FA(S*,ﬁ,O,O) 2 O(ﬂaU)h" (48)

where || is the lenght of the contour and the positive constant is independent of |A|, s, s*,

and C(B,U) >> 1 for large #. To obtain (4.8) one has to decouple the interior (int) and
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exterior (ext) of 4. Formally Fi(s,3,0,0) is represented as a sum of three corresponding
terms F*!(s)+ Fi*'(s)+ F{(s), the last one representing the energy cost of the boundary
of 4. The unitary eé,,, which leads to the invariance of Fi(s, 3,0,0) under s — —s, then
implies Fim’im(s) = Fzrt‘im(s*) and thus the difference in the left hand side of (4.8) is
FJ(s) - F}(s*) = O(l))

Around the symmetry point, keeping only the leading orders in (4.5), the hamiltonian
for large U is that of the Ising antiferromagnet with nearest neighbour coupling constant
t?/4U and a magnetic field 5(tte — pi). Thus one expects that the antiferromagnetic long
range order is preserved for |p. — pi| = O(U ™) with |p.| < U —4t, since the U~ expansion
is valid for . in the gap. We note that for finite temperatures the density is no longer fixed
to 1/2 for finite temperatures. Also the effective potential is not invariant under a global
spin flip. It turns out that the special transformation s — s* found by Dobrushin [72,73]
for the Ising antiferromagnet with a magnetic field is well adapted to the present situation.
The procedure is to erase the upper interior line of spins along the upper boundary of v,
to translate the configuration inside v by one lattice site in the upper direction, and to flip
the last line of spins along the lower interior boundary of 4. Then (4.8) was proved in [34]
for (pte, ;) in a strip

S = {(tte, pi)llue + pi| = o(U), |pe — pil = OU™)} (4.9)

U large and C(B,U) = U~'. Using this result it is straightforward to generalise (4.6)
to (pe,pti) € &, B/U and U large. The reason that Dobrushin’s transformation can be
used successfully is that it can be represented in the Hilbert space of wave functions by an
approximately unitary transformation. This is clear if one thinks of large contours where
s — s* is a "translation up to boundary terms”. We have in this case F{*i(s) = F§®!(s*),
F"!(s) = F{™(s*) + O(1)).

It 1s expected that the other ground states found in fig. 3 correspond also to stable
low temperature states. However the Peierls-Dobrushin argument used at, or near, the
symmetry point breaks down for obvious geometrical reasons (see fig. 3) and thus Pirogov-
Sinai theory should be applied. However a good control of the potentials Jx (8, tte, i)

appearing in (2.29) is needed. An interesting method to obtain results in this direction
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has been devised by A. Messager and S. Miracle-Sole [57]. The classical weight of the
d— dimensional model exp(—fBF}) is represented, via a functional integral formulation, as
the partition function of a polymer system in d + 1 dimensions. At low temperatures and
large U the polymer system is dilute and standard cluster expansion techniques of classical
statistical mechanics can be applied. One can then get some information on the structure
of (2.29). In [57] the authors recover the results on the stability of the chessboard phase
near the symmetry point. This technique is also very useful to treat the case of hard-core

bosonic systems (sect. 5).

5. INTERACTING SYSTEMS

In this section we consider two types of interacting systems. The first one is a bosonic
model with hamiltonian (2.5) where al, a, are replaced by hard-core Bose operators b},
b, satisfying

blb, +b,0 =1,  (B1)2 = (b)) =0 (5.1)
and

blby — bybl = byby —byb, =0, z#y (5.2)

Since two bosons cannot occupy the same lattice site, we can imagine that they interact
by a repulsive two body on-site potential Abib,(blb, — 1) with A\ — co. The algebra (5.1),
(5.2) can be represented explicitely by the Pauli matrices

@) (B () e

thanks to the identification b} = 1(7! —ir?), b, = 1(v! +ir?), and blb, = 1(7® + 1).
The second type of model is given by the hamiltonian (2.7) for fermions with spin

one-half, or for hard-core bosons with ”spin one-half” (i.e. two kinds of hard-core Bose

particles).

5.1. Reflection Positivity

We briefly state a basic inequality needed later. Let H be a d dimensional Hilbert
space and A, B, C;,t = 1,...,n, d x d matrices with A, B hermitian and C; real. Let HQH
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be the usual tensor product and set for any d x d matrix D, D=D®1, D=1® D, and
D*=D*®1,D*=1@Q D*, where * is the ordinary complex conjugation (not hermitian
conjugation). Suppose also that . vi(C; — CP is symmetric, where 7; are real numbers.

If 4; > 0 for all 7, then for any real h; the Cauchy-Schwartz inequality implies [74]

n n . 1/2
Trexp[A + B* — Z’yi(Ci ~C;=h)H < (Tr exp[A + A* — Z'ﬁ(C,‘ - C’,’)z])

=1 1=1

n 1/2
% (TT exp/B + B* — Z*yi(C.,- - C,-)z])
1=1
(5.4)
In the applications of (5.4), it is important to realize that the matrices D and D commute.

The idea will be to write the hamiltonian in the form

n
—A—-B"+) 7(Ci-Ci—h)’, 720 (5.5)

i=1
and to apply the inequality (5.4). Note that the plus sign in front of the sum of squares in
(5.5) is crucial. If the hamiltonian can be written in the form (5.5), (possibly after some
transformations leaving T'r exp(—/fH, ) invariant) we say that it has the reflection positivity
property (RP). However this property refers to a particular tensor product decomposition

of the Hilbert space, so that (5.5) may not be unique. We give two examples below:

reflection positivity in spin spece and in position space.

Reflection positivity in spin space

Suppose that we have spin one-half fermions or spin one-half hard-core bosons such
that the number of spin down and spin up particles is the same. Then one can view the
Hilbert space as H; ® M|, with Hy, H| two identical copies of the same H. If we denote

by af, a, (or b, b) the creation and annihilation operators in H we can rewrite (2.7) as

1 1
Hp(s) = — z teylalay ® 1 +1®alay)+ UZ s((alaz — 5) ®1+1®(ala; — 5)]

IxyEA TEA
1 1
+U' g(ai% - §) ® (ala; — 5)

(5.6)
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Since

1 1
(alas — 5)® (alaz — g =
1 1 112 (5.7)
— ~lata. — = _ Lo oo o ki
5 (alag 2)(8)1 1®(ala, 2) -{—41@1
we see that (5.6) is RP in spin space for any lattice and for U’ < 0, t;, hermitian, all
U, all s. Following the methods of [75] one can then prove that the hamiltonian (2.7) for

spin one-half fermions and for hard-core bosons has among its ground states at least one

singlet state for any lattice provided U’ < 0.

Reflection positivity in position space

Let us consider a cubic d-dimensional lattice with periodic boundary conditions in
a selected coordinate direction § (so we have a cylinder). We select an hyperplane Il
perpendicular to the é§ direction separating the cylinder into a left (L) and a right (R)
part, with the same number of sites on both sides. For a bosonic system the Hilbert space
can be viewed as H; ® Hpg, where Hy r are the Fock spaces associated to the left and
right parts of the lattice. These are two identical copies of the same space ‘H. Moreover
this construction can be applied with respect to any hyperplane II5 perpendicular to the

6 direction, and separating the system in two equal parts.

For fermion systems, given IIs we first perform the transformation*
al, =e™tal . zecA (5.8)

where Np = Y ;. >, al,az0, L the left part of the lattice [70]. This transformation
ressembles the one-dimensional Jordan-Wigner transformation but it is different. One can
check that the algebra of operators @ on the left commutes with the algebra of operators
@ on the right. Therefore we can represent the Hilbert space of the fermionic states as
Hr ® Hg, where Hy and Hp are obtained by applying the a'’s on the left and right

vaccuum.

* here it is important to note that (5.8) holds for all sites of the lattice



Gruber and Macris 891

For hard-core bosons, the hamiltonian (2.7) can be written, after a particle-hole trans-

formation on the right bfw — byo, z € R,

. 1
Hy(s) =Ha(s) = = Y toybl by + U D sa(bl bao — 5)

'l"yEL IEL
1 1
FU' Y (blbar = 5)(0L bay — 5)
z€Ll
1 y 1 1
= 2 tiblobye +U D (=82)(blobao = 5) + U ) (blybar — 5)(bL bt — 5)
:yeR TER zER
1
+§[ D tey(Bl, =B+ D tay(bes — byo) ]
z€L,yeR ze€R,yeL
(5.9)
Now assume t,, =t > 0 on all bonds cutting IIs. Then (5.9) is of the form
—A—B*+Z%—(C¢- —é’i)z, ¥ = (5'10)

with A and B* equal to the sums on L and R respectively and C; = b}, By Ci = bym bro,
v = tgy, ¢ Tuns over the horizontal bonds cutting IIs. Thus we conclude that we have RP
for t;y =t >0, (z,y) NIl # 0. The same construction can be made for other bipartite
lattices (for example the hexagonal planar lattice).

For fermions using (5.8) and the electron-hole transformation on the right al, —

€x8z4, T € R, we find

Ha(s) — HA(S Z tzyazaaya +U Z 55(@l plizo — _)
z,y€L €L
i At 1 At s 1
+U Z(aﬂaﬂ - 5)(%1““ - 5)
z€L
* ot oA ~t A 1 ] Y I 1yat - 1
- Z tzya‘zcraya‘ +U Z(_SI)(axaaIU - '2_) +U Z(azTa’IT - 5)(ax1azl - 5)
z,yER TER TER
1
+ ‘2’[ Z €y zy(am_a 2+ Z €xtey(Gzo — Oyo )2}
z€L,yER zER,yeL

(5.11)
If tyyey =t > 0 (resp. tyye, = t > 0) on bonds cutting IIs with « € L, y € R (resp.
r € R,y € L) we see that (5.11) is of the form (5.10), and again the hamiltonian has the
RP property. This construction can also be adapted to other bipartite lattices [70].
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So far we have shown that the hamiltonians of interest are RP for a special choice of
the hyperplane I1;. However, in general, applications require that this property holds for
all hyperplanes separating A in two equal halves, and this imposes some conditions on the

hopping elements t;,. In the rest of this section we give two such applications.

Application to ground state configurations pe = p; =0

We sketch the argument for fermions on A C Z¢. We take periodic boundary condi-
tions in all directions of the lattice, and fix the flux per plaquette equal to 7. Moreover we
fix the flux through non trivial loops around the torus equal to 7 (resp 0) if the length of
the loop (number of sites) is 4k (resp 4k + 2).

Then, given a direction 4, (say the horizontal one) we choose a gauge such that
tzy€y = t > 0 on bonds < zy > parallel to the § direction, and #;;, = ¢ on all other
perpendicular bonds. Given II; we view the spin configuration s = {sy,sg} as having a
left part sy and a right part sg. The effective potential in (2.27), at the symmetry point
(which is the same as in sect. 2), is denoted by F(s) = Fa(sr,sr). From (5.11) we have

Trexp(—pBH(s)) =exp(—BFr({st,sr})

= Trexp[BA(sL) + ﬁfi(“SR)* = ﬁZ‘y,(C, — éi)z] (5.12)

where

o P F e Biag . 1
AlsL)=— ) tzyalaaya+Ust(alaam—§)+U'Z(alTaszi)(ailazlai) (5.13)

z,y€L z€L €L
y o it L iseyat s Loap . 1
A(SR) = - Z tfyazaayU+UZ Si‘f(araafa_'é)_*_U Z(azTazT_E)(azlaIl__i) (514)
r,yeR z€R z€ER

and C; = al_, iy C; = &La, dzg, vi =t > 0, ¢ is the bond (z,y) intersecting IIs. Then
the inequality (5.4) implies

Fa({s1,sr)) 2 5(F({s1,~s1}) + F({sn, ~sr})
> man(F({sz,~sr}), F({sr, —sr}))

(5.15)

Thus either {s;,—s1} or {sgr,—sgr} has a lower energy than {s;,sr}. By applying suc-

cessively this inequality with respect to all hyperplanes IIs, for each direction sucessively,
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we arrive at the conclusion that the chessboard configuration must minimize the effective
potential at the symmetry point, for all temperatures. The same result holds for 8 = co.
For hard-core bosons the proof works for flux 0 per square since then one can choose
a gauge tzy =t > 0 on all bonds < zy >.
These results generalise theorem 4.1 to interacting spin one-half fermions and hard-

core bosons and are formulated in the following theorem

Theorem 5.1

Consider the hamiltonians (2.5) or (2.7) with |t;,| = t for hard-core bosons or fermions,
on a lattice A C Z¢, d > 1, with periodic boundary conditions in all directions. Set e; =1
for z € A and €, = —1 for z € B. We suppose

(a) Boson case: the flux is zero through two dimensional square faces and non trivial loops.
(b) Fermion case: the flux is m through two dimensional square faces and loops of length
4k around the torus; the flux is 0 through loops of length 4k + 2.

Then Fy(3,s,0,0) attains its minimum for the two configurations €,s, = +1. It is also

the case for the ground state energy Ex(s,0,0) = limg_.o Fa(8,s,0,0).

Remark: This theorem can be generalised in two directions. First if A C Z¢ and |t,,]| is
not uniform: the theorem holds if |¢;,| is invariant under reflections through any reflection
plane IIs. This generalisation is related to the Peierls instability. This connexion appears
in [76] for one dimensional rings, and is discussed in [77] for two dimensions. Second, if
A is any bipartite lattice ( such as hexagonal, octagonal) with the required symmetry to
apply RP. The theorem holds for bosons if we assume that the flux is zero and for fermions

if we assume it is 0 through elementary faces with 4k + 2 sites and 7 through elementary

faces with 4k sites.

The optimal fluz

We can now apply the above ideas to find the optimal flux for the hamiltonian (2.7).
The arguments sketched below also provide a proof for theorem 4.3. The point of view
outlined here clarifies the proof in [69] and has been developed in detail in [70]. Let

us consider a square two dimensional lattice with periodic boundary conditions in one
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direction é (say the horizontal one). We denote by H[{t;y}] the hamiltonian for a given
set {t;y} of hoppings and, for a given II;, {tiy}, {tfy} the hopping elements on the left
and on the right parts of the lattice. Starting with (5.11) we further transform s, — —s;
for € R. We can always choose a gauge such that t;ye, = > 0 on the bonds cutting Il

and oriented in the § direction. Then

Zp = Z Trexp(—FHx[{tey}])

=) Trexp [—ﬂHL[{tiy}l — BHR[{tE}]* (5.16)
2% @t —at L Y el —al,)?
2 tyl\Mzeo yo 2 Ty zo yo
z€L,yER z€RyeL

where Hy, and Hp are the hamiltonians corresponding to the left and right sums in (5.11).
From the inequality (5.4) we have Z} < ZZg where Z, is obtained from (5.16) by replac-
ing {tfy} by {tf,} and Zg by replacing {tZ,} by {t&} in Zx. Thus Zx < maz(ZL,ZR).
Let Pjs denote the plaquettes intersecting IIs. One can then see that in Z; and Zg, the
flux through the plaquettes Ps is 7. By iterating the procedure with Z; or Zg replacing
Zx we arrive at the result that flux 7 in all plaquettes maximises Z5. Taking the zero
temperature limit we conclude that it minimizes the ground state energy. For more details

and generalisations to other lattices we refer the reader to [70].

We also remark that for hard-core bosons the same type of proof shows that the

optimal flux is zero through all plaquettes, but this follows also from more general consid-

erations.

5.2. Bosonic Falicov-Kimball Model

The previous reflection positivity technique yields results only at the symmetry point.
For hard-core spinless bosons with the ”interacting” hamiltonian (2.5) the expansion meth-
ods of section 2 are not valid. However using the functional representation mentionned
at the end of section 4, we can obtain the U ™! expansion which is convergent at least for

U > Ct and |u.| < U — Ct. For the two dimensional square lattice one can take C' = 16
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and we have [55],

1 22 _ ¢ >
E er i) =2 —Hi - 8U Bl ’
(S,ﬂ U ) 2(,“6 M );S +(8U 16U3 (7 2COS¢))ix_y[m13 Sy

#4 &

+ e (4 + cos @) E SzSy + 803 Z 523y (218

le=yl=v2 |==yl=2

44 g 5t P o(U—3

= e cos EP Es, ST cos ;1 + O( )

An analysis of the truncated effective potential to the order O(U~*) yields the phase
diagram of figure 7 for the ground states.

Ss3 Scb 53 4
I
!
L ' L T
gL 0 ot Hem K

Figure 7: Phase diagram to order U2 in the (e — pi, ®) plane, for the
square lattice, and with hard-core Bose statistics. The dotted lines“correspond

to the phase diagram of the Ising model obtained to order U2,

This diagram is qualitatively similar to that of figure 4 for fermion systems and the
same comments apply. For chemical potentials away from the boundaries in figure 7 one
can rigorously establish that the configurations S;, S3, Se occur for U large. Therefore

given the densities 1/5, 1/3, 1/2 and any flux @, we find the same configurations as in



896 Gruber and Macris

the case of Fermi statistics. This suggests that the phase diagrams in the (p, ®) plane, are
identical for both kind of quantum statistics. On a triangular lattice this is definitely not
the case (see below). Let us remark at this point that for g, = p; = 0 and ® = 0 reflection
positivity implies that S is the ground state for all U.

In [55] the same model was also considered on the triangular lattice. Now one has a
particle hole symmetry, even though the lattice is not bipartite, and thus the phase diagram
is symmetric with respect to g — u; = 0 (see fig. 8 for the phase diagram to order U~?).
To order I773 the boundary between diffrent domains open up and new phases appear (see
[55]); in particular a phase with density p. = p; = 1/2 appears and for this density the
ion configuration changes from 7Tg to 7y (see fig. 6) as the flux is varied. This feature was
also present in the fermionic case. Moreover one remarks that for (p = 1/2,® = /2),
7y occurs for fermions whereas Tg occurs for bosons (in fact this is true in a small region
around the point (1/2,7/2)). Therefore for the triangular lattice the phase diagrams are

different for each quantum statistic.

2 T
1
1

agi | I

2 i B
i
i

Tl T : _
i

_ 1
i -
i
*

0 _ég 0 He— H
U

Figure 8: Phase diagram to order U~2 in the (u. — ui, @) plane, for the
triangular lattice, and with hard-core Bose statistics. The dotted lines correspond

to the phase diagram of the Ising model obtained to order U2,
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To conclude this section let us mention that for any values (g, u;), it follows from
the functional integral representation that the optimal flux is zero for bosons. Note that

this can also be checked directly on the U~! expansions.

6. STATIC HOLSTEIN AND KONDO LATTICE MODELS

Some of the methods reviewed in sections 4 and 5 are not limited to the Falicov-
Kimball model. Here we show how they can be applied to two other models, namely the
static Holstein and the Kondo lattice models. Their common feature with the Falicov-
Kimball model is that the itinerant electrons interact with a classical field by an on site
potential. In the Falicov-Kimball model the classical field is a discrete spin s, = +1,
whereas in the Holstein model it is a (scalar) continuous real unbounded variable. For the

static Kondo lattice model we have a three component vector field on the unit sphere.

6.1 Static Holstein Model

This model is used to represent the interaction of electrons with an optical branch
of phonons of a molecular crystal [78]. In the fully quantum Holstein model the phonons
are treated like Einstein oscillators (representing internal vibration modes of some large
molecules ) attached to every site of the lattice. The static case corresponds to the clas-
sical limit for the oscillators. They are represented by a position variable s, taking real
unbounded values; usually the elastic energy of a configuration is proportional to 3 ., 32,
but we consider the more general situation with anharmonic corrections 3 ., f(s2) for

some polynomial f. The coupling of the electrons to the phononsis linear. The hamiltonian

that we consider is

@) == 3 el + U3 selale - 2+ 5 A (6.1)
One can define the effective interaction F (in the grand canonical ensemble) by the formula
(2.31) to which we add 7, ., f(s2). The ground state energy Ej of a configuration s is
found by taking the limit 8 — oo of this expression. We note that the symmetry properties
of the model are the same as that of the FK model, and (e, i) = (0,0) plays the same
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role. Here p; fixes the position of the center of mass of the oscillators. In [65] the following

results where proved for the symmetry point, on a lattice A C Z¢ with t<,y> = 1.

Theorem 6.1
Let f(v) be a positive convex function for v > 0, with f'(v) > 0 for v large enough. Then

(1) Ea(s,0,0) attains its global minimum for the chessboard configurations s, = +e,o¢(U)

where oo(U)? is the solution of the equation in v

2
PO =T O lelko)” (62)

ko, a=1...d

where
d 2 1/2
e(k,v) = [4(2005!60,) e U%] (6.3)
a=1
and the sum is over the modes ko = mny /N, no = —N,...,N, (2N)? = |A|.

(ii) These are the only two global minima.

This theorem makes rigorous the theory of the Peierls instability for this model. Here
it is valid in all dimensions due to the fact that there is no dispersion for the phonons and
we are at the symmetry point. Equation (6.2) is standard in the solid state literature and
for the usual Holstein model where f(v) = v the solutions behave (in the thermodynamic
limit) as 0o(U) ~ U for large U and Inao(U) ~ U~ for small U (rigorous resuts on the
Peierls instability also exist for other models, see [76,81]).

For other bipartite lattices and other fluxes there is a similar theorem with the ap-
propriate dispersion relation replacing Zizl coskq in (6.2) (the lattice and t;, have to be
periodic). In this case the equation replacing (6.2) might not have a solution for all U.

This happens for example on the cubic lattice with a flux equal to 7 per plaquette where

the dispersion relation replacing Zi=1 cosky is \/ Zda=1(coska)2. One can show, in this
case, that there is a solution for U > U, for some U, > 0, while there is no solution for
U £ U, and the minimizing configuration is s, = 0 for all z € A. The same is true on the
hexagonal lattice with a flux equal to zero per plaquette. We notice that this sensitivity

of the minimizers on the lattice and the fluxes is absent in the FK model.
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With the same setting as in theorem 6.1 we have also the following

Theorem 6.2

Let f(v) be a positive convex polynomial Zj\;l a;v?, with ay > 0.

(i) If @y = 0, then for any 8 and U, F)(s,(,0,0) attains its global minimum for s, =
te,01(U, B) where a1(U, 3)? is the solution of the equation in v

Ufﬁ Z [e(k,v)]_ltanh[ge(k,v)] (6.4)

ke, 0=1...d

fi(v) =

Moreover these are the only two minima.

(ii) If @3 > 0, then for a given U, equation (6.4) has a solution only for 3 large enough and
the only global minima of Fj(s, 3,0,0) are given by s, = £ez01(U, f)

(ii1) Ifall @; > 0, 7 = 1,..., N, then there exist a positive constant ¢ such that for BU? < ¢,

Fa(s, 3,0,0) is a strictly convex function of s;, which attains its minimum at s, = 0, all

Tz € A.

This theorem gives a rather detailled picture of Fy(s,(3,0,0) for the usual Holstein
model which corresponds to (ii) and (iii). In that case the effective interaction has a
"double well” structure for low temperatures with each well corresponding to the two
chessboard configuration. At "high temperatures” (3U? < c¢) the double well disappears
since the effective interaction becomes strictly convex. An application of the Brascamp-

Lieb inequalities [79] shows that there is no long range order for BU? < ¢, in the following

sSense

ﬁ Y5 I < sasy >a (AP = 0(1) (6.5)

z€EA yEA
Finally the stability of the chessboard configurations with respect to thermal fluctuations

was proved using a Peierls argument for continuous spins [65]. In other words there exist

a fixed number ¢ of order O(1) such that for U and /U sufficiently large
+00(U) — § << €28, >3 (B) < 0o(U) + 6 (6.6)

where < — >f is the thermal average with the appropriate boundary conditions, at the

symmetry point.
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6.2 Static Kondo Model

We consider the interaction of itinerant electrons with a periodic array of localised
magnetic impurities. The electrons are spin one-half fermions and the spin of the magnetic
impurities is treated classicaly, i.e. to each lattice site z € A we attach a normalised three

component vector ®, = (@1, 3% 82), |®,| = 1. For a configuration of magnetic impurities

® = {®,} the hamiltonian is

Hol®]=- Y  tyal,ap+U) S:.@, (6.7)
z,yeAN,o=T,]| z€A

with 5, = (51,52,58%), §t = PR al,7}saz5, the electronic spin at site z, 7 =
(r1,72,73) the Pauli matrices (5.3). The |A| x |A| matrix ¢L6;, will be denoted sim-
ply by ®'. In fact S,.®, is the second quantisation of the matrix (it is a 2|A| x 2|A| matrix
acting on C? ® [2(|A]))

3

-3 g Bl 4id?

¢= T ®¢ :(@l_zq)z _@3 ) (6.8)
=1

so that the one electron hamiltonian associated to (6.7) is
hal®] = -T + U (6.9)

where T =1, ® T, 1, the 2 x 2 identity matrix in spin space.

The grand canonical partition function is
Zl\(ﬁaﬂ'eah) = / H d®, exp(‘_lBFA(@’ 6nue,h)) (610)
|®:]|=1 z€A
where the effective interaction between the impurity spins is
exp(—BFA(®, B, e, h)) = Trexp[~f(Ha — peN —h ) (22 +57))] (6.11)
T€A

In (6.10-6.11) the electronic chemical potential y. fixes the average density and h is an
external magnetic field (along the third direction) coupled to the total spin (i.e. the

electronic plus the impurity spin). We can perform the trace over the electrons in (6.11)
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exactly and the result has the same form than (2.31) with h(s) replaced by the hamiltonian
(6.9). The ground state energy can then be defined as the limit of Fj as § — oo.

On a bipartite lattice the point (p., k) = (0,0) plays again a special role. At this point
the effective interaction is invariant under ® — —®, so that < ®, >, (f) = 0 as in (2.38).
Moreover using electron hole transformations on spin up and spin down electrons we can
show that < alTazT + ailarl >4 () = 1. Thus at the symmetry point the system is half
filled. The minimizers of E4(s,0,0) and Fy(s,3,0,0) can easily be found to be the two
Néel configurations. These are the configurations ®, = ¢,7, fi a given unit vector in R3.
Let us illustrate this point more explicitly. On a bipartite lattice A = AU B the unitary

transformation €; 0,405 changes T to —T' and leaves & invariant so that by convexity (as

in (4.1-4.2))
EA(®,0,0) > —%tr\/f’z + U292
= —%tr\/ T2 + U?

In the last equality we use that 2 = 1 as can be checked from (6.8). Now the lower bound
in (6.12) is exactly the energy of a Néel state. Indeed hp(®)2 = T2+ U? +(T® + &T) with

(6.12)

ba T®? | §3T (T®' + ®'T) +i(T®? + °T)
(T® + OT) = ((Td)l +8IT) — i(T? + B2T) _T&% — ®T A

which is zero for a Néel state since
(T® 4+ Ty = toy'(ex + €)= 0 (6.14)

Presumably the Néel state is stable with respect to thermal fluctuations in 3 dimensions,
i.e. there is LRO, but the Kennedy-Lieb proof based on the Peierls argument, cannot be
extended to this model because of the invariance of F; (@, 4,0,0) under global rotations of
®. Of course one can perform U~! expansions in the large U limit as for the FK model.
To leading order one finds that the effective hamiltonian for the magnetic impurities is
the classical Heisenberg antiferromagnet. For this model the occurence of LRO at low
temperatures and in 3 dimensions has been proved by infrared bounds [80].

We also expect that the Néel state for the impurity spins, with an electronic density

equal to one, persists close enough to the symmetry point in the (g, k) plane, at least for
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U large enough. If this is the case, the system is an insulator in the half filled band, at
least for large U.

Finally we note that if we add a Hubbard type interaction between the electrons in
(6.7), we can apply the reflection positivity techniques reviewed in section 5, to obtain
results similar to those of the FK model. More precisely Theorem 5.1 is also valid with

the Néel states replacing the chessboard states.

7. CONCLUSION

To conclude this review we want to mention a few open problems.

In one dimension it is known that for neutral systems with p. = p; = p/q, the ground
state is given by the most homogeneous configuration (3.1) if U > U.(q) where U.(q) grows
exponentially with ¢. The numerical analysis indicates that U, = t//3, but no proof has
been found so far. Moreover it is expected that for U > 2t these neutral states are the
only (non trivial) pure states. For non neutral systems, and U < 2t, it is expected that for
pe = p/q, with p prime relative to ¢, and p; = p;/¢; (p; and ¢; arbitrary) then the ground
state is a mixture for g; # ¢ and if a pure state exists for ¢; = ¢, then it is given by (3.1),
at least if U < ¢v/3; this property has been established only in the limit /' — 0. In the
grand canonical ensemble, it seems that the ground state can be classified according to the
Farey tree rule for rational numbers [42,45]. For example it appears that the p. axis can
be divided into intervals I, , in which the most homogeneous configuration is the ground
state for neutral systems with p. = p; = p/q, and such that the length |I, ,| is exponentialy
decreasing with the level at which the rational p/q appears in the Farey tree. This rule can
be checked for the first few rationals of the Farey tree using the U~! expansion for large
U, and numerical calculations for arbitrary U. A similar Farey structure also appears for
n— molecules (p; = np,).

In two and three dimensions, going to higher orders in the U™! expansion, a variety
of new ground states appear and it is expected that for all densities there is a neutral
(periodic) pure state, at least if U is sufficiently large. They seem to follow a composition

rule similar to (3.1), with a Farey tree structure, and the appearance of n— molecules for
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small U [54].

The characterisation of the low temperature i:)ha,se diagram has not yet been completed
for the Falicov-Kimball model, except in the neighourhood of the symmetry point. It is
expected that this problem can be solved with the technique of [57] coupled to Pirogov-Sinai
theory. For the static Holstein model at small U, the low temperature phase diagram has
not been studied even at the symmetry point. The same is true for the static Kondo model
of section 6, for all U. In this later case one has to deal with the continuous rotational
symmetry, and the Peierls type arguments used for the other models do not work.

For the models of section 5 we have shown here that reflection positivity techniques
can be applied (for special values of the flux) to find the ground state configurations
at the symmetry point. Probably the only configuration that can be attained by this
method is the chessboard because it is the only one which is invariant under all reflections.
The occurence of long range order at low temperature can probably be studied at low
temperature thanks to infrared bounds or chessboard estimates. However it is not clear
how to prove these estimates because the interaction s;(ng1 + ny ) is purely on-site (for
fermionic models with nearest neighbour interactions the infrared bound can easily be
proven as pointed out in [70]). In any case it would be desirable to get results for any

value of the flux, i.e. in cases where reflection positivity is not available.
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