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Low-Temperature Phase Diagrams of Quantum Lattice
Systems.

II. Convergent Perturbation Expansions and Stability
in Systems with Infinite Degeneracy
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CH-8093 Zirich, Switzerland.

and Roberto Fernandez?*®
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Abstract. We study groundstates and low-temperature phases of quantum lattice systems in statis-
tical mechanics: quantum spin systems and fermionic or bosonic lattice gases. The Hamiltonians
of such systems have the form

H = Hy + tV,

where Hj is a classical Hamiltonian, V' is a quantum perturbation, and t is the perturbation
parameter. Conventional methods to study such systems cannot be used when Hjy has infinitely
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many groundstates. We construct a unitary conjugation transforming H to a form that enables us to
find its low-energy spectrum (to some finite order > 1 in t) and to understand how the perturbation
tV lifts the degeneracy of the groundstate energy of Hy. The purpose of the unitary conjugation
is to cast H in a form that enables us to determine the low-temperature phase diagram of the
system. Our main tools are a generalization of a form of Rayleigh-Ritz analytic perturbation theory
analogous to Nekhoroshev’s form of classical perturbation theory and an extension of Pirogov-Sinai
theory.
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1 Introduction

In this paper, we study quantum lattice systems which, in a sense made precise below, are
small quantum perturbations of classical lattice systems. Qur main concern is the analysis of
the structure of groundstates of such systems and of their low-temperature phase diagrams.
Our results extend those presented in an earlier paper [10]. In this paper, we develop
a perturbative method that enables us to analyze how small quantum perturbations of
classical lattice systems lift accidental (in particular infinite) degeneracies of the classical
groundstates. Once such degeneracies have been recognized to be lifted by the perturbation
one can hope to apply the variant of Pirogov-Sinai theory developed in [10] to analyze
the low-temperature phase diagram. The necessary modifications of the tools developed in
[10], in order to make them applicable to the systems studied in the present paper, will be
explained.

We consider quantum systems on a v-dimensional lattice Z”. Such systems consist of
the following data: To each lattice site £ € Z"” is associated a copy H. of some Hilbert
space, H. To each finite subset X of the lattice is associated an algebra of operators Fx
—the local field algebra. For systems with fermions, this algebra is larger than the algebra
of linear operators acting on ®,¢xH, [see Section 4.2]. The physics of the system is encoded
in an interaction, ® = {®x}, which is a map from finite subsets X C Z" to (self-adjoint)
operators of an algebra Ax C Fx —the local observable algebra. For instance, for fermions
Ax is the even part of Fx, i.e., the subalgebra generated by products of two creation or
annihilation operators.

In this paper we continue the investigations started in [10] of systems which are small
“quantum” perturbations of classical lattice systems. We consider interactions of the form

® =@+ Q= {Pox} +{Qx} (L.1)

where, for all X, ®;x and @x belong to the observable algebra Ax, and we define Hamilto-
nians of a system confined to a finite subset A of Z” by

Hp = Hop + Va, (1.2)

where Hop := > xca Pox and Vi := Y xca Ox.
Our general assumptions on the interactions are as follows.

(i) ®¢ is a classical, finite range, translation-invariant interaction. “Classical” means here
that there exists a tensor product basis of ®,cx . such that, for all X, ®ox is diagonal in
this basis.

(ii) The perturbation interaction @ = {Qx} is translation-invariant and has finite range or
decays exponentially with the size of X, i.e.,

QU := Y- 1@x]le™) < oo, (1.3)

X30

for some r > 0. Here || - || denotes the Hilbert-Schmidt norm and s(X) —the “size” of X—
is the cardinality of the smallest connected subset of Z” which contains X. Moreover we
assume that the perturbation is small, i.e., ||@]|, is small enough.
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In [10] systems in which the only effect of the quantum perturbation is to cause small
deformations of the phase diagram of ®, are analyzed. For the case of spin systems, a
comparable analysis has also been presented in [3]. The methods of [10] are applicable to
interactions of the form (1.2) satisfying (i) and (ii) under the following additional condition:

(H) @ is a classical interaction with a finite number of periodic groundstates and it satisfies
the Peierls condition, [15]. The latter is a condition for the stability of the groundstates and
requires that there is a non-zero minimum energy per unit interface (“contour”) separating
two groundstates (see Section 5.1).

Quantum perturbations can also have the more drastic effect of breaking the degeneracies
of the groundstates of ®,. In this paper we study such systems. We consider an interaction
whose unperturbed part ®¢ has infinitely degenerate groundstates but the degeneracy is
reduced to a finite number by the perturbation (). We ask the following question: Does
the ordering induced by the perturbation survive at finite temperatures? In this paper we
develop tools to answer such questions. These tools together with the contour expansion
methods of [10] (or [3] for spin systems), in the slightly generalized form of Section 5, enable
us to study the low-temperature phase diagrams of a large class of quantum lattice systems.

The basic idea is to construct equivalent interactions displaying explicitly the part of the
interaction relevant for the low-temperature behaviour of the system. Let us consider an
interaction of the form ® = ®, + ¢() satisfying conditions (i) and (ii) with ¢ the perturbation
parameter. We develop a perturbation technique to partially block-diagonalize the Hamil-
tonian Hj(t): under certain hypotheses [(P1) of Sect.4.4] on the interaction ®o, we prove
the following result: There exists a family of unitary operators U, !(\”)(t), labelled by the finite
regions A with the following properties:

(a) The operators U ,(\”)(t) determines a map
o(t) — 0M(1) (1.4)
between interactions, i.e., the transformed Hamiltonians
H () = U (0) [Hon + VA U (1) (1.5)

can be written as sums of local terms which correspond to an interaction ®(")(t). Moreover,
if ®(t) decays exponentially so does ®™(t), for ¢ small enough, albeit with a slower rate of
decay.

The key point is that the unitary transformation has to preserve the locality of the interaction.
This is achieved by constructing a unitary transformation which is the exponential of a sum
of local terms and by using commutativity of operators with disjoint regions of localization.

(b) The Hamiltonian H{™(t) can be cast in the form
HY(2) = Hoa(t) + VA(), (1.6)

where the leading part, Hoa(%), is of finite range, and the new perturbation, V4 (¢) can be
expressed in terms of interactions with exponential decay. If the perturbation lifts the infinite
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degeneracy of the groundstate of Hoa(t), then U\™(t) is chosen in such a way that Ho(2)
has a (t-dependent) gap between its groundstate energy and the rest of its spectrum. If
Hox(t) has a finite number of groundstates and satisfies the Peierls condition, then the low-
temperature expansion methods of [10] can be applied (with minor adaptations described
in Section 5.2). As a result, we can find the zero-temperature phases of the transformed
interaction ®(")(¢) (hence of the original interaction ®(t)) and determine which of these
phases survive at low-temperatures.

We illustrate the essential features of our theory through an example. Consider a quarter-
filled lattice, A, of spin-1/2 fermions, described by a Hamiltonian of the form given in (1.2),
with

Hop = U Z ngny — J Z a nxny + Uy Z NztNz] (1.7)
<zy>CA <zy>CA TCA
and
Valt) = —t Z {czoCyo +c;acm} (1.8)
<zy>CA
o=t1
where
N o = ¥, By (1.9)
o=1,1 o=1,4

*

The operators ¢, (cz,) are the usual fermionic creation and annihilation operators and the
sum, 3-.,y(+), is over pairs of nearest neighbour sites. We study this system for the range of
parameters Uy >> U > J >>t > 0. The hopping term tV} is treated as a perturbation of
Hoa. It is seen that the groundstate of Hypp at zero temperature corresponds to a “checker-
board configuration” and has a macroscopic degeneracy, since the spins of the particles can
be oriented arbitrarily. Using our perturbation method, we can construct a unitary operator
US"(t) which transforms the Hamiltonian H A(t) to the following form:

HY@) = UL™(8) [Hon + tVA) Ug Dy
= H()A(t) + VA( ), (1.10)

where VA(t) consists of terms which are of order one or higher in the perturbation parameter
t. We prove that

e To order 12, Hoa(t) has four degenerate groundstates each of which corresponds to a
“checkerboard configuration” with all spins aligned.

e The remainder VA(t) can be expressed as a sum of interactions whose strength decays
exponentially with the size of their supports.

Thus, in this model the quantum perturbation ¢V, has a degeneracy-breaking effect that
allows the application of the contour expansion methods of [10] —in the version summarized
in Theorem 5.2 below— to study the Hamiltonian H{"(t). One then concludes that, at
zero temperature, the ferromagnetic ordering of the groundstates of Hoa(t) persists in the
presence of the quantum perturbation VA(t) Moreover, the long range order, characterizing
the groundstate of H{"(t), survives at low-temperatures, with a bound on the critical tem-
perature which depends on ¢. In Section 5 we also study the less-easy-to-treat phase diagram
of the antiferromagnetic regime (J < 0). Further examples are presented in [11].
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The paper is organized as follows:

In Section 2 we establish some notations and recall some basic facts from operator theory.

In Section 3 we explain the general ideas of our perturbation scheme by first considering
a general quantum mechanical Hamiltonian (not necessarily defined on a lattice) acting
on a finite-dimensional Hilbert space. We study finite-dimensional perturbation theory, in
order to clarify the purely algebraic aspects of this theory in a context where all our formal
expansions are actually given by norm-convergent series. We consider a finite interval of the
spectrum of the Hamiltonian which is separated from the rest of the spectrum by a spectral
gap A. The spectral interval may consist of a single eigenvalue or a group of closely spaced
eigenvalues. As long as the perturbation parameter t << A, we can apply our perturbation
scheme to determine the perturbation of the eigenvalues in the given spectral interval. If
the underlying Hilbert space is infinite-dimensional, we extend our theory to study the effect
of the perturbation on an isolated part of the point spectrum, provided the perturbation is
relatively bounded with respect to the unperturbed Hamiltonian.

In Section 4 we introduce interactions and lattice Hamiltonians and we adapt the per-
turbation scheme to the latter. This forces us to refine the methods developed in Section
3 because the perturbation V, is not relatively bounded w.r.t. to Hpy uniformly in A as A
increases to Z”. In the absence of relative boundedness the standard theorems of analytic
perturbation theory cannot be used. Only for a special class of models, methods have been
devised (see e.g. [13, 12, 18, 17, 1]) to overcome this difficulty and convergence of the per-
turbation series for the groundstate energy density has been proved [1]. In this paper we
develop a systematic method which is applicable to a broader class of lattice Hamiltonians.

In Section 5 we present a slight generalization of Pirogov-Sinai theory and show how to
combine it with the partial block-diagonalization procedure to obtain a description of phase
diagrams at low-temperatures.

In Section 6 we illustrate our methods on some examples.

2 Notations and mathematical preliminaries

2.1 Lie-Schwinger series

We consider a finite-dimensional complex Hilbert space H. Let £(H) denote the x-algebra
of all linear operators acting on H. It is a finite-dimensional linear space and when equipped
with the scalar product

(A, B) = tr(A*B); A,B € L(H) (2.1)
it forms a Hilbert space, which we denote by £,. The Hilbert-Schmidt norm is given by
| All = y/tr(A*A) . (2.2)

We deﬁﬁe
adA(B) = [A, B], (2.3)

for A, B in L(#), and use the conventions

ad®A(B) = B and  ad"A(B) = [A,ad"A(B)] . (2.4)
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Let S and A be the subspaces of L(H) consisting of selfadjoint and antiselfadjoint operators.
Then

aes = {UEA05 v aea=WESTS e
In our calculations, the following identity will play an important role:
ABet = B [AB+ A4 B]+
- g%.&dm(m. (2.6)

The formula is known as the Lie-Schwinger series.
If Hy is a selfadjoint operator acting on H then ad Hy is a selfadjoint operator acting on
L, since

(adHo(A), B) = tr((A*Ho — HoA")B)

tr(A*adHo(B))
= (A,adHo(B)). (2.7)

2.2 Spectrum of H,

Let o(Hyp) denote the spectrum of a selfadjoint operator Hy. [In the present situation it is
simply the set of eigenvalues of Hy.] We write o(Hp) as a union of disjoint subsets,

N
o(Ho) = U I, (2.8)
j=1
such that
diSt(Ii,Ij) = min |E- E’l Z A (29)
Eel; E'€l;

where A is some positive number. The size of A will be inversely related to the size of the
perturbations amenable to our treatment.
Let P; be the spectral projection of Hy associated with [;, i.e,

Pp= S P, (2.10)

a:Eq€l;

P, being the orthogonal projection onto the eigenspace of Hy corresponding to the eigenvalue

E,. Also,
N

> P, =1, (partitionof unity), (2.11)
1=1

where 1 is the identity operator.

An operator V € L(H) can be decomposed into a diagonal and an off-diagonal part with
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respect to the partition of unity chosen in eqn.(2.11), as follows:

V = Viqyped (2.12)

V¢ = Y PVP (2.13)
J

ved .= S PVP;. (2.14)
i#]

The space of all off-diagonal operators,

O ={A%:=Y PAP;: Ac L(H),1 <i,j <N}, (2.15)
i#]
can be written as a direct sum
0o=o7, (2.16)
1#]
where
0 = {A6) .= PAP;: Ae L(H),1 <i,j < N,i#j} (2.17)

is the space of all off-diagonal operators with non-vanishing matrix elements between the j**
and the :** subspace. It is an invariant subspace for ad Hp.

Note: (ij) is an ordered pair. O is orthogonal to O if (i5) # (kl) with respect to the
scalar product, eqn.(2.1).

We define Jod
ad ™! Hy(V°d) := f dPss—4Po (2.18)
Using the partition of unity,
1= / dPs (2.19)
one sees that
[Ho,ad ™ Ho(Voh)] = Vo4 (2.20)

2.3 Properties of adH; and ad™'H,
(i) Some useful immediate algebraic properties are the linearity of ad™A( e ):
ad” A(tB +,0) = tiad"A(B) + t,ad™A(C) (2.21)
and the multilinearity of ad” e (B):
ad™tA(B) = t"ad"A(B), (2.22)
k k k
ad" Y A(B) = 3 -+ Y adAy (adAy, - (ad Ay (B)) ) . (2.23)
=1 i1=1 in=1
(i) If Hy is a selfadjoint operator, then

a.d_“IH() . S — A

2.24
ad_1H0 : A — S. ( )
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This can be read off from (2.18).
(iii) For all V € O%

|(Viad Ho(V))| 2 A(V, V), (2.25)
where the scalar product is defined by eqn.(2.1) and

A := mindist(L;, I} (2.26)
1]

is interpreted as the minimum spectral gap of Hp.
Proof:

(V,ad Ho(V)) = tr(V*HoV — V*V H,)
= tr(P,V*H,VP; — P;,V*VHoP;)), (2.27)

since V = P;V P; because V € @%. Moreover

Ve Y Ve, (228)
EuE;i:bE:bEI,'
with
Vi := FBVE. (2.29)

Thus,
VadHo(V) = 3 (Ba— B te(ViVas) - (2:30)

a,b:
Eq.el;,Epel;

The operator V%, V,s is positive and hence tr(V;: Vss) > 0. Moreover, since the factors (E,—Ep)
in each term of the sum have the same sign, we have that

|(Viad Ho(V))l = > |Ea— Ep|tr(VigVas)
Eae?e,,%be—’j
Z diSt([i,Ij) E tr(%’;%b), (231)
a,b:

E.eli,Epel;
where dist(I;, I;) is defined by eqn.(2.9). Finally,

(V,V) = tr(V*V)

> tr(VVas) - (2.32)
Eaefi:bEz'bEIj
Hence
|(V,ad Ho(V))| = A(V,V) (2.33)

forall Ve Ov. B
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It follows from (2.25) that o (adHyly,) is contained in (—oo, —A] U [A, 00). Hence the
operator norm of its inverse on O% obeys the bound

1

-1
“m_%mwgz, (2.34)
for all z, 5. Therefore
1
- < —. 2.35
ad H°|69‘.#Jo.-j <3 (2.35)
op
3 The Perturbation Scheme
3.1 First order perturbation
Using the above notations the Hamiltonian can be written as
H(t) = Hy + tV2+ tvpd, (3.1)

where the perturbation operator ¢tV (= tV) is decomposed w.r.t the partition of unity
chosen in eqn.(2.11). The operator V; is assumed to be selfadjoint. [Note: The subscript 1
is introduced for notational convenience since later we shall generalize to higher orders.]

To explain the perturbation scheme we first look for a unitary transformation, U(®)(¢),
which removes the off-diagonal perturbation to order ¢:

UD(@) = S0 = i (3.2)
where S is anti-selfadjoint and ¢ is real. The transformed Hamiltonian is

H(l)(t) _ eg(l)(;)He_S(l)(t}
(e o] tn

= Y ad"Si(H(t)). (3.3)

n=0

The first few terms of the Lie-Schwinger series, eqn.(3.3), give
HO() = Hy+tVE+ 1tV + tadS (Ho) + t2ad S, (V)
2
H2ad Sy (Ved) + %adzsl(Ho) +0(8). (3.4)

We require H(*)(t) to be block-diagonal to order t2. This criterion leads us to choose S; as
follows:

ad Ho(S1) = V4. (3.5)

Thus
Sl = adMIHo(‘/IOd) + S?, (36)

with
ad Hy(S°) = 0, (3.7)
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i.e., Sy is defined modulo an operator which commutes with Hp. On choosing SY to be zero,
we can write

S; = ad 'Ho(V9) (3.8)
B V’lod
- / dPg—"— dPg . (3.9)
Since V; is selfadjoint,
5 = —8, (3.10)

as required. Moreover, S is purely off-diagonal with respect to the partition of unity (2.11).
From (2.35) we get

od
s < L (3.11)
On substituting (3.5) into the RHS of (3.4) we obtain
12 a t2 od
HO@) = Hy+tVe+ T [ad Sy (V)] + = [2d Sy (V)]
tn+1
+2ad Sy (V) + Zt““#adnsl(wd) + 3 —rad i)
n>2 ' n>2
= H{P(t) + R(?), (3.12)
where )
t
H{(8) := Ho +tV3 + 5 ladS (1) | (3.13)
and
2 0o
Bty = % [a,dSl(Vl"d)] ‘ + t?adS; (V) + (termsof order > 3 in t). (3.14)

The operator adS;(V?) is off-diagonal. Hence the diagonal terms in the remainder R(t) are

of order ¢°. Hél)(t) is block-diagonal, with respect to the partition of unity, eqn.(2.11). The
spectrum of each block must be found by direct diagonalization.

3.2 Generalization to higher orders

In this section we shall generalize the ideas of the previous section and find a unitary operator
which block-diagonalizes the Hamiltonian to an arbitrary finite order n> 2.

Lemma 3.1 Consider a selfadjoint Hamiltonian of the form H(t) = Ho +tV. Then for
any n > 0 one can find a unitary operator

UM (1) := exp[S™ (1)), (3.15)
where S™M(t) = "_ 7 S;, such that the transformed Hamiltonian,
H™ () = UM@) HE) U™@) ™, (3.16)

is block-diagonal up to order t"*!, w.r.t the partition of unity, eqn.(2.11).
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Proof: We look for an operator of the form
S(n) = S(n)(t) == Zt‘)S] N (317)
ij=1

such that
Si=-=5; forall1 <j<n, (3.18)

and that the transformed Hamiltonian
HO() = 5™ H(t) e 5™ (3.19)

has no off-diagonal terms up to order n. On expanding (3.19) in a Lie-Schwinger series, we
obtain r .
HO(t) = Ho+1tVi+ ) <ad' SO (Ho) + 3 —ad’SW(V) . (3.20)
i>1J i>1J
This series converges absolutely for all (real or complex) ¢. Further, expanding via (2.23),
we can write this in the form

H™(t) = Ho + Y ' [adS;(Ho) + Vi] + Y t'V; (3.21)
=1 j=n+1
where V; :=V and
1
V, = 3 EadSkl (adSk, - - (ad Sk, (Ho)) - )
P22, k121, kp>1 £
ki +-tkp=j
1
+ 3 — ad Sy, (adSk, -+~ (ad Sk, (VA)) - --) (3.22)
P21,k >1..,kp>1 P
k1t thp=7—1

for 7 > 2.
In order that the operator U(™ removes all off-diagonal terms up to order ¢* from the
above series we demand that

[adHo(S;)° = VP4 for 1<j<n, (3.23)

which uniquely determines the off-diagonal part of S;. The diagonal part is arbitrary and is
chosen to be zero, so that we obtain

S; =ad ' Ho(V?Y). (3.24)

The system (3.22)/(3.24) has a unique solution that is found recursively starting from ;.
We see that the operators have the right symmetry properties: (2.24) and (2.5) imply that
if Vi € § then V; € § and S; € A for each j. This last fact implies (3.18) and hence the
intended unitarity of U(™). The bound (2.35) implies that

vl

ISl < "%

(3.25)
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Let us point out, as well, that the definition of the operators S; is independent of n.

Thus, we conclude that the unitary operator U™ = 63("), where S(™ is defined through
eqs.(3.17), (3.22) and (3.24), transforms the Hamiltonian to

n+1 )
H™M(t) = Ho+ > VA + RM(1), (3.26)

j=1

where each V is block-diagonal, and R(™(t) is a remainder of order > (n + 1) in ¢. The
diagonal terms in R(™(¢) are of order (n +2). W

For example, for n = 2, we have from eqn.(3.22)
1
V, = 5a,dsl (adSy(Hp))) + ad Sy (V) + ad Sy (V)
= adS; (V3 + %adS,(Vfd), (3.27)

where we have used the relation ad Ho(S;) = V9.
The operator adS; (V) is off-diagonal, since S, is off-diagonal. Hence,

1
Vi = 2 [adsi(vh)]’ (3.28)
and
S, = ad " Hy(V2Y), (3.29)
where ] .
ved = adSy(VE) 4 §[auisl(v;d)]" . (3.30)

3.3 Analyticity of U ()

As the operators S(® are polynomials in ¢, each U™ is an entire (operator-valued) function
of ¢, which has the bounded entire inverse e=5". The successive operators 5 are obtained
by adding terms S; of higher order, without changing the terms already defined in the
preceding steps. In the following theorem we show that the norms of the (n-independent)
operators S; have an at most power-law growth in 7, and hence we can take the limit n — oo
of the expansion (3.17). This yields a transformed Hamiltonian H () which is completely
block-diagonal.

Theorem 3.2 There is a constant to > 0 such that

5©)(t) := lim S™(¢) (3.31)

n— 00

exists and is an analytic function of t in the disc {|t| < to}. Here S™ is the operator defined
by eqs.(3.17), (3.22) and (3.24). As a consequence:

(i) The operator U™®)(t) := lim, ,o,U™(t) exists, is analytic and has a bounded analytic
inverse in the disc {|t| < to}. For real t, U(*)(t) is unitary.
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(i1) This operator U(™)(t) defines a block-diagonal transformed Hamiltonian H(™)(t) which
is an analytic function of t in the disc {|t| < to}. Its series expansion is given by the
perturbation series (3.21), with V; defined by (3.22) and S; by (3.24).

Proof: Equation (3.22) implies that

|Ho

S5 ” Z Z Sky SkyeersSk

p--.2p k31 k1
k1+ +kp=.7

A S

Z Z Sk, Skz....Skp ; (332)

A pulp k21 . kp>1
by Foet hp =1

for 7 > 2. We have defined
si = |1Sill (3.33)

and used the bound (3.25) and the inequality
lladA(B)|| < 2[|A[llIBI| - (3.34)

The sum over all ways of writing an integer as a sum of smaller integers leads us to a
recursion relation closely related to the Catalan numbers (these appear, for instance, when
counting the number of binary trees, see e.g. [9, problem 13-4]). Indeed, consider the numbers
(B;);>1 recursively defined by the equations:

B, = s1 (3.35)
142

By = —ZBJ xBr, j>2. (3.36)

where a satisfies | ol ) il

0 et —2a—1 1 9
*—-1) =1. 3.37
A ( a ) * 2A s, (e ) ( )
Our proof relies on the following inequality.
Claim:

g < By (3.38)

This is proven by induction in 5. Equation (3.38) is obviously true for j = 1. Assume that
it is true for j — 1. We leave to the reader the easy inductive proof that (3.35)—(3.36) imply:

E Bk1 Bkz--‘-ka S a”_lBj (339)
k121 ..,kp>1
ky+ootkp=j

for any j > 1. Using this inequality and (3.32) we readily obtain

2a _ 2a_1
s; < BJ”H{)” (6 2a 1)+BJ_1”V'1H (e . ) ) (340)

A a A
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Equations (3.35)—(3.36) imply that

1 =
B, = E[2Bj_1sl+ZBj_'kBk]
k=2

y S (3.41)
a
Combining (3.40) with (3.41) we obtain (3.38):
[Holl (e*=2a—1Y Wl .
< B a_
= l A a 4 2Asq (e b
= B (3.42)

where the last line is a consequence of the choice (3.37) for a.

Inequality (3.38) implies the theorem, because the numbers B; are the Taylor coefficients

1 —+/1 —(4s1z/a)
flz) = 2a . (3.43)
This fact can be seen, for instance, by observing that the relations (3.35)-(3.36) imply that
the generating series B(z) := 3,5, B;z’ satisfies the identity B(z) = (B%*(z)/a)+si1z. Again
we refer to problem 13-4 in [9]. Therefore, we conclude that the series defining S (¢), n > 1,
are uniformly majorized by the series of f(t) and, hence, so is their limit n — oo. The radius
of analyticity of the latter is bounded below by that of (3.43):

a a\
fp > — 2> —
© T 4s T oA

[The last inequality is due to (3.11).] ®

of

(3.44)

Remark: One can obtain an explicit bound on a by combining (3.37) with the inequality
(e** — 2a — 1)/a < €?* — 1. One obtains

(e —1) (”i"” + X‘i) > 1 (3.45)

which implies

1 A
a 2 Ell’l 1+ ——V .
o) + Ll
Since the numbers B; increase with s;, we obtain a (larger) majorizing series if we replace
51 by an upper bound throughout the preceding proof. In particular, if we use the bound

s1 < ||[VP4)|/A [eqn. (3.11)] we get a (smaller) lower bound on the radius of convergence of
5(=) given by the rightmost bound in (3.44) with

(3.46)

1
a > —-In|l1l+

2 A V| )
Holl + = (1 +
” 0” 9 Nvlod”

(3.47)
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3.4 Alternative approach

Instead of using the unitary operators U™ (t) = exp[S(™(t)] defined in Section 3.2, the partial
diagonalization can be accomplished by the successive application of simpler operators:

H™(t) = exp[t"8,(t)]- - - exp[tSi ()] H(t) exp[—tSi(t)] - - - exp[—"5.(2)] - (3.48)
The Lie-Schwinger expansion of this expression yields:
{in {9

HO@®) =Y L3 —ad G, (- (ad? 8y (Ho + V) --) (3.49)

- ' .
in20 Jnt gi>o J1-

Regrouping terms with like powers of ¢, we obtain, in complete analogy with (3.21)-(3.22),

H™() = Hy + Ztm adSn (Ho) + V| + Z i, (3.50)

m=n+1

where V; := V and

~ L 1 ~

a pz2,(k21: p): [H(Cafd{ﬁ' kj = })! ladsk (- (adSkl (HG)))
1<k < kp&n
k1+“‘+kp=j

n 1 R A
+ 2 {Hl T s = i})!]adSkp(. -+ (adS, (V) -+)

P21 ’ (klr"akp): =

[<k S kp<n
it Fhp=j—1
(3.51)
for § > 2. These operators 17;, define the operators ,§j by the analogue of (3.24)
S; = ad " Ho(V?Y) . (3.52)

This approach is more convenient for numerical calculations, because expression (3.51)
involves less terms than its counterpart (3.22). In the limit n — oo the resulting series
can also be bounded above by the power series with coefficients s; satisfying (3.32). Hence,
(3.44)—(3.47) are lower bounds for its radius of convergence.

3.5 Perturbation theory in infinitely many dimensions

Consider a Hamiltonian
H(t) = Ho +tV (3.53)

acting on an infinite-dimensional Hilbert space H, where Hj is selfadjoint, ¢ is the perturba-
tion parameter, and V is a symmetric operator which is relatively bounded with respect to

Hy, i.e.,
(i) D(V) O D(Ho),
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(i) for all ¥ € D(Ho) and for some a,b > 0

IVibllz < a|lHotpll2 + b]|2l2s (3.54)

where the symbol || - ||; denotes the norm of vectors in the Hilbert space H.
Let I be an isolated part of the spectrum of Hy, i.e., if

J = o(Ho)\ I, (3.55)
then
dist(1,J) := %P[E—E'| > A (3.56)
E’e)

where A is some positive number. We assume that [ consists of a finite number of eigenvalues
of finite multiplicity.
Let P be the spectral projection of Hy associated with I. Then

1 1
P=-—fd 57
2mi Jy zz — H, ($4F)
where 7 is a closed positively oriented curve in the complex plane enclosing only the segment
I of o(Hy). The operator
1 1
Pit)=—§ 3.58
4 2mi qdzz—H(t) (ehiE)

exists and is analytic in ¢ for ¢ near zero. P(t) is a finite rank projection operator with

P(0) = P. For | t | small, rank P(t) = rank P, and
lim,_|[P(t) = Pllop =0 (3.59)

We want to study the effect of the quantum perturbation tV on the segment I of o(Hp).
For this purpose we define bounded operators

Ho = (Ho + k)P, (3.60)
where k > 0 is chosen such that I + k& C [4,00), ¢ > 0, and

H(t) = (H(t)+k)P()
= (Ho+k)P + (Ho + k)(P(t) — P) + tVP(t)
= Ho+ V(). (3.61)

The spectrum of Hg is given by
o(Ho) = {0} U (I + k). (3.62)

The eigenvalue 0 of Hp is separated from the rest of the spectrum by a finite gap:

A = dist[{0},(Ho) \ {0}]
> 4>0. (3.63)
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The operatorj/(t) can be treated as a perturbation of the selfadjoint Hamiltonian Ho. The
Hamiltonian H(t), defined in eqn.(3.61), can be analyzed by our perturbation scheme. This
is because the operators Hy and V/(¢) have the following properties:

(| Ho|lop = const. < co (3.64)

and

IV(#)llop — 0, as t —0 (3.65)

[as one shows by using the Neumann series expansion of (z—-—H (t)) —1]. Hence all the results of

Section 3.3 apply, and we conclude, among other things, that there exists a unitary operator
U(®)(t) such that the Hamiltonian

UC) Ht) UC(t) ™ (3.66)

leaves the subspace PH invariant and vanishes on the subspace (1 — P)H. In particular,

U@ P U(#) " =P. (3.67)
The problem whose solution we have just sketched has been solved, a long time ago, under
considerably more general circumstances. We quote the pertinent results from [16, 21].

Theorem 3.3 Let R be a connected, simply connected region of the complex plane containing
0. Let P(t) be be a projection-valued analytic function on R. Then there is an analytic family
of invertible operators U(t) with

U(t)™ P(0)U(t) = P(t), (3.68)

for all t € R. Moreover, if P(t) is selfadjoint, for real t € R , then we can choose U(t)
unitary, for t real.

Remark: The operator U(t) is not unique. Explicit forms for U(t) can be found in [16].
This theorem allows us to define a Hamiltonian

U)H)U@)™ (3.69)

where H(t) is given in eqn.(3.61), with P(t) as in eqn.(3.58). This operator leaves the
subspace Ran P invariant.
Our method yields an explicit construction of operators U™ (¢), for any n < oo, such
that
U(t) = U®(t) = lim U™(1), (3.70)

n—+o0

(Lemma 3.1 and Theorem 3.2).



770 Datta et al.

4 Quantum lattice systems: Framework and perturba-
tive approach

4.1 Introductory remarks

We now turn to the study of phase diagrams of quantum lattice systems. In [10, 3] a
theory was developed for models with a dominant classical part which satisfies the following
hypotheses:

(H1) The (periodic) groundstates have an at most finite degeneracy.

(H2) The Peierls condition holds, which roughly means that excited configurations have an
energy proportional to the area of the defects.

For low-temperatures and small quantum perturbations, the phase diagrams of such models
are shown to be smooth deformations of the zero-temperature phase diagram of the classical
part [10, 3]. The treatment is based on an extension of the Pirogov-Sinai theory of classical
lattice models [19, 20, 25, 28, 2] to quantum systems.

There have been a number of extensions of the theory to classical systems which violate
(H1) (eg. [6, 7, 14, 8]), or (H2) [8]. The purpose of the present paper is not to exploit
these extensions, but rather to investigate an intrinsically quantum phenomenon: In many
instances, the quantum perturbation effectively removes the infinite degeneracy, or restores
the Peierls condition, placing the system within the setting of the standard Pirogov-Sinai ap-
proach. The formalization of this fact is through techniques of partial block-diagonalization
discussed below: The partially block-diagonalized Hamiltonian acquires a classical leading
part that satisfies the hypotheses of Pirogov-Sinai theory.

The theory we develop in the sequel has, therefore, two components: A block-diagonaliza-
tion scheme within the framework of lattice systems, and a small generalization of the quan-
tum Pirogov-Sinai theory of [10, 3]. In this section we discuss the block-diagonalization
process; the Pirogov-Sinai theory is presented in Section 5.

4.2 Basic set-up

We consider a quantum mechanical system on a v-dimensional lattice Z”. We consider
translation-invariant systems, but systems which are invariant under a subgroup of finite
index of Z" can be accommodated with trivial changes. Standard references for this section
are [23, 4, 5, 24]. Here we require a slight modification of the usual formalism in order
to treat fermionic lattice gases. While minor, these modifications are essential for both,
the diagonalization procedure and the Pirogov-Sinai theory (see [10]). For fermionic lattice
systems creation or annihilation operators at different sites of the lattice do not commute, but
anticommute. But in both parts of our theory we must impose commutativity (or locality)
conditions. This is achieved by requiring that interactions belong to a suitable (physically
reasonable) class of interactions.
A quantum lattice system is defined by the following data:
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Figure 1: Spiral order in Z*

(i) To each lattice site z € Z” is associated a Hilbert space H, and, for any finite subset
X C Z7, the corresponding Hilbert space is given by

Hyx = @ Ho. (4.1)

We require that there be a Hilbert space isomorphism ¢, : Hy — H, for all z € Z". To
avoid ambiguities in the definition of the tensor product (4.1), we choose a total ordering
(denoted by the symbol <) of the sites in Z”. For convenience, we choose the spiral order,
depicted in Figure 1 for v = 2, and an analogous ordering for »» > 3. This ordering is chosen
to have the property that, for any finite set X, the set X := {z € Z", 2z < X} of lattice sites
which are smaller than X, or belong to X, is finite.

(ii) For any finite subset X C Z"” two operator algebras acting on Hx are given
(a) The (local) field algebra Fx C L(Hx),

(b) the (local) observable algebra Ax C Fx,

which have the following properties:

DIfX CY and z <y, forall z € X and all y € Y\ X, then there is a natural embedding
of Fx into Fy: An operator B € Fy corresponds to the operator B ® 1y, , in Fy. In the
following, we write B for both operators B € Fx and B ® 1y, x € Fy.

2) For the infinite system, the (quasilocal) field algebra is the norm closure of the union of
all local field algebras, i.e.,

F= |J Fx (4.2)
X zv
(the limit being taken through a sequence of increasing subsets of Z”, where increasing refers
to the (spiral) ordering defined above). Similarly, the (quasilocal) observable algebra for the
infinite system is defined as

A= U Ax . (4.3)
X/ Z

The group of space translations Z" acts as a *-automorphism group, {7, : a € Z"} on the
algebras F and A4, with

fX+a = Ta(FX)) AX—i-a. == TG(AX)) (44)

for any X C Z" and a € Z".
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3) Commutativity condition: If X N Y = (), then for any A € Fx, B € Ay

[A,B] = 0. (4.5)

(iii) An interaction ® = {®x} is given: This is a map from the finite sets X C Z" to self-
adjoint operators ®x in the observable algebra Ax. The bonds of the interaction are the sets
X for which the operators ®x are not identically zero. We consider translation-invariant
interactions, i.e., ®x 4, = 7, Px, for all X C Z” and a € Z". The range of the interaction is
the maximum of the diameters of the sets of the family Re = {X C Z": X 5 0 and ®x # 0}.
We shall use the £*°-diameter

diamM := max max |z; — yi| - (4.6)
z,yeEM 1<2<p
Some of our interactions will be of finite range, that is, with Rg finite. More generally, we
shall consider interactions decaying exponentially with the size of their supports, that is,
with

12l = 3 |x]le™ (4.7)
X30
finite, for some r > 0. Here || - || denotes the Hilbert-Schmidt norm and s(X') denotes the

cardinality of the smallest connected subset, X, of Z” which contains X. We shall denote
by
B, := {®:]9], < oo} (4.8)

the corresponding Banach space of interactions.
Similarly, we can define a Banach space B as

BP = {®={0x}: Y [|®xllope”™) < oo}, (4.9)

X530

where || - ||op denotes the operator norm.

Remark: If the Hilbert spaces H, ~ H are finite-dimensional, as for spin or fermionic
systems (see Examples (i) and (ii) below), the Hilbert-Schmidt norm of ®x is equivalent to
its operator norm ||®x||op, i-€.,

[9xlop < [[@x]| < dim(H)|[®xlop, (4.10)

where dim(H ;) is the dimension of H 3 and is given by

dim(Hg) = (dim(#)) ", (4.11)

Hence,

> l1@xllope™® < 37 [|@x [l

X30 X350

< Y 1@xlop e, (4.12)
X30
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where

r' = r + ln(dimH). (4.13)

Therefore, if an interaction ® belongs to a Banach space B, for some r > 0, then it also
belongs to the Banach space BeP. Conversely, if an interaction ® belongs to a Banach space
B.F for some r' > 0, then it also belongs to the Banach space B, with r defined through
eqn.(4.13). Given the above equivalence of norms and the relation between the corresponding
Banach spaces, we prefer to use the Hilbert-Schmidt norm in our treatment of lattice systems
since this makes the analysis simpler.

In the sequel we have to consider a particular class of interactions: the classical interac-
tions. Let I be an index set and {e;};c1 be an orthonormal basis of H. Then for X C Z",

Ex = {@sexel}, with €2 =¢;le;, (4.14)

is an orthonormal basis of Hx. We denote by C(€x) the abelian subalgebra of Ax consisting
of all operators which are diagonal in the basis £x.
An interaction @ is called classical, if there exists a basis {e; },;er of H such that

by € C(Sx), for all X C Z". (4.15)

The set, Qx, of configurations in X is defined as the set of all assignments {j:}{zex} of
an element 7, € I to each z. A configuration wx is an element in Qx. If Y C X then
wy denotes the restriction of the configuration wx to the subset Y. There is a one-to-one
correspondence between basis vectors ®,cx e, of Hx and configurations on X:

X € +— wx = {Jotoex - (4.16)
reX

In the sequel we shall use the notation e,, to denote the basis vector defined by the config-
uration wy via the correspondence (4.16).
Since a classical interaction @ only depends on the numbers

Bx(wx) 1= (eur|Px [euy) (4.17)

we may view ®x as a (real-valued) function on the set of configurations. Similarly the
algebra C(£x) may be viewed as the *-algebra of complex-valued functions on the set of
configurations {1x.

We will consider Gibbs states on the field algebra F. They may be specified in terms of
interactions or in terms of (finite-volume) Hamiltonians.

Given an interaction, the Hamiltonian associated with a finite subset A of the lattice
takes the form

Hy = ) @x. (4.18)
XCA

More generally, for a configuration ¢, and finite regions I' D A, the Hamiltonian “with
boundary condition” ¢ is the operator

HE" = Z Pra®x Prya (4.19)
XNA#D
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where PR\, := |or\a)(or\a|- The Gibbs state in the finite volume A for an interaction @,

boundary condition ¢ and inverse temperature 3 is the positive linear functional on Fj
defined by

. TrAexp(—f8H;")
Fra3A = 1
4287 (3% TTrexp (—BHY)
The infinite-volume limits of these functionals determine the phase diagram of the system.

EXAMPLES:

(1) Spin—p quantum spin system: FEach lattice site is occupied by a particle of spin p. The
Hilbert space at each site is isomorphic to H# = €?"*!, The field algebra and the observable
algebra coincide,

(4.20)

Ax = Fx := L(Hx), (4.21)

where L£(Hx) denotes the algebra of bounded operators on Hx. The algebra A for the
infinite system is a C*-algebra.

(ii) Quantum lattice-gas of spin 1/2-fermions: Each lattice site can be empty, occupied by
a single particle or by two particles of opposite spin. Let us consider the Hilbert space

H=0°® C?~ C* with the basis

(2)o(2).(8)o(2)-(2)e(2).(3)o(2) .

and the following representations of the Lie-algebra of SU(2) on ‘H

0 1 01
b + _
01—(00)®1, ‘72"1®(0 0)’
g = (o*fr)* ; oy = (0';)*, (4.23)
1 0 1 0
3 _ 3 _
"1“(0—1)@1’ "2‘1@(0 —1)
We have
Mo =0 H ; (4.24)
and thus we set
o-f,i = ¢;10‘§t¢xa i=1a2a
ag,i == ¢;10?¢I ) ": = 172 . (425)

We recall that we have chosen a total (spiral) ordering (<) on Z”. We complement this
ordering with the convention that in each factor H, ~ €2 ® € the first factor €? is smaller
than the second one, i.e., (z,i) < (y,5) if ¢ < y, 4,7 = 1,2 and (z,1) < (z,2). With
these conventions we define the fermion creation and annihilation operators at site by the
following Klein-Jordan-Wigner transformation:

& = @ (0% ®ch) @k (4.26)

y=<z
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Coy = (031 ® 032) X ol ® ok, (4.27)
y<z

et = (ck) (4.28)

e o= (c). (4.29)

It is straightforward to check that these creation- and annihilation operators satisfy the
canonical anticommutation relations

{Cxcr: C;'a'} = 5::::5’500’3 (430)

{C-TU’C-’E'O'} =0= {c;a‘i C;'a’} ’ (431)

for 0,0’ € {1,1}. The field algebra Fx is the algebra generated by the creation and annihi-
lations operators:

Fx = {Cooy Cpyr | 2,2 € X; 0,0 € {1,4} ) . (4.32)

The observable algebra Ay is the even part of Fx, i.e., the algebra generated by the products
of two annihilation or creation operators:

A = | Coalyipt s € B uy G Bilyiy ConCoag | 2@ E.X; ove’ E4Tl} ) s (4.33)
We have
Ax C Fx C L(Hx) , (4.34)
By using the identity
[A,BC] = {A,B}C - B{C, A}, (4.35)

one checks easily that the commutativity condition (4.5) is satisfied. For the infinite system,
both A and F are C*-algebras. From a physical point of view, it may appear more natural
to choose Ay as the algebra of gauge-invariant operators. However, our definition of Ax
is sufficient to ensure the condition of statistical independence of disjoint contours in the
contour expansion of Section 5.2.

A similar construction holds for quantum lattice gases of fermions with arbitrary spin.

(iil) Quantum lattice gas of scalar bosons: Each lattice site can be occupied by an arbitrary
number of particles. The Hilbert space at each site is H = [?(IN). The field algebra Fx is
generated by the creation and annihilation operators satisfying the canonical commutation
relations.

[C;, cw'] = 5.7::1:'; (436)
[ezytnr] = 0= [}, 2] (4.37)

for z,2' € X.

The observable algebra Ax may be chosen as Ax := Fx. Since creation and annihila-
tion operators for bosonic particles are unbounded operators, Ax and Fx are *-algebras of
unbounded operators.

From a physical point of view it is more natural to choose Ax as the even part of Fx
(as for fermions) or even as the algebra consisting of gauge-invariant operators. However,
we will not need such assumptions in the sequel.
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Our contour expansion methods of Section 5.2 do not apply to bosonic systems where
an arbitrary large number of particles can be on some lattice site. We must restrict our
attention to states satisfying a condition of regularity. Let n, = clc, denote the particle
number operator at site z. We will call a state, p, for a bosonic lattice gas regular if the
following holds: For arbitrary X C Z*

p (et 2rex ”x) < X)) - for all Jt| < oo (4.38)

for some function a(t). For Gibbs states such a condition will follow by imposing a suitable
hardcore condition.

A similar construction holds for quantum lattice gases of bosons with arbitrary spins.

4.3 Equivalence of interactions

In this section we begin to discuss the first component of our theory, namely the development
of a block-diagonalization scheme analogous to that of Section 3, but suited to lattice systems.
It would be of little use to directly apply the expressions of Section 3 to partially block-
diagonalize each (finite-volume) Hamiltonian of a lattice system, because the convergence
radius of the block-diagonalization procedure tends to zero in the volume of the region.
Indeed, the information of interest refers to the thermodynamic limit, hence the procedure
must, in some sense, partially block-diagonalize all finite-volume Hamiltonians at the same
teme. This is accomplished by requiring that each partially block-diagonalized Hamiltonian
also be a sum of local operators. In other words, the objective is to partially block-diagonalize
interactions, up to small error terms, rather than Hamiltonians.

A Hamiltonian and its partially block-diagonalized form must be equivalent, in the sense
that they lead to the same quantum mechanics. We also need a notion of equivalence of
interactions. Let us consider a family of unitary transformations {Up }, labelled by the finite
regions A C Z”, satisfying the following requirements:

(E1) The family of unitary operators {U, } determines a map between interactions
®eB.— P B (4.39)

for some r,7 > 0, i.e., if Hy are the Hamiltonians corresponding to the interaction
® € B,, then the transformed Hamiltonians

Uy Hy U = Hy, (4.40)
correspond to the interaction ® € Bs.
(E2) The transformations preserve quasilocality:
Ac Ay = Al_i,nzl.,UAAUKl €A

. -1
AeFx = lim DAUR' € F (4.41)

(the limit taken through an increasing sequence of volumes).
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The interactions ® and ® related by such transformations constitute equivalent descriptions
of the same physical system. Indeed, Condition (E1) implies that equivalent interactions
have the same partition functions

Tr(e4) = Tr(ePHh) . (4.42)

and the same free energy, while condition (E2) implies that observables are transformed
into observables with transformation law

Tr(Ae™Pn) = Te(Ug! AU e PPh) . (4.43)

This shows that ® and ® lead to the same statistical mechanics.

A fairly general way of satisfying both requirements (E1) and (E2) is by defining the
transformations Uy := exp[S*] as the exponential of a sum of local operators. We adopt
this as our definition of equivalence. Given a translation-invariant family of anti-selfadjoint
operators S = {Sy}, Sy € Ay, with § € B,, for some r > 0, we shall say that an interaction
® is S-related to an interaction ® if (E1) and (E2) are satisfied with

Ey = exp[SA] = exp[y‘; Sy] . (4.44)

Corollary 4.2 below shows that in such a situation (E2) is satisfied. Corollary 4.4 shows
that (E1) is satisfied as well. In particular, the family U, preserves the exponential decay
of interactions, although at a possibly slower rate.

More generally, two interactions ® and ® are said to be equivalent if there exist families of
anti-selfadjoint operators &y,...,S,, with §; € B, for some rq,...,r, > 0, and interactions
® = ®,9y,...,9, = & such that &; is Si-related to ®;_; for 1 < i < n. This definition
does indeed establish equivalence relations between classes of interactions representing the
same physical system. Equivalent interactions are all exponentially decaying, albeit not
necessarily at the same rate.

Before stating our results we introduce some notation: By the commutativity condition
(4.5), for each Ax € Ay, (resp. in Fy), there exist operators C5(Ax) € Az, (resp. in Fz),
such that

}-adJSA( = Y 0¥ (Ax). (4.45)

ZCA

Moreover, if the operators Sy (in (4.44)) are anti-selfadjoint, then
Ay selfadjoint = CY)(Ax) selfadjoint , (4.46)

foreach Z € Z%, 5 > 0.
Indeed, due to the commutativity of operators localized in disjoint subsets of the lattice,
we have that

ad 3 Sy(Ax) = Y adSy(---(adSu(Ax) ), (4.47)

YCA Y1,...Y;CA
X —c.s.
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where “X —c.s.” (X-connected subsequences) stands for the constraint
inx #0,,n(riux) 0, . V,n(Y, U UV LUX) # 0. (4.48)

We now resum all terms on the RHS of eqn.(4.47) with the same Y, U---UY,UX = Z. We
obtain

1 . ;
—ad’ 3_ Sy (Ax) = Y. CP(Ax), (4.49)
7o 75%
with i
CP(Ax) = = Y adSy, (- (adSy(Ax)) ) . (4.50)
J* w,.¥cA
X —c.s.

XUY U uY;=2
This expression appears in (4.45).
We have the following result:

Lemma 4.1 Let § = {Sy} be a translation-invariant family of operators, Sy € Ay with
IS|lr < co. Then for each Ax € Ax , (resp. in Fx), we have that

> o7 (Ax HAxll(

ZCA

-r

Isi.)’ (4.51)

uniformly in A.

Using the Lie-Schwinger series, and noting that the RHS of (4.51) is independent of A, we
obtain the following corollary.

Corollary 4.2 Let S = {Sy} be a translation-invariant family of operators, Sy € Ay. If

18]l < 1, (4.52)

then for each operator Ax € Ax, (resp. in Fx), the limit limy_,z~ UrnAxUg! exists and
defines an operator in A, (resp. in F).

Lemma 4.1 is a well-known result in the theory of quantum lattice systems [26, 22] [23
Lemma 7.6.1], [24, Lemma IV.3.4].
Concerning Condition (E2) we have the following result:

Lemma 4.3 Let § = {Sy} be a translation-invariant family of operators, Sy € Ay with
IS||- < co. Then for each ¥ < r

; (r—
> S lef @l < jel it (2 2isi)’ (4.53)

Z30 X £

The transformed interaction ® = {®;} is given by

o, = S ¢ Y CY(®x) (4.54)

i>0  XCZ

Thus, combining Lemma (4.3) with the Lie-Schwinger series we obtain
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Corollary 4.4 LetS = {Sy} be a family of anti-selfadjoint operators, Sy € Ay with ||S||, <
oo. Then, for each T satisfying
2e=(r=7)

r—

= lISli- (4.55)

the following holds: For each ® € B, there exists a S-equivalent interaction d e B:. More-
over, ® satisfies

-1

N " ) e~ (r=7 ’
I8k < Nell = 2 (Z—is))" = ”‘f”r[ (2 ~nsn,” (56)

! 7 r r—

Proof of Lemma 4.3:
The proof of this lemma is a slight variation of the proof of Lemma 4.1.
We have

CP(@x) = = S adSy,(--- (adSy, (®x))---) (4.57)

Yll'“ij CA
X—c.5.
XUYIU-nUYJ‘:Z

where Z is a fixed finite subset of the lattice. To obtain (4.53), we start with the bounds

ladA(B)|| < 2[|Alll|BIl , (4.58)
and
$(Z) < s(X) +s(Yi) + - +5(Y;) (4.59)
to get
> ICP(@x)) ) <
Z30 X
27

T2 e e Sy eVl 70 (4.60)
*X)Y,.Y X—cs.
XLleu--J-quao

To bound the sum on the RHS we start with the following two steps:

(i) We bound the sum over X-c.s. containing the fixed site 0 by a sum over pinned X-c.s.
These are X-c.s. with a fixed “initial” point, for instance, such that 0 is the first site of
X in lexicographic order. The contribution of each pinned X-c.s. must be multiplied
by the number of translations containing the origin, that is by the cardinality of the
resulting set:

I XUYiU---UY| < s(X)+s(Yh)—1+...+s(Y;) -1 (4.61)

(the factors of “-1” arise from the requirement that each additional ¥; must have at
least one point in common with the pre-existing sequence).

(i1)) The pinned sequence X,Y),...,Y; is constructed by taking a pinned X-connected
subsequence X, Y;,...,Y;_; and adding to it an intersecting set Y;. This in turn is
accomplished by picking a site z;_; € X UYj U---UY,_; and a set Y; 3 2;_;.
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These two steps yield:

99 . ~
EZ”C Hefs(Z < - Z ”q)X“erS(X) “SY;—1” e s(Yi-1)
Z30 X 7' xvi v
pinned X —c.s.
x N(X, Y, Y1), (4.62)
with
N(X')K:"',}?,.I) = Z

zj1EXUYU--UY;

X 30 [s(X) +s(Y) = 14... +5(Y;) — 1] ||Sy; || €7 .

Yi3z

(4.63)

As the sum over Y is independent of the chosen site z;_;, we can use (4.61) to bound

N(X, Y1y, Y5m) < [8(X) +5(Ya) = 1+... +5(¥jo1) = 1]
X Y [s(X)+s(Yi)—1+4...4+s(Yj1) — 1+ kj — 1]
kj>1
x 3 ||y, || et (4.64)
Y;30
s(Y;)=ky

We now iterate step (ii) above: We construct the pinned sequence X,Y;,...,Y;_; by
taking a pinned X-connected subsequence X, Yi,...,Y, 2, asite z;_, € XUY;U---UY,_,
and a set Y;_; O z;_2. This leads to another factor [s(X) +s(Y;) —1+...+s(Y;—2) — 1] in
the bound analogous to (4.64). Continuing in this way we arrive at

j+1
)M [SACNIESLIERS DD IRDD H[k+Z (ke = 1)
730 X k21>l k>li=1 £=0
o J -
AL X 1oxl @] II[ X Isvlle™ ]
X230 i=1 Y30
s(X)=k s(Y)=ki
(4.65)
with the convention s(Y¥p) = 1.
We now use the bound [ ]
n! exp|(r — )z
" 2 4.66
M =) (40
which holds for all ¥ < r, to obtain
i+l i-1 j 4
[I[s(X)+36m) -] < [s(X) + 3 (s(¥0) — 1)]
1=1 =0 =0
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From (4.65) and (4.67) we finally obtain

' % + 1) -
Y Y e @)F @ < V2 s yg o]

Z30 XCz [(T _ r)] =
X lj;l:e"(r—:) YZO [ISY H & s(Y?}
(7+1) 2~ (r-7) ¥
(r—7) 12, (—TT HS”r) N | (4.68)

Of course there is a large amount of freedom left in defining the transformed interactions.
Trivial manipulations like grouping terms or adding constants yield different interactions
with the same physical content, but which may have very different norms [27]. In particular,
when applying the Pirogov-Sinai theory to fermionic systems, one considers interactions that
are given by sums of monomials of even degree in creation and annihilation operators. For
these interactions the bound (4.56) holds if the operators in the family S (and hence too the
transformed interactions ®) are also given in terms of such monomials.

Therefore, the plan for this sequel is to adapt the formalism of Section 3 so as to produce
families of anti-selfadjoint operators ¢Sy, -t"S, leading to equivalent interactions ®((¢)
that are “block-diagonal” up to order n in ¢. We concentrate our attention on groundstates
and on low-temperature phase diagrams. Our partial “block-diagonalization” scheme is de-
signed to be combined with the Pirogov-Sinai theory of Section 5, more precisely with Theo-
rem 5.2. It is therefore sufficient to analyze the bottom of the spectrum of the Hamiltonians:
The scheme will not be required to remove, to the pre-established order, all off-diagonal
terms, but only those terms which conspire against the smallness of the parameters listed
in (5.22). As we shall see, successive S, will diagonalize terms involving up to n bonds at a
time: S; diagonalizes —to second order— terms involving only one bond, S; deals with the
simultaneous action of two neighbouring bonds, and so on.

4.4 Local groundstates and excitations

Our starting point is a selfadjoint interaction of the form
O(t) = B+ 1Q (4.69)

We shall denote by Hy = Y xca Pox and V = 3 xcp @x the corresponding finite-volume
(unperturbed) Hamiltonians and perturbations . (For simplicity we omit the A-dependence
in the sequel.) We assume that the unperturbed interaction ®, and the perturbation inter-
action @) satisfy the following properties:

(P1) The interaction ®¢ is classical, i.e., there is a basis of H such that ®ox € C(€x),
for arbitrary X, and of range R < oco. Moreover, we assume that ®, is given by a
translation-invariant m-potential [15]. This last condition means that we can assume
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(if necessary by passing to a physically equivalent interaction) that there exists at least
one configuration w minimizing all ¢y, i.e.,

Qox(w) = miln Pox (w') (4.70)

w

for all X. For any m-potential, the set of all configurations for which eqn.(4.70) holds
are groundstate configurations of ®,. To simplify the notation, we normalize the m-
potential by making the replacement

Pox(w) — {Pox(w) — Irtlultl'l Dox(w')} - (4.71)
Thus, we shall assume that

Pox(w) >0 and min Pox(w') =0. (4.72)

(P2) The perturbation interaction () is in some space Banach space B,:

QI == > IQxle”™) < oo (4.73)

X30

for r > 0.

Let us first introduce some definitions related only to the “classical” Hamiltonian Hy.
Because of our normalization of the m-potential (4.71), the groundstate energy of Hy is equal
to zero. We define the set of groundstate configurations of Hy associated with a subset Y of
A as follows:

Q) = {wy : Pox(wy) =0 forany X CY}. (4.74)
We define PP to be the projection operator onto the subspace HY
Hy ={peHy 9= ) Cuyburh (4.75)
WyE.Q?,

i.e., onto the subspace of Hy spanned by the local groundstates in Y.
To deal properly with the local character of the different operators we define, for any
z € Z*, the R-plaguette centered at z (recall that R is the range of Hp):

W, ={yeA:|yy—zj| <R, for1<:<v} . (4.76)
For any set X C Z", its coverings by R-plaquettes is denoted by
Bx = |J W;. (4.77)
z€X

We introduce some special projection operators on Hp,, the space generated by the
vectors ey, with wg, € Qp,:

(1) The orthogonal projection onto the space of states which fail to be groundstates in a
region X C By:
0
Péx = ng\x - Py, . (4.78)
The set Bx \ X acts as a “protection zone” or “security corridor”, introduced to ensure
the additivity of excitation energies (Lemma 4.6 below).
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(2) The projection onto states with excitations in the “protection zone” Bx \ X:

Pt =15, Py —Pg_,
where 1p, is the identity operator in Ag,, .

We have that
’HOBX = PBX,HBX'

We also define the space
?X = (Péx +P§x)HBX I
whose elements we call ezcitations with support X. We see that
Hpyx D HE, D Ha, -

The set of operators that leave Hg invariant:

By, = {A € Apy: AHE, C H?X}

783

(4.79)

(4.80)

(4.81)

(4.82)

(4.83)

will play a special role in the sequel. To define the most conspicuous example of such an

operator, we decompose the Hamiltonian Hy in the following way, for each X C Z":

Hy = FOB; + Hox + Hox\x)

where for any subset A of the lattice

Hos = Y, %o,
Y:YNA#£D

Hoa = Y. ®ov.
Y:YCcA

We have the following important facts.
Proposition 4.5 For any (finite) set X C Z":

(a) A%, is an algebra:
A,Be Ay, = ABe Ag, .

() Ax C A, -

(4.84)

(4.85)

(4.86)

(4.87)

(¢c) Hox € Ag,. Hence we can write Py + P3, as a sum of orthogonal projections onto

the eigenstates of Hox.

(d) If A is an off-diagonal operator [in the sense of (2.17)] with respect to the spectral

decomposition of Hox, then

A€ A, = ad "Hox(A) € A, -

The proofs of these properties are immediate; in particular (d) follows from (c).

(4.88)

We say that two excitations are disconnected if their supports X, X, satisfy X, C By, =
A\ Bx,. In the estimations below, we make a crucial use of the following additivity property.
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Lemma 4.6 If € HE, , then

Hotp = FDB;’? + Hox . (4.89)
As a consequence, the unperturbed energies of disconnected excitations are additive.

Proof:

Hop = HoPg \x¥
= {Hoss, + Hosx\x) + Hox} Pp,\x¥
= {Hopg + Hox} P\ x¥
= {FUB; o ﬁoX}%b ) (4.90)

since ¢ € HE, and HO(BX\X)ng\XI/) = 0, due to the normalization of the m-potential. W

4.5 First order perturbation theory

The first step in our perturbation scheme consists of a partial block-diagonalization, to order
t?, of the interaction {Qx}. To this end, it is convenient to write Qx as

Qx =15,Qx1s, = (Pg, +Ps, + P35 )Qx (P, + Ps, + P3,)
= (Pp, + P3,)Qx (P3, + P5,) + P5,QxP5, (4.91)

since Qx € Ag, . We regroup the terms as follows:

QX = Q%OX + Q%ix + ng ) (4'92)
where Q%OX are “diagonal” operators defined as
Q% = Pp,Q@xPp, , (4.93)

QY%, the “off-diagonal” operators

Q%, = P3,QxPh, + P5QxP3, , (4.94)

and
QF, = P, QxPs + P35 QxP3, . (4.95)

Note that writing Q x as 15,Q x1p, changes the norm of the interaction (). Nevertheless,
if @ = {Q@x} belongs to B,, then @ = {15,&x15,} belongs to By with

P o= EETTF =1 (4.96)

Indeed, we have

Z “]'BXQXIBXHG?S(BX) S [(2R ¥+ 1)u - 1] Z “QX“erS(X) ) (497)

Bx30 X230
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where we have used that ||@p,| = ||@x]| and that s(Bx) < [(2R + 1) — 1] s(X), [Each site
in in X gives rise to at most (2R + 1) sites in By, but neighbouring R-plaquettes intersect,
~ hence the factor “—1”]. The factor [(2R + 1) — 1] on the RHS of (4.97) arises from the fact
that each site z € X can give rise to at most [s(W¥,;) — 1] additional sites in Bx \ X. From
now on, we assume that @ = {15, @x1p, } with ||Q|> < oo.

Following the guidelines explained above, we search to eliminate the first-order off-
diagonal terms Q% , through a unitary transformation U(*)(¢) = exp(tS1), with S; being a
sum of local operators:

5 = Fo%is (4.98)
X
By (3.3), the unitary operator U(})(¢) generates the transformed Hamiltonian
HO(@) = et H(t)e ™
= Ho+tV® + 1V +1VE
+ Y0 LadnSi(Ho + V%0 + VO 4 V) (4.99)
n

n>1 """

where V% := Y5 Q¥ , and similarly for V' and V®. This leads to the condition

> adHo(S18x) = Y QF,- (4.100)
X X

However, as a consequence of Lemma 4.6, we have
ad™ Ho (QY,) = ad'Hox (Q%,) (4.101)
and, hence, (4.100) is satisfied if we choose
Sisy = ad ' Hox (Q%,) - (4.102)

[Note that the selfadjointness of Hox and Qp, implies the anti-selfadjointness of Sipy.]
Identity (4.101) is therefore the key that allows us to define S; as a sum of local terms. Its
validity is one of the justifications for the use of “protection zones” Bx \ X.

Next we show that the above defined family of operators §; := {S1g,} belongs to By,
with 7 given by (4.96). Indeed, the fact that ®¢ is given by an m-potential implies that for
each X C A the operator Hox has a gap, Dx, between its groundstate energy and the rest
of its spectrum. This gap makes each operator S;p, well-defined because, in analogy with
eqn.(2.35) of Sect. 2, the operator norm of ad ™' Hyx on

OBX = {A%lx = ngAXPéx + P}?’XAXPI%X : Ax € .Ax} (4.103)
is bounded in the form: ! 1
lad ™ Hox log, llop < 5= < 7 (4.104)

where
A = n}}nDX : (4.105)
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Therefore,

s < ¢y 198l fumn
Bx30 X
t
= EHQ“’;- (4.106)
where we have used that [|QF || < [|@5y]|.

Our choice of §; yields a transformed Hamiltonian of the form
HY@) = Hy+tv® VR

1 1
t"1ad" 5y (=V? + VR 4 —— V¥ 4.107
* n%:l . l(n! + n! LT n + 1' ). ( )
From (4.106) and Corollary 4.4 we have that H(!)(¢) corresponds to an interaction ®()(¢)
with

(n+1),t 2e” (F=r)
Bl < folX S (L E o), (4.108)
n>0
for any r; < 7, as long as t/A is so small that
¢ 206
N HQHA # 1 (4.109)

Notice that one can choose r; = ri(r) such that r;, — oo if r = oo. Moreover, if we order
the terms of ®)(t) according to the degree of ¢,

o (t) = @y + S t'ol) (4.110)

i>1

we see that the transformed interaction ®(*)(t) also satisfies the hypotheses (P1) and (P2)
above and, therefore, it is amenable to an iteration of our procedure. We shall make use of
this fact below. Moreover we see, from (4.53) and (4.99) , that

i 2 —(r r1)
L e e e L (4111)

r—r

As our choice of §; has made P2®{})(1y — P2) = 0 for each Y C Z*, we conclude that

> “Px?‘l’gzl)m(ly - ng)l

Y30

™) = 0(1?/A) . (4.112)

From (4.107) we see that the diagonal part of ®) is of the form
M0 — % 4 Q% 4 120V 4 O(#7) (4.113)

where

q)(21)oo _ {q’u)oo . X'N By # @}7 (4.114)

2BXUX"
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with

oo _ dPg, ng Qx Py, dPg
2Bxuxr T E_ E

_ng' QX' PéX’ .[

* Pp.. Qx Pg,,
dPg, Péx x ng dPﬁx
E—F

(4.115)

(dPg, is the spectral decomposition of Hox).

Hence, this second-order correction corresponds to excitation-de-excitation processes, or
in the example of hopping perturbations, to “two-bond excursions” of the hopping particle.
Each term corresponds to the action of some quantum operator @x: which produces an
excitation which is subsequently removed by the action of a second operator Q) x.

4.6 Higher order perturbation theory

Let us now extend the partial block-diagonalization procedure to an arbitrary (but finite!)
order n. The resulting algorithm is an adaptation to interactions of what was done in Lemma
3.1 for Hamiltonians. As in Section 3, we have two possible choices for the block-diagonalizing
transformation:

UM(t) = Sttt (4.116)

(Section 3.2), or
UR(t) = e"Sn... et (4.117)

(Section 3.4). The studies based on these two choices are similar, but (4.117) generates
less terms in the expansion and, hence, is more convenient for computations. The following
theorem holds for either choice of transformation.

Theorem 4.7 Consider an interaction of the form
®(t) = 0o+ tQ (4.118)

where ®q satisfies Condition (P1) and Q satisfies Condition (P2). Then, there exists a
strictly decreasing sequence

PPy >Ty> o >T, > - (4.119)
and a non-increasing sequence
to(1) > to(2) > -+ > tofn) = - -- (4.120)

of numbers with r;, 1o(1) > 0 (7 is defined in eqn. (4.96)) such that the following holds. For
each n > 0, there exists an interaction of the form

o) (t) = & + S t'0\ | (4.121)

321
defined for t < to(n), with the following properties:
(a) ®M(t) is equivalent to ®(t).
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(6) (1) € B,,.
(c) @gn) is independent of n, for 1 < j <n.

(d) If 8" = {8}, then

o' =0 ifY # Bx for all finite X, (4.122)
forall 7 > 1, and
o = 0. (4.123)

for all finite X C A, and 1 < j3<n.

(¢) The off-diagonal part, ®™MOL(t), of the interaction ®"M(1) satisfies the summability

condition:
[ SO E)],, = O(t™+1/A™) . (4.124)
where A is given by (4.105) and
H(D(TI)O].(t)Hrn - Z th“@§'l']l;_)01||erns()’) (4125)
Y30 j>1

The definition of the interaction ®(™)(¢) is given in the proof [steps (A) and (B) below]. The
values of r, and to(n) are constrained by eqn. (4.158) or (4.159).

Proof:
1) Motivation.

Let us first give a motivation for the method of the proof and the definitions used in it.
Our intention is to block-diagonalize the interactions to any given finite order n > 1. More
precisely, we want to construct an equivalent interaction such that, to order n in the per-
turbation parameter ¢, the matrix elements of the interaction between a state corresponding
to a local groundstate and a state with a localized excitation vanishes. We would like to
proceed, as in Sections 3.2 or 3.4, and start with the following unitary transformation.

U™ (t) (Ho + tV) U™ (1)}
= Hy + iti [adS;(Ho) + V;] + > ¢V, (4.126)

=1 i>n+1

where Vi = V and Vj is given by (3.22) or (3.51) for j > 2. The operators in this identity
belong to the observable algebra Aj, where A is a finite subset of the lattice. Since we
want results valid in the thermodynamic limit, we require each of the operators S; and V;
to be given by sums of local operators. Consequently we need to show that V; is of the form
V; = Ty Q) with

Qg}) =0 if Y # By for some finite X, (4.127)
and to find operators S; = )" x S;p, for which

01
(adS;mx(Ho) + QSp,) =0, for j=1,---,n. (4.128)
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More precisely, we require that

= 3, QJBX , (4.129)
XcaA '
with the property
it e = | (4.130)
If this is true, then Lemma 4.6 states that
ad ™ Ho (@) = ad ' Hox (QU2) (4.131)

and hence we can satisfy the criterion (4.128) with operators

Z a,d_ 1F()X (Q‘(:gg,l)
X

= 3 Sp, (4.132)
X

S;

which are sums of local operators.
Assuming the validity of eqns. (4.129)-(4.130), and hence of (4.131), we can expand (3.2)

or (3.4) using the multilinearity (2.23) to obtain

(n) _ O
Qy = Y. ek, k) Y. adSiBy, (- (adSk Bk, (Hox,)
P22, (k1,....kp): ' i
o Kk
ky4-tkp=j B—c.s.
BXIU“‘BXP':

+ Y alkk) Y adSusy, (- (adSksx, (@ax) ) 5

p21, (k1,..skp):
o i) X, X100 Xp
ki+-+kp=j5—1 B-—cs.

BXUBXIU"'BX;,:Y

(4.133)

where we have abbreviated

l for the choice (4.116)

p!

cplkiy ooy kp) 1= 4 nX(kT’ 22 k) for the choice (4.117)
[[(card{i: &; = 1})!

\ =1

(4.134)

(x(-) is the characteristic function), and the notation “B—c.s.” (B-connected subsequences),
for a family Yi,...,Y,,., stands for the constraint

YN By, # 0,YaNByuy, # 0, ,Yu N By, u.un # 0. (4.135)
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On the first line on the RHS of (4.133) we have made use of the identity

> adSkpy (Ho) = > adSksy(Hox), (4.136)
X X

which follows from Lemma 4.6. We immediately notice that the RHS of (4.133) is indepen-
dent of n for § < n. This allows us to simplify the notation by defining

Qipy = Q' , for j=1,...,n. (4.137)

2) Recursive Definitions.
The preceding considerations motivate the following definitions with which we start our
formal proof. For each 1 < j < n:

(A) We define a family of operators S;, recursively, in the following way.

(A.1) For each j, operators @,y are defined through the RHS of (4.133) (which is inde-
pendent of n for the range of j’s considered). We start by defining the operators
for the index 7 = 1:

| @By Y = Bx for some finite X
Qur = { 0 otherwise. (4.138)
(A.2) For each j, we define a family of operators S; = {S;y} as follows.

177 01 . _ -

By = ad™ Hox ( jBx) ifY = -BX for some finite X (4.139)
0 otherwise.
(B) For each j, we define interactions @g”) = {(I)g';)}, as follows.
ol =0 if Y # By for all finite X (4.140)
and

(n) e

o) = { Yisx . _ Hozntl 41a)
adSjpy (Hox) + @;5, = adSipx(Hox) + @iax 11 <j<n,

where Qg’;r) is defined through (4.133).

3) Proof of properties (a)-(e).

Our definitions automatically satisfy property (d) of the theorem. We first prove (a), (b)
and (c), leaving the verification of (e) for the end. The proof requires the following steps,
(I) and (I1), for all 1 < 7 < n.

(I) We need to show that equation (4.133) implies that

Qg’;) = 0 unless Y = By for some finite X , (4.142)

and to prove the validity of the property (4.130).
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These would in turn imply the following: (i) Eqn. (4.131) holds and and the criterion (4.128)
is satisfied. (ii) Each of the operators V; appearing on the RHS of (4.126) is given by a sum
(4.129) of local operators, which are defined through eqn. (4.133).

(II) We need to show that the operators in the family S; belong to the Banach space B,,_,
for g =1,...n, with 7 =2 rg > -+ > r,_y > 0. (Note our choice of subscripts:
Sn € B, _, so that ®) € B, . This shift of indices is an unavoidable consequence of
our recursive construction.)

Then, Corollary 4.4 would imply that there exists a positive number to(n) such that for
t < to(n) the operator U™ (¢) —defined either by (4.116) or (4.117)— determines a map from
the interaction ®(¢), to an equivalent interaction which belongs to B,,, for some r, < r,_;.
Given (1), it follows from the above calculations that such an interaction is precisely ®(™(2).

To show (I) we first use (4.139) to rewrite (4.133) in the form

W= 01
QJY - Z Cp(klg o kp) Z adSkprp e a‘dSszxz _leBxl) L.
p>2, (kl ..... k. ) ‘
lskls‘”,kpgz;. Xl»---aXp-
kit hp=j Bes,
BXI U“‘BXP:Y

+ Z cplkry - kyp) Z a‘dskprp ( o (a'dslexl (QIBX) T ) '

PZI ’ (kl 7"'1]9})):
1<ky o kp<n
k14 +kp=3-1 B-c.s.

B_)(UBX1 U'"BXP=Y

(4.143)

[On the RHS we have used the notation of (4.137).] This proves (4.142), since Bx, U--- U
Bx, = Bx,u..ux,. We prove (4.130) by an induction in j. For j = 1 it is obviously valid. To
prove it for an arbitrary j, assuming it to be true for all indices up to 7 — 1, we decompose
Q1Bx as in Section 4.5 (see (4.92)):

Qibx = @By + @by + @by - (4.144)

Each term in (4.143) which does not contain @Qfg, is a product of operators satisfying
(4.130) with supports Bx,,- -, Bx, [inductive hypothesis alongwith eqn. (4.88)] and hence
the products also satisfy (4.130) with support Bx,u..ux,. For the terms which contain
jIRBx z= PgXQIXPéX < P}_%XQIXPI%X the verification of (4.130) is less immediate, since, in
general, QT ¢ A% However, the operators Q% only involve products of the form

PR i, 348k,x, (- (2dSkmy, (Qf4)) ) Phosyuux, (4.145)
or

Py, 245k 5x, (- (2dSkms, (Qf5,)) ) PRyusyo o, (4.146)
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which vanish when applied to a state with an excitation in Bx,u..ux, \ X1 U+ U X,. Hence
(4.130) is valid.

To prove (II) we start WiTth the bound

1 o 1
ISillrje < % 22 NQ5B, €725 < SN Qsl, s (4.147)

Bx30

which follows from (4.139) and (4.104) [|Qj1]lr,_, = S50 [|Q;5,]le"7~1*E®)]. This bound
shows that it is sufficient to prove that there are positive numbers r;_;, for 1 < j < n, such
that

| 1Qillr,_, < oo (4.148)

In Section 4.5 we found that for j = 1 the bound (4.148) holds, with ro = 7, (see (4.106)).
Let us assume that we have found r; > ... > r;_; such that

@illr, <oo0 for 1<I<j—1. (4.149)

To prove (4.148) we follow the method of the proof of Lemma 4.3, and show that for any
ri—1 < riz, ||@;llr;-; < co. We do the following steps.

(i) We multiply both sides of (4.143) by e-**(¥) and sum over all Y 3 0. On the RHS
we partition s(Y’) into positive numbers s(Bx),s(Bx,), " ,s(Bx,) such that s(¥) <
s(Bx) +5(Bx) 1 -+ 5(Bx,).

(ii)) We bound the commuﬁators by 2P times the product of the norms of the operators.

(iii) We use the bound ||Sksy, || < |@ksx, [I/A-
(iv) We use the bound
!
Z cp(kla""kp)(') < o Z () : (4'150)
(k1 yoomkip): P (kg kp):
oyt kp>1 ky yekp>1
ki4i+kp=3 k14-tkp=y3
In this way we obtain [recall that j < n]
||Qj|1rj—1 <
21 01 ri—1s(Bx,) 01 ri—1s(Bx,)
> plAP—1 > ||QkPBXpH & Phee HQMBXI | e '
e P
kl"l"‘"""‘kp:j B-—c.s.
BXIU---BXPSO
2P 01 ri—18(Bx,) rij—1s(Bx)
P PN VR M Ea B N
p—léklt','.-‘.'f;pp . Eelliens gt
k4 tkp=j—1 B-cs.

BXUBXIU"‘BXPBO

(4.151)
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In the first sum on the RHS of (4.151) we have terms of the form

> ||QkpBX | ei-1(Bxp). ”QkIBX || ems-1e(Bx) | (4.152)
X100 Xp:

B-cs.
BX] U"'BXp90

which may be estimated following the lines of the proof of Lemma 4.1. The result is

(e—(rj—r'“j—l))p_l

(rj—g —7j-1)?

(4.152) < p! 1Qkpllrjz - - 1@ ;2 - (4.153)

A similar result holds for each term in the second sum on the RHS of (4.151) and we finally
obtain

P (e‘(’j-2—"1—1))p—1
H.QJ'HFJ—I S Z Ap_l (rj—2 " Tj—l)p ||Qkp||r1—2 e “le ||"]—2

p>2,(k1,..-.kp):
1<ky - kp
ki tkp=j

Z (p + 1) 2p (6_(’"1—2—1"_.,-_1))10

+ F1 HQk ”T‘m2 "'”Qh”f"—z .
p>1, (k1yonkp): Ar (Tj—2 - rj—l)p n !
1<k, kp
kitetkp=35-1

(4.154)

By the inductive hypothesis, ||Qi||-,_, < ||@i]l»_, < oo, for 1 <1 < j — 1. Hence, it follows
from (4.154) that

1Qsll;0 < 00 (4.155)
This concludes the proof of (II).
We remark that by Corollary 4.4 we have that

k
n k + 1 26—(7'"" —rn)
o™, < 3 — ( ZH 155l 1) 3 P— (4.156)

k>0 Tn—1 Tn-1 —Tn

for any r, > r,_1, for the choice (4.116) of transformations, and

ngz Ti—1 — 1§ X Ti=L =Ty

n = n;+1 (2e{rs-1-ms) e
o™, < TI (Z S ( , 1475l 1) ) 121, (4.157)

for the choice (4.117). Hence, it is enough to choose {y = to(n) so that

26—(rn—1—rn)

S i 1Sillry =1 (4.158)

n—1—Tn
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or
26_(rj—1"r1) .
max ———|[t3Sill,,_, = 1. (4.159)

1<j<n rj_y — T

Note that from (4.147) and (4.161) below

1
I1S5llso < 0 (=) - (4.160)

Finally we turn to the proof of property (e). We again apply steps (i)-(iv) above to
(4.143) but for unrestricted j. We obtain a formula similar to (4.151), but with an) instead
of ; on the LHS and the constraint k;,...,%k, < n in both the sums on the RHS. With
such an expression we can immediately show, by induction, that

(n) 1
12N, < O(Aj—l) , (4.161)

This bound, alongwith property (d), implies the property (e). W

4.7 Diagonalization with respect to a low-lying band

In order to obtain better convergence properties of the diagonalization procedure one may
wish, in the same spirit as in Section 3, to define Pg, not as a projection operator onto
the groundstates of the restriction of Hy to Bx but on some band of low-energy states of
the restriction of Hy to Bx. However, by doing so, one loses Lemma 4.6 which permits one
to define the unitary transformations as exponentials of sums of local operators. A way to
circumvent this problem is the following one.

We define a projection operator Pi*¥ on a subspace H" of Hy which corresponds to the
set of configurations Q'°%

Qlow = {wy 3 0 S ng(wy) S D} (4162)
He" = {WeHy:v= Y Cuyluy} (4.163)
waﬂlx?,‘”

and we assume that the energies of the configurations in Q'°" are separated from the energies
of the other configurations by a gap A

X, min, (9% (wk) — B (wk)) = A (4.164)
wixéﬂl“’

We split the interaction ® into ®o + §®, by assigning to each configuration belonging to
Q% the same energy 0, i.e.,

Box = (1x — PE") ®ox (1x — PY") (4.165)
§Box = PYV®ox PY™ (4.166)
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Now we may apply our diagonalization procedure to the interaction
By + (60, + Q) (4.167)

by using projection operators ﬁgx (: g’;), ﬁéx and ﬁgx and treating d®, as a part of the
perturbation.

This procedure makes sense if we assume that D/A is small enough such that the unitarily
transformed interaction is exponentially decaying.

5 Phase diagrams at low-temperatures

5.1 The Peierls condition

We now turn to a quick review of phase-diagram technology. For the rest of this section, our
interactions will be of the form

@ — @Cl + Q ) (5]‘)

where @ is a classical finite-range interaction, i.e., there is a tensor product basis such
that ®5 € C(€x), for all X, and the interaction @ is an exponentially decaying “quantum”
perturbation, i.e., ¢} € B, for some r.

The results of [10] require the validity of the Peierls condition for the classical part ®.
In order to state it, we introduce the notion of contours. Let Q9 := {w?}L, be the set of
periodic groundstate configurations of ®°, i.e., the set of periodic configurations for which

®¢ (w?) =0, X C A [see eqn.(4.70)]. We define sampling plaquettes W (z) as
W(z):={yeA:|z;—yi|[<aforl <i<v}. (5.2)

The constant a is chosen to be larger than the range of ®° and the period of each of its
periodic groundstate configurations. A contour is constructed out of sampling plaquettes on
which the configuration does not coincide with any of the groundstate configurations of ®°.
The defect set 0w of a configuration w € 2, is defined as

Ow = U {W(CL') ' W () % (w,?)w(x) forall 1 <:<k}. (5.3)
zEA

A contour of a configuration w is a pair v = (M,wp), where M is a maximally connected
(with respect to intersections) component of the defect set dw. The set M is the support of +.
Two contours v, 4/ are disjoint if no pair of sampling plaquettes, W(z) C M, W(z') C M,
intersect. Due to our choice of the size of the sampling plaquettes, we can set up a one-to-
one correspondence between configurations and families of contours by associating to each
configuration of the lattice the corresponding set of disjoint contours, with the restriction that
the interiors and exteriors of nested contours match. The families of contours corresponding
to a configuration are said to be compatible. The energy of a configuration is then expressible
in terms of its contours. Each contour 4 has a unique configuration w” that has it as its only
contour. The configuration in any connected component of the set A\ M coincides with one
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of the groundstates. If the energy of the groundstates is normalized to zero then the energy
of the configuration w? is given by
YNnM
i) = T e

Y

= E(v) - (5.4)

We can interpret E(v) as the energy of the contour 7. If a configuration w corresponds to a
family of compatible contours {71, ...,v,}, then its energy is given by the sum of the energies
of its contours, i.e.,

W) = 3B (5:5)

This allows us to rewrite the partition function Z(A) for H® as a sum over an ensemble
of pairwise disjoint contours and use cluster expansion methods to find its low-temperature
behaviour.

The Peierls condition demands that the energy of a contour be proportional to the total
number of sampling plaquettes in the contour. More precisely, it requires that there exist a
positive constant kK > 0 —the Peterls constant—, such that the energy E(7), of a contour
~v, satisfies

E(y) > ks(v), (5.6)

where s(v) coincides with the cardinality of the support of . (Strictly speaking, this is the
Peierls condition at the point of maximal coexistence of a phase diagram. For other points,
the Peierls condition must be stated with respect to a set of reference configurations, not
all of which need to be groundstates. Formulas (5.4) and (5.5) then acquire other terms
balancing the different energy densities of the reference configurations. Nevertheless, this
more general Peierls condition follows if the parametrization of the interaction is smooth.)

5.2 Stability of phase diagrams

In this section we summarize the results on the stability of phase diagrams obtained in [10],
and some (minor) extensions that will be necessary. We consider a classical part ®¢ =

{@¢x} parametrized by a finite family u of parameters with values in a certain (small) set

Oo € IRP™'. These parameters label the “coordinate axes” of the zero-temperature (3 = co)
classical phase diagram. The assumptions on C[)f} are:

i) The range of ® is some finite number R throughout the region O, and its zero-
g " g g 7
temperature phase diagram involves a finite degeneracy. That is, the different periodic
groundstates found in the region O, constitute a finite family Q‘"Ef {01, sy b In
the present situation, a periodic configuration o is a groundstate for <I>CX if
ex(0) = min_€,(7), (5.7)
- o periodic —
where

Y el(o (5.8)

Chan B A/‘Z [A| P
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(i)

(iv)

The symbol |A| denotes the cardinality of the set A, and the limit is taken, for instance,
via sequences of growing parallelepipeds.

The zero-temperature phase diagram is regular. Regularity means that the Gibbs
phase rule is satisfied: There is exactly one point u_ € O where the p configurations
of Q™ are all the periodic groundstates of Qf} , p — 1 lines radiating from p__ where

there are p — 1 groundstates, given by the different (p — 1)-subsets of Q™f, and so on.

The parametrization is smooth, in the sense that the maps O, > p — @Z‘X are
differentiable. Furthermore, these maps and their derivatives are uniformly bounded.
Often, the u-dependence is linear, hence these conditions are automatically satisfied
for bounded regions of the phase diagram. In addition, we need to assume that the
determinant of the matrix of derivatives

(3 el —elo)) 5:9)
7 1<4,5<p—1
is uniformly bounded away from zero throughout O.,. Models in which the degeneracy-
breaking effects of the parameters y are due to orders higher than linear, present
additional difficulties. In particular, these models fall outside the scope of the theory
presented in [2, Section 6] from which our theory derives.

The interaction ®¢ — where {_. is the point of maximal coexistence of the zero-

temperature pha,seh(ﬁa,gram— satisfies the Peierls condition, with some Peierls constant
k> 0.

By the continuity required in (iii), condition (iv) implies the validity of the Peierls condition
[in the generalized sense mentioned parenthetically after (5.6)] for a neighbourhood of y_,
with a slightly smaller Peierls constant.

In addition, we consider a quantum perturbation @,()) defined by operators Q.x () €
Ax such that - -

(v)

(vi)

The maps O > p + @ ,x have the same smoothness properties of p — @CE'X [assump-
tion (iii) abovel;

p—1 d
s s(X)
Ese%pm{lngxH+§H6mQEX|| < el } : (5.10)

with € > 0, uniformly on Q. Usually, O, is a bounded set, hence by continuity it is
enough to check (5.10) at the maximal-coexistence point g _ .

The basic result of [10, 3] can be stated as follows.

Theorem 5.1 (Quantum Pirogov-Sinai theory) Consider interactions of the form
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satisfying hypotheses (i)-(vi) above. Then there exist constants € = O(k) and €, such that
in the region

ma,x(e_ﬁﬁ, %) < €, (5.11)

there exists @ non-empty open set Ogy € IRT™! where the phase diagram is regular and is a
smooth deformation of the zero-temperature phase diagram of @ﬁ in O. In fact, if [y, OTE
the coordinates of the mazimal-coexistence point of the Oﬁ)\-diag??am,

o = K] = Olesn) (5.12)
with egy defined by the LHS of (5.11).

We point out that our definition of a phase diagram is based on the notion of stable
phases adopted in [10]. A stable phase is a phase minimizing a certain truncated free
energy (see Section 7.2 of [10]). It has the properties one would expect: Its truncated
free energy coincides with the free energy of the system and its quantum expectations are
analytic functions of the parameters and converge to the groundstate expectations when the
temperature goes to zero (see Theorem 2.2 of [10]).

This theorem is proven by using a contour expansion in v + 1 dimensions obtained by
iterating the Duhamel formula. The resulting contours [10] are piecewise-cylindrical surfaces
in A x [0, 5], where A is a finite subset of the lattice Z”. We refer to [0, 3] as the “time”
axis. These contours are periodic in the “time”-direction and their v-dimensional sections
are the “classical” contours described in Section 5.1. The two terms on the LHS of (5.11)
arise from two different types of contours. The factor e ?% is the leading order contribution
of the “long contours” which extend from 0 to 3 and hence carry the thermal effects. The
factor eA/k arises from the “short” contours, whose length in the “time”-direction is strictly
less than . Hence, this term can be interpreted as the leading order contribution of the
quantum fluctuations.

By resorting to a finer classification of different types of quantum contours, one can obtain
more detailed bounds tailored to particular models. We present one of these refinements
needed in this paper.

We consider systems involving two levels of (local) excitations. The formal definition of
such systems requires two ingredients:

o A family of reference configurations (which are groundstates at the point of maximal
coexistence) O™ = {ay,...,0,}.

e A family of projection operators [“projections on low-lying (local) excitations”|
{P:Y C Z* finite },
such that all the reference configurations o; belong to the range of each P2.

A plaquette W (z) belongs to a low-energy defect of a configuration w if

Plyoyw = w , but wy (o) # (0i)w(e) forall 1 <1< p. (5.13)



Datta et al. a o 799

A plaquette W(z) belongs to a high-energy defect of a configuration w if

(i.e., w describes an excitation outside the range of Py,)). We then consider contours
(=connected components of the defect set) as in Section 5.1, and for each contour v we
single out the set

AMiER .= fhigh-energy defects in v} . (5.15)

A two-level Peierls condition is a bound of the form
E(y) > ks(y)+ Ds(y"™"). (5.16)

To determine the range of applicability of a generalized form of the Pirogov-Sinai theory,
we have to analyze the size of the matrix elements of interactions between configurations
corresponding to low- and high- energy defects. Given an interaction ® = {®x}, let &%,
oM ¢ and P be the pieces defined by

% = POy PY (5.17)
8% = (Lx— PY)dx P (5.18)
O = Py Oy (1x— PY) (5.19)
oW = (Lx— PY)0x (1x — PY). (5.20)
These interaction pieces give rise to “low—low” (££), “low—high” (¢h), “high—low” (hf)

and “high—high” (hh) transitions.

Theorem 5.2

[Quantum Pirogov-Sinai theory for systems with two levels of excitations]
Constder interactions of the form @, = <I>°£ + QE’ and a family of local projections { P} },

such that

(a) The interaction @E satisfies hypotheses (i)-(iii) above, and condition (5.16) at the
point of mazimal coexistence, for some k >0, D > 0.

(b) The different pieces Q%, Q", Q% and Q", of the quantum perturbation Q@ satisfy
hypotheses (v) and (vi) above, in particular

p—1 o
Hse%pm{il ZXH—*_;HEZ &l < EGJ/\S(X)} ; (5.21)

for some A < 1 and constants e, for each a,é € {£h}.

Then there erist constants K = O(k) and €y such that, in the region

g Cer [ Emene  EmnA  EmA  EmA 5 99
max(e Tk p e k(k+D) «+D’ «+D’ k+D < o (5:22)
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there exists a non-empty open set Opy € IR~ where the phase diagram is reqular and is
a smooth deformation of the zero-temperature phase diagram of @f} in O. If Hg, are the

coordinates of the mazimal-coexistence point of the Opy-diagram,
|4, — #g,| = Olean) - (5.23)

where eg) is defined by the LHS of (5.22).

Remarks:

cl

£ > cl 3 174
(i) Of course, the zero-temperature phase diagram of ® E involves only ((I) u ) i

(ii) Usually, only the first three arguments in the LHS of (5.22) need to be looked at. In
most cases their smallness implies that of the remaining two arguments.

This theorem is proven adapting the methods of [10]. The argument is sketched in
Appendix A.

5.3 Pirogov-Sinai theory for transformed interactions

At low-temperatures, the Pirogov-Sinai theory summarized in the Section 5.2 yields precise
information on the phase diagram. In particular, in the limit as B — oo, it gives a descrip-
tion of the groundstates of the full Hamiltonian. In this sense, it yields more information,
and in a less cumbersome way, than standard diagonalization processes. With the help of
the partial block-diagonalization procedure of Section 4 we can now investigate the following
phenomenon: Suppose that the classical part of the interaction has infinitely degenerate
groundstates but that the perturbation lifts this degeneracy and restores the Peierls condi-
tion. Then, using Theorem 5.2, we conclude that the long-range order characterizing the
new groundstates survives at low-temperatures.

We consider interactions of the form ®(t) = ®¢ + t@) where ®, satisfies Condition (P1)
of Section 4.4. In this section, we consider finite-range perturbations (), but the discussion
may easily be generalized to exponentially decaying interactions.

If the degeneracy of the groundstate of ® is lifted in order m in ¢, with m = 2n or 2n+1,
then we consider the family of unitary transformations U™ (¢) defined in Section 4.6. This
yields an equivalent interaction ®(®)(¢) € B, which we write as

(1) = By + S 10 (5.24)

i>1

By inspection of the proof of Theorem 4.7, one easily sees that a finite-range perturbation
@ implies that @gn), for all 7 > 1, have finite range. In fact, for 1 < 57 < n, the range of

@g") is bounded by ¢j R, where R is the range of () and ¢ is a constant which depends on

®y. In the proof of Theorem 4.7 we have shown that @g") is of the form @gn) = {@g’gx}, for
all j > 1. Thus, using the partition of unity 15, = Pg, 4+ P, + P3, we may split the
interaction as follows:

n n)00 n)01 n)R
o, = Oy + oiHy + 2R, (5.25)
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(see (4.93), (4.94) and (4.95)). We denote

q)gn)OO _ {(D.g%))f‘iO} ’ (526)
and similarly q)gn)m and (I)gn)R.
By Theorem 4.7 we have that
(I)g_n)m =0, for j <n=[m/2], (5.27)

where [a] denotes the integer part of a. We now split ®(")(¢) into a new “classical” part and
a new perturbation:

SM(1) = BF (1) + Q(1), (5.28)

where _
O (1) = @+ 3 1M (5.29)

j=1

is assumed to be a finite-range classical interaction, and

Q™) = Y #eM0 .y 3 gl gk
i>m+1 i>[m/2+1 izl
= QM) + Q™ (1) + Q™). (5.30)
To make the connection with Pirogov-Sinai theory we define
Q™M) = Q™(1), (5.31)
Q™M) = Q™E(Y), (5.32)
and
Qm,ﬂh(t) s Qm,hf(t) g QmOl(t) , (533)

where Q™ () contains all the terms of the form Pg§ (I)%)x P and Q™" (t) all the terms
of the form P} @'} P§ .

x T iBx
This decomposition, combined with Theorem 4.7, leads to the following estimates:

1.
lQ™*(®)ll, = O(E™+/A™) (5.34)

2.
| ()], = O() (5.35)

3.
|Q™ (@)l = O™/A¥1/AlA) = O+ /A7) (5:36)

1Q™M(t)ll-, = O/A /Ay = @™ /A™). (5.37)
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In this situation, the parameters required in Theorem 5.2 are given by

A = 0 (5.38)
e = O(t™) (5.39)
Em = O(t[mﬂ]) (5.40)
ene = Ot/ (5.41)
emn = O(1) (5.42)

In order to apply the contour expansion methods of Section 5.2, we have to further
assume that ®J'(¢) can be written as a classical interaction satisfying Conditions (i), (ii)
and (iii) of Section 5.2 and the generalized Peierls condition (5.17). This means that we
assume the existence of a tensor-product basis, in which ®g%(t) is diagonal, for all X. This
is not generally true: the interaction ®7(¢) is block-diagonal in the tensor-product basis in
which @4 is diagonal, but it need not be a classical interaction. However, in many interesting
models (see Section 6 and [11]) ®7'(¢) actually turns out to be a classical interaction. If, in
addition, ®7'(¢) is an m-potential with a finite number of periodic groundstates, the Peierls
condition follows. The spectrum of the finite-volume Hamiltonians HJ*(t) corresponding to
the interaction ®}'(¢) then have the following stucture: there is a gap of order {™ between the
groundstate of HJ'(t) and the low-energy excited states (i.e., states describing excitations in
some subset X of the lattice that are in the range of Py) and there is another gap of order
1, inherited from the gap of Hy, between the groundstate of HJ*(¢) and states describing
(local) excitations in X which are not in the range of P§. In (5.16), the Peierls constant &
is of order t™, and the constant D is of order 1:

k= O™ (5.43)
D = O(1). (5.44)

In order to apply the full Pirogov-Sinai theory, one has to further check Condition (ii)
(smoothness of the parametrization) and (iii) (Gibbs phase rule). Theorem 5.2 then describes
the first-order phase transitions at low-temperatures when the parameters are varied. The
reader may check that all the parameters in formula (5.22) of Theorem 5.2 scale properly as
t goes to zero.

There are models for which the Peierls condition is valid but their zero-temperature
phase diagrams do not satisfy the Gibbs phase rule. However, even for such a model, there
may be regions in its phase diagram where we can apply a low-temperature expansion,
in terms of compatible families of space-time contours [10], to study the stability of the
corresponding phases. This can be done whenever the groundstates are related in a way
such that the removal of any contour of a compatible family leads to another compatible
family of contours. Usually, this property is a consequence of some symmetry relating the
different groundstates. To abbreviate, let us refer to those values of the parameters for
which this contour-removal property holds as the symmetric-phase regime. In particular,
this includes regions for which there is a single groundstate (single-phase regime). For these
regions we can use the low-temperature expansion method of [10, Section 6] to prove that
the periodic groundstates “survive” at low-temperatures, i.e., give rise to stable phases. In
fact, the low-temperature expansion for these symmetric-phase regimes is one of the main
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steps in the proof of Theorem 5.2 in [10] (see Sections 6 and 7 in this reference and Appendix
A below).

To summarize, the block-diagonalization procedure of Section 4, combined with Theorem
5.2, yields the following result.

Corollary 5.3 (i) If, for some fized value of the parameters, the interaction ®F'(t) is in
the single-phase or symmetric-phase regime and satisfies the Peierls condition, then
there exist to > 0 and By = Po(t) such that, for 0 < t < to, the groundstates of ®™(¢)
(or of ®(t)) are small perturbations of the groundstates of 7 (t), and the long-range
order of the groundstates persists for 3 > [Bo(t).

(11) If, for some open set in the parameter space, the interaction O (t) satisfies assumptions
(i)-(iv) of Section 5.2 —i.e., it has a smooth parametrization with linear degeneracy-
breaking, its zero-temperature phase diagram satisfies the Gibbs phase rule and involves
only a finite degeneracy, and it satisfies the Peierls condition at the point of mazimal
coexistence— then there exist tg > 0 and § = Bo(t) such that, for 0 < t < ty and
B > Bo(t), the phase diagram of ®™)(t) is a smooth deformation of the phase diagram
of ®7*(t) at zero-temperature.

Next, we derive the explicit formulas for ®2(¢) and ®§(¢) which we will need in the exam-
ples. We denote by H{*(t) := Y xca ®0% (¢) the corresponding finite-volume Hamiltonians.

It is useful to recall the following notation: for finite subsets X;,---, X, of Z", X1,---, X,
B—c.s. stands for the constraint

XQﬂBXl 7& @,XgﬂBquXI 75 @, ;XnﬂBXn_lu---UXl 75 g . (5.45)

From (4.102) we obtain
1
HW(t) = Hy+ tV® 4+ tVE 4 ¢2adS, (VOO +VE4 §V‘”) + O(t%), (5.46)
and hence

1 00
HE(t) = HottV™ 44 (adSI (VOU VR4 5vm))

1 00
= Hy+tVP ¢ (adsI (51/0‘))

1 00
= Ho+ty Voo +t® > (ad51sx2 (51/3;1)) : (5.47)
X

X1,X2B—cs.

From the recursion relation (4.132) and from (5.46) we have that

IT7 1 01
n T Z adquO)ﬁUXz ((adSIBX2 (Q%Oxl + ngl + -Q-Q%lxi)) )
X1,X2B—cs.
e Z azd_l‘H-DXIUXQ (Qg}gxluxz) , (5.48)

X1,X2B—cs.
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and we obtain
’ 1 00
HAt) = Ho+1V® 442 (adSl (Evm)))
0 (a2, (Lyoo g Lyry 2yor))”
"\l 2! 3!

+t4 dBS 1 VOO 1 VR 3 VOI o
RO AT AT

00
et (ad52 (v;m VR4 %V;’l)) , (5.49)
where .
Vy 1= adS; (V“O VR4 §V01) : (5.50)

The operator Hj(t) may be written as a sum of local operators.

6 Examples: Quantum magnets

Consider a system of spin—% fermions on a square lattice A C Z? with a replusive interaction
of strength U and an exchange interaction of strength J, between nearest neighbours. The
system is described by the Hamiltonian

H() = —t Z {c,cho + cyacw} -+— Z NzNy
<zy>CA <$y>CA
o=t}
o
+ 5 z 0(3) nxny Y Z g , (61)
<zy>CA zCA

where ¢}, (cz, ) creates (annihilates) a fermion with spin o at site z, and ny = ¥ ,_1 | ¢, Co0
is the particle number operator at site x; u is the chemical potential and ¢ the hopping
amplitude. The sum (zy) is over a pair of nearest neighbour sites. In addition, we assume
that there is an infinite on-site repulsion which forbids double occupancy. This assumption
corresponds to restricting the Hilbert space of H(t) to H = @ €*. As a basis for €° we
choose {|1}, [{),] )}, where e refers to an empty site.

We consider the strong coupling limit U, J > ¢ and treat the hopping term as a pertur-
bation. Hence we write the Hamiltonian as

H(t) = Ho +tV, (6.2)
where
U
Hy = % Z RaTy + % 3 Jf’)al(?)nrny
<zy>CA <zy>CA

L n,, (6.3)

zCA
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and
V=— Y {&,cp+C,0}i= ) Qx. (6.4)
<< )

In order to find the groundstates of the Hamiltonian Hy, we regroup the terms on the RHS
of (6.3) so as to express Hp in terms of an m-potential as follows:

Ho= ) ®u, (6.5)
MCA

where M is a set of four sites forming a unit square on the lattice and

1 1
o= Y -

1 [Unrny + Jcrf)af)n,,ny] -y 2Hne - (6.6)
<zy>CM zCM

The range r of the m-potential @y, is one.

ForU>J>0and0<pu<2(U—-J)andfor U > —J > 0and 0 < p < 2(U + J),
the configurations which minimize ®ps, for all M, are those configurations in which two
consecutive spins are separated by an empty site: they correspond to a half-filled lattice
with a “checkerboard configuration”. The groundstate energy density is given by

E() ﬂ

— = -, 6.7
The corresponding groundstate of Hy has a macroscopic degeneracy because the spins can
have arbitrary orientation. The multiplicity of the groundstate is 2(2/41/2) where | A | is the
number of sites in the lattice.

The support of each term of the perturbation V is a pair of nearest neighbour sites,
X = (zy). We choose

Bx = W, UW,, (6.8)
We={yeA:|z;—y; |<1forl<:<2}. (6.9)
In this example the perturbation is decomposed as follows
Qx = QF, +Q3, , (6.10)
where
Qs = Ps,QxPg, +Pp,QxPp, (6.11)
QB = P, QxPh,. (6.12)

The diagonal contributions P§ _Qx P, and Py QxPg, vanish.
Consider the transformed Hamiltonian

HO@#) = UO@) [H + tV]UD (@) . (6.13)

We split HM(t) into H2(t) and Q*(t), as described at the end of Section 5.3. The Hamiltonian
Q?(t) will be treated as the perturbation. In order to find the groundstates of H3(t), we
have to diagonalize the operator

PoH(t) P, (6.14)
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where P, = P and
t2
H2(t) = Ho+ E;ngadwa (@%,) P3, - (6.15)

Let Eyx be the energy of the configuration resulting from the hopping of a single particle
to a nearest neighbour site, and let

€1x = EIX = Eo. (616)

The contribution to the groundstate energy to order t? is given by
Z AX = Pg Z{adSlBX(QOBIX)}Pg
X X
= B Z{ad_lﬁox(ngpréx)prgx
X

— P}, Qxad ™ Hox(P5,Qx PS,)| Po
1
= ) —t*—. (6.17)

X t1x
The energy difference ¢;x, and hence Ay, takes different values depending on the alignment
of the spins of the particles which are at distance one from the pair X = (zy}, i.e.,in Bx. In
the figures below we list all the different cases (up to spin flip) and indicate the contribution
Ax resulting from the hopping of the rightmost particle of the central nearest-neighbour
bond to the hole to its left and back.

4+ o
— 2_ 2
. + o 4+ o AX—‘—*tm
4+ o
+ o
2 + o} — o AX_ tzgtjiw
+ o
4+ o
_ 2
3. — o + o Ax = —t’ 5
+ o
4+ o
4, — o — o Ax = i
+ o
4+ o0
5. + o — o Ax = —t'z

0

To determine the groundstates of H2(t) we consider a hole surrounded by four particles
and add the contributions to the groundstate energy resulting from the hopping of the four
particles to the hole and back. Summing over all the | A |/2 holes in the half-filled lattice
gives the following results:
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1. For the ferromagnetic case (J < 0), the four groundstates are periodic: a checkerboard
configuration with all spins aligned. The energy density is
E w4

—_— = = — 6.18
Al 2 " 3U 3] (6.18)

The spectral gap between the groundstates and the first excited states (one spin mis-
aligned) is given by

J(3U — J)

A = 9642 )
(3U + J)(3U + 3J)(3U — 3J)

(6.19)

2. For an antiferromagnetic coupling, J > 0, we have two cases:

(a) For U > 2J, the groundstates are such that around each hole the spins are oriented
as shown in figure 4 or 5 above. In other words all spins are Néel ordered in one
diagonal direction, but the spins can be flipped independently on each diagonal
line. The energy density is

=S (6.20)

The spectral gap is given by

J(3U —5J)

AY = 3942 .
1 3 (3U + J)(3U — J)(3U — 3J)

(6.21)

(b) For U < 2J, the groundstates are such that around each hole the spins are
oriented as shown in figure 2 or 3 above. The energy density is
E Lo, 48U -2J)

-2t (38U + J)3U —3J) (6.22)

The spectral gap is

J(5J — 3U)

af __ 2
A = 3 T T BU = DU —30)

(6.23)

Thus we see that for J > 0 the groundstate of the Hamiltonian HZ(t) has an infinite degen-
eracy. In order to arrive at a Hamiltonian which has a finite number of groundstates, we
have to go to higher orders of our perturbation method. This is done below.

In order to verify the Peierls condition for the ferromagnetic coupling (J < 0), we rewrite
HZ(t) as a sum over four by four blocks, M, consisting of sixteen lattice sites.

Hi(t)= Y @, (6.24)

MCA
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FEach nearest neighbour bond X = (zy) is contained in twelve such different blocks, while
each By, defined by eqn.(6.8), is contained in two different blocks. Hence

1
oy = 7 Z {Unmny-i—.]a() nxny}— an
<zy>CM «’!?CM
t2
7 > P3 adSip, (V¥') P3,. (6.25)
BxCM
X=<zy>

We note that ®,s is invariant under rotations and reflections of the block M. Since the
degeneracy is completely lifted, @y is easily seen to be an m-potential. Thus, by the criterion
of [15], HZ(t) satisfies the Peierls condition. One can alternatively check the Peierls condition
directly for this model. Hence, by Corollary 5.3, we conclude that the groundstates of the
Hamiltonian H(t), for ¢ strictly positive but sufficiently small, J < 0, and 0 < p < 2(U — J),
are a small perturbation of the checkerboard configuration with all spins aligned, and long-
range order survives at sufficiently low-temperatures.

For the antiferromagnetic model the infinite degeneracy is only partially lifted to order
t2. We then consider the transformed interaction ®(*)(¢) and decompose it as described in
5.3. The “classical” part, Hj(t), of the transformed Hamiltonian is given by (5.49). We
write it as a sum of local operators:

00
Hg(t) = HU +t2 Z (adSIBx2 ( (SX = QB)Q))

X1,X2B—c.s.

2 00
# Y (adSing(adSiny, (508, + 265, )

X1,X2,X3B—cs.

1 00
oy (adSlBX4 (adS15y, (adS1py, (anxl +2 QBXI))

Xl,XQ,Xg,.X.; B-c.s.

00
+t! Z (adSZBXsu)Q (Q?Bx]ux2 + QZBxlux2 + Q2Bx1ux2>)
X1,X9B—cs.;X3,X4 B—c.s.
X1UX2,X3UX4B—-C.S.
(6.26)
The groundstates of Hj(t) are obtained by diagonalizing the operator
PoHJ ()P, (6.27)

In this model, the perturbation has no diagonal component in the groundstate and in
the first excited states of Hy (Pg, @x P, and P QxPg_ vanish). Hence the contributions
of order t and ¢* vanish.

Let €;x be as above (see (6.16)). Note that, for U > 5J , €1x is independent of X and
€1x = € = %(SU — J). Let E;xuy be the energy of two connected excitations and we
set eaxuy = (E2xuy — Eo). It can take the following values: 2U, 2U — 2J, %(5U - 3J),
(U = J).
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The contribution to the groundstate energy to order ¢* is the following:

152 ,
> (5) P8xQxPhQxPhPS,Qr P, Qe S,
YOB x #£0

&) (&
_ > 2 ) ”
XY, X! €1 €2XuY

YNBx#0X'€{X,Y}

XngQXPéXQYPéxquX’PéXUy\X.QXUY\X’ngUy\X: i (6.28)

To determine the groundstates to order t*, we need to compute the energies Eoxyy for the
different cases. We consider the following cells:

4 — —

+ o - + o + + o +
+ o — o + + o - o - + o — o -—
4+ o - o 4+ o0 - 4+ o —-— o 4+ o 4+ — o — o 4+ o +
— o 4+ o -— - o 4+ o -— + o 4+ o -—
+ o -— + o - - 0 -
~ - +
1 2 3
- + +
+ ©o + + o - 4+ o -—
— o — o -— - o — o + - o — o +
+ o4+ 0o+ 0+ 4+ 04+ 04+ 0 - — o+ 04 0 =
- o — o -— - 0o — 0o - + o — o —
+ o + + o + - o +
- ~ +
4 5 6

Up to spin flip and rotation by I these are the only cells wich occur in the groundstates
for U > %

We compute the energies of all the connected excitations with support in X UY such
that X contains the central site of the cell and Y N By # 0.

We use the following symmetry considerations:

e There are four choices of X. One can check that the number of excitations with a
given energy does not depend on the choice of X.

e The cell 2 (resp. 5) is obtained from the cell 1 (resp. 6) by flipping all the spins on a
diagonal line of the boundary of the cell. The cell 3 (resp. 6) is obtained from the cell
1 (resp. 6) by flipping all the spins on two diagonal lines of the boundary of the cell.
It can be checked that such an operation does not change the number of excitations
with a given energy.
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Hence the cells 1, 2 and 3 (resp. 4, 5 and 6) give the same contribution to (6.28).

Note that if a configuration contains a cell of type 2 or 3 it must necessarily contain a
cell of type 5 or 6. Therefore the groundstate configurations contain either only cells of type
1 or only cells of type 4.

The corresponding energy densities are

Ef-af L 4 16
= i P 3 6.29
N s 7T U= Jp (6.29)
L8 (32 40 161 _i)
BU-JP?\3U-J s5U-J B5U-3J U-J U
for the first case and
ES I 4 16
= L _ 42 td .
A] BT/ R Ty T 0-40)
4o 8 ( 32 B 32 B 24 B _2_)
BU—-J)2\3U—-J bU-J bBU-3J U
for the second one. We have
pi-af  paf
A< T (6.31)

for 3J24+9U2 —8JU > 0, which is always true for U > g—J. The 8 groundstate configurations
of Hg(t) are therefore those in which the spins are Néel ordered in one diagonal direction
and aligned in the other diagonal direction.

In order to check the Peierls condition one may easily rewrite the interaction as an m-
potential and use the criterion of [15], or one may check it explicitly.

A Proof of Theorem 5.2

The only difference between the proof of this theorem and that of the “basic Pirogov-Sinai”
result of [10] (Theorem 5.1) pertains to the “key estimate” presented as Lemma 6.5 in [10].
We refer the reader to [10] for notation and general background.

The proof relies on a contour expansion in v + 1 dimensions obtained by iterating the
Duhamel formula. The resulting contours are piecewise-cylindrical surfaces in A x [0, 4],
where A is a finite subset of the lattice Z”. We refer to [0,8] as the “time” axis. These
contours are periodic in the “time”-direction and their -dimensional sections are the “clas-
sical” contours described in Section 5.1. Each cylindrical piece of “height” 7 and section of
size [, of which k plaquettes are high-energy defects, has a weight bounded by

e—(nH—Dk)T ) (Al)

To avoid annoying factors a” in formulas like this one, in this appendix we measure section
areas in units of plaquette areas, i.e., in multiples of a”. Thus the reader should bear in mind
that the constants appearing in this appendix differ from the ones in the text according to

the rules:
Kapp = a” Ktext, Dapp =a” Dtexi‘.7 )\app = (Atext)a . (Az)



Datta et al. 811

Contour sections can change only by the action of operators ) x. For fermions, we need to
decompose the operator () x further:

Qx = ZQ&? (A'?’)

X

where each ()x is an (even-degree) monomial in creation and annihilation operators. In
addition, we decompose each operator @ x into the terms defined in (5.17)-(5.20):

Qx = Q¥ +QF + Q% + Q% . (A4)

The sections of the contours can change only by the action of one operator Q% at a “time”.
Each section change (= “transition”), therefore involves a factor of the form (I'|Q%|I") (for
bosons X — X), where |T) denotes the basis vector labelled by the family of (classical)
contours I' and «,§ € {¢,h}. By hypothesis (b), such a factor is bounded in the form

(TIQ% )

according to which type of transition connects the configurations I' and I".

The “key estimate”, from which the bound (5.22) follows, is an upper bound on the
sum, S, of the weights of all (finite) contours containing the origin in its support. The
nontrivial part is the contribution, §>°, arising from contours which involve some quantum
transition; (the straight cylinders, with no change of section, are bounded exactly as in
the classical Peierls argument). In fact, the contour-expansion formalism involves some

S Eaé )\S(X) ) (A5)

additional “entropy” contributions which, for each space-time contour (, is of the form exOKl,
where R is a fixed, finite number. (Cf. formulas (6.13), (7.8), (7.27) and (7.39) in [10].)
To compensate this contribution, a sufficiently fast damping is needed in (A.1). This is
obtained, as in [10], via a rescaling based on the identity:

B +Q) = L(@H+5Q). (AS6)
We define 3’ so that
Bk = & (A.7)
satisfies
Kk > Eo 3 (AS)
The quotient 8/8" plays the role of 3; i.e., we rescale
g B (A.9)
K
and, as a consequence,
Euis — St = 50(5 (A.IO)
K
p » 225, (A.11)
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The contours contributing to S”° have a number n > 1 of section changes. As we must
keep track of the type of transitions involved in each change, we introduce labels e; which
are ordered pairs (ad) with «,é € {£,h}. Such a label ¢; indicates that the transition from
the (¢ — 1)-th to the i-th section of the quantum contour is of type a — §, that is, due to
the action of an operator Q@%°. We have (cf. formula (6.19) of [10]):

>0 < Z Z Xj1+--.+jn Z Z Z Egﬁ

n>1 (1, n) (l1yln) kg, i) O
]i21 Ili_li—]isji (IOEI,-,_) OSleil ET(klr‘"rkﬂ)
|ki—ki—1]<0i (ko=kn)

X N(jlselyllakly---;jnaen;lm kn) R(llakla e '-)ln:kn) 9 (A].Q)
where

(i) T'(k1,...,kn) is the set of possible n-tuples (ey,...,e,) compatible with the areas
ky,...,k, of high-energy defects and the periodicity requirement in the “time” di-
rection. (Of course, there is also a dependence on the j;’s and [;’s, but we shall not use
it.)

(1) N(g1,€1,l1,k1,. -, Jns€nylny kn) is an “entropy factor” that bounds the number of ways
of constructing contours through the action of n quantum bonds of sizes j, ..., jn, such
that the quantum bond of size j; leads to a section of area [;, of which k; plaquettes
are high-energy defects. More precisely,

N(j1, €150, k15 -y Jny €nylny kn) 1= card{(Po,...,Pn) : (a), (b) and (c) below}
(A.13)
(a) |T;| = l;, of which k; plaquettes are high energy defects (h.e.d); [ = I's.

(b) There exists a sequence (X;,...,X,) of quantum bonds with s(X;) = 7;, such
that there is a quantum contour, whose support contains the point (0,0), formed
by the sections I'; and the bonds X;.

(c¢) Ty differs from I';_; by a transition of type e;.

(iv) R(li,k1,... s, k,) is an “energy factor” obtained by integrating the exponential damp-
ing arising from the cylindrical pieces:

R(ly Ky lny k) o= /Oﬁdﬁ---fﬂﬁdml[ﬁzz?ﬂn]

x exp{— Y (Rl + Dk:) 1 (A.14)
i=0
where "
0:=8-3.1 ; R=R-—Ro, (A.15)

and Kq := Ky lo := [,,.
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(v) X := Xe™ is the reduced quantum coupling produced by the above mentioned “en
tropy” contributions inherent to the combinatorics of the cluster expansion.

The bound on the energy factor is obtained as in [10] [see discussion between formulas
(6.28) and (6.29) therein]. For each 7 = 7,..., 7, (8 — 320, 7i), we use the bound

e—(%l{-i—ﬁk,‘)‘r S e—(%lmin-i—kain)’T/Z e—(R'&',‘-}-D k,‘)'r/Q, (A16)
with
lmin :=minl; and kpj, ;= mink; . (A.17)

In this way we extract an overall factor

o~ (RlmintD kmin) B/2 _ o= (Rlmin+D kmin) /2 (A.18)

outside the integral on the RHS of (A.14). We have denoted

_ Ko
= 1——=). A.19
o= n(1- ) (A19)
The remaining integral is the same as the original one, but with ("l + Dk ) replaced by
(Rl;+ Dk .)/2. By neglecting the indicator function and the term proportional to /g and ko
in the exponent, and extending the limits of integration to infinity, we obtain

= B .
Ry, ks, . - ¢~ 7 (Flmin+ Dkmin) A.20
(b, o [1;[ 20+ Dk} ’ (8.20)
where T = ma,xg,,l [The variables lN are introduced to treat “long” and “short” contours

simultaneously; {; = 1 —for only one i— for the short contours.]
To bound the “entropy” contribution (A.13) we proceed exactly as in [10, Section 6. 3.
We start with the inequality

N(jl, el,ll,kl, e 7j’n> Bn,ln,kn) S
(lmax "|' jmax) N(jla €1, lla kla L aj‘m €n, lm kn) 9
(A.21)

where lnax = max;li, jmax = max; ji, and N(j1, 1,11, k1, - - -, Jns €ny bn, kn) is the number of

“pinned” contours, that is, contours with the given section and quantum bond sizes for which
(0, 0) is the first point (e.g. in lexicographic order) of its support. To evaluate N we imagine
that we “construct” the quantum contour by starting from a section with minimal size [,,;,:

N(jla €1, llakl @ e 1jﬂaenalﬂ7 kn) S

Z NF—)F(Jimin'{'l) eimin‘{‘l? llimirﬂ'l’ kimin+1’ e
LeCC(Iminsf1y--rin)

J?mln_l 7 ezmln_ll'bmln—l bl kimln_l ? J'imin b eimin Y k'imin ) *

(A.22)

Here, itmin satisfies {;_.. = lnin,
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CC(l, 41y .-y9n) == {I':|T| =1, and T is a section of a quantum contour with
n section changes produced by the action of operators Q% with s(X;) =
Jist + 1,...,7?,}
and
Nrostn(J1s €15l K1 ooy Jnet1s €nc1y bne1y Kne1, Jns €0y bny kn) := number of ways of

choosing sections I'y,...,I',—; of areas lj,...,l,_; having k;,...,k,—; high
energy defects, such that the section I'; is obtained from the section I';_; by
the action of an operator Q% with s(X;) = ji.

A more careful account of the types of section changes involved, is embodied in the formula

NFQ—}Fn(jla €1, ll) kl .. 7j'n—1a €n—1, lﬂ—l) k‘n—l:jn, €n, ln, k’n) S

@) [Tae” II G+d) II (ki+3) (A.23)
t=1 i€{l...n} ie{l...n}
e;=(¢,£) e; #(££)

[cf. eqn. (6.23) in [10]]. Here ¢, is a dimension-dependent constant. The proof of this
inequality is given at the end of this appendix. Therefore,

N, ex,l,k1,- - Gy €ny oy ) < card (CC(lminy Jt, - - - Jn))

x (@) [Isie” I i+5) TI (ki+d). (A.24)
e i)

As in [10], to find a bound on cardgCC(lm;n,jl, . ,jn)) we make use of the fact that for each
lmin there is a connected set formed by no less than [,,;, and no more than lpin+ 71+ +7n
plaquettes. Thus, by the Kénigsberg bridge lemma, there exists a constant ¢, > 1, depending
only on the spatial dimension, such that

card (Cc(lmin7jl1 €1, kla s 7jn7 €n, kn)) S cf}min + -4 Cf/miﬂ+j1+"'+jn
S (Jl + R + jn + 1) Cf}min"'jl"l‘""l‘jn .
(A.25)

Substituting (A.20), (A.21), (A.24) and (A.25) in (A.12) we obtain the bound

§7° < Y (2 Y (j1+"'+jn+1)(ﬁj£) (2 X)it+in

n>1 (1 seenin) i 21 i=1

: i —BRlmin/2
x Z (lmax + ]max) cym n 6 'BN mln/
(115-eadn) 1121
[li—li-1|<3: (lo=in)

X > e BDkwind2 (1) Byy G < o ks Kns ) 5

0<k: <I;
lki—ki—1 <73 (ko=kn)

(A.26)
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where

Gy 3= 3 II M [ 11 SeiN(ki+ji) . (A.27)
(e1rmen) Lic(.n): Rli+ DRi ] Ligfi ay. Rli+ Dk
€T (k1,..., k-,-,) e;=(£¢) e #(£8)

To bound G, we start with the inequalities

eee (L + 70) < tu (& + 7)

’l;+ Dk; Kl
< % (1 + j:) (A-28)
and, for e; # (¢0),
o saﬁ_z'l;ﬁls%(um if ki =0
bt _ | Ak (A29)
kl; + Dk; €e; (ki + 3i) < Ee; (1+7) ifk>0.

R+ D)k ~E+D

We point out that the first line on the RHS of (A.29) can only occur when e; = (h¢); all
other transitions (different from £ — ¢) yield k; > 0. These inequalities lead us to the bound

G, < [ﬁ(1+ji)] > nlé;,., (A.30)

=1 (81,...,6-”) 1=

eT(kl,...,kﬂ)
With £ E Ehh
- 174 - fh - h
_ tu — - A.31
Ew = ,  Efh E—I—D’Ehh ot D (3)
and "
heé 4
ifk; >0
E+D
By = f* (A.32)
M ik =0.
K

Of these factors, the most dangerous one is &,, when k; = 0. Indeed, it is often the case
that ene is of lower order than %, hence this factor can in fact diverge as the strength of the
quantum perturbation tends to zero. However, this factor always appears in combination
with a factor &g,. This is because, for each transition h — { leading to k; = 0, i.e., to the
destruction of the high-energy defects of the contour, there must exist another transition of
the type £ — h at which these defects start to be created. Formally, this means that one
can set up a one-to-one association between each ¢ with e; = (hf) and k; = 0 and some j5(1)
with e; = (#h). The dominant contribution of such a contour is given by a factor €, &pe.

These considerations imply the bound

G, < ”l 3 n
- z]::]l:( +j) Z (n12n2n3n4)

ny,m2,n3,n4 >0
n1+2nz+nz+ngs =n
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y (%)m ErhEne ng( Ehh )713 maX(S},g,Ezh) "
R KR+ D) E+ D E+ D

£ (4e)" ﬁ(l + i) ; (A.33)

7] Efn€ne €hh Ehe E¢h
= i } A.
¢ mM(E’VﬂE+DYﬁ+D’E+D’E+D) [A.84)

When (A.33) is inserted on the RHS of (A.26), we are left with no further dependence
on the individual /; and k;, but only with a dependence on liin, kmin and ji,...,Js. In such
a situation, the sum over the [;; 1 <1 < n can be bounded by a sum over [, times a factor
[1:(27; + 1) arising from the fact that for each [; there are only 2j; + 1 possible values for [;4;.
By an analogous argument, the sum over the k;, 1 <1 < n, can be bounded by a sum over
kmin and a factor [;(27; + 1). The maximum size, lmax, of a section of the contour satisfies

the bound

where

Imax S lmin + jl e a e +]n . (A35)
This is because the section of “area” [.x is obtained from the section of “area” [, by
the action of at most n quantum interactions, Qzl, ..., Q% , the latter corresponding to

quantum bonds X, ..., X, of sizes j;,--, jn. Also,
jmax S ]1++]n (A36)

With the bounds (A.33), (A.35) and (A.36), and the preceding considerations on the
sums over [; and k;, inequality (A.26) implies that

50 <
> (8a™)" X (Gittiatl) [ﬁ FHL+ 3L + 240)] (2 e Xittin
nal (31500dn) i 21 i=1
X > (bmin + 271 + - + 24n) (c,, e""?ﬁﬁ)lmi" lmzn g D kmin/2
. o (A.37)
The series on the RHS is convergent if
Inz—a.x(e_‘m;‘/2 , EX) (A.38)

is small enough. This is precisely the condition (5.22). W

Remark: Within the region of convergence of the RHS of (A.37), the cluster expansion tech-
nology tells us that the dominant contributions to the thermodynamic potentials (Theorem
6.3 in [10]) and quantum expectations (Sections 5.2 and 6.5 in [10]) come from the leading
terms of the series presented in this appendix. In particular, we have that:
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(a) The “long” contours, that is the contours with lmix > 0, have a contribution
O(e~PF/2y | (A.39)

Contours with “long” high-energy parts, i.e., kmin > 0 have an even smaller contribution
O(S—ﬁ(z-;-D)/Z)_

(b) The “short” contours, i.e., the contours with /i, = 0, have a contribution

0 (?fi;’\) (A.40)

K

if they involve “low—low” transitions. This estimate covers the most general case in
which long-range “classical” (=diagonal) terms are allowed in the quantum part. If
@, had no diagonal terms then the minimal order would be the square of (A.40). This
corresponds to a “vacuum fluctuation” in which a single low-energy defect is generated
and then destroyed.

(¢) The short contours without “low—low” transitions have a contribution

Eth Ehe A

The leading contribution corresponds to the creation and later destruction of a single
high-energy defect.

Proof of the clatm (A.23). The proof follows by induction in n. It is based on the identity

NFQ—}Fn(j17 617 l].)k'l .. ;jn—l; 6n—17l’n.-—~17k'n—1’jna e’n) k’l’l) =

Z NFO“"Fn—l (jla €1, lla kl e :jn—Za €n-2, ln—?a kn-?,
I‘nvleccln—lrkn—lnjﬂ;en(rﬂ)
jn—l;en—lakn-la ) 3 (A42)
where
CClL i knerijmen(Ln) = {T : |I'| = l,_1, of which k,_; plaquettes are high
energy defects, and I, is obtained from I' by the action of some Q¥ with
|X'n| = ]n}

The inductive step consists in showing that

‘ b 3n i = (2E)
card(CCy,_, ku_r imen(Tn)) < a® Gnclr x (A.43)
kn + jn if €n % (£0)

The proof for the case e, = (#£) is identical to the proof of the analogous inequality in
[10] [claim (6.23) therein]. We have to consider two cases:
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(i) ln—1 > l,. In this case, the bond X, must intersect the support of I',_;. The number of
such possibilities is bounded by the product of the number of sites in [',_; (= l,_1a"),
the number of sites in X, (= j,a”) and the number of bonds X, with |X,| = j,. The
latter is less than or equal to ¢/», for some constant ¢, depending on the dimension d.

(ii) ln—1 < ln. In this case, X, must intersect the support of I',. Hence we can use the
preceding argument, with [',_; replaced by I',.

Therefore, in both cases,

card(ccln ik ))

[A

a”)? max(l,_1,l, )jncf;“
< a* (I, +_}n)anJ (A.44)

where we have used that [,_y <, + j,. This proves the first line of (A.43).
The proof for the case e, # (¢¢) is analogous, but with k; replacing /; in the previous

argument. Indeed, the condition e, # (#/) implies that X,, intersects a high-energy defect
either of I'y_y (if kpoy > k) orof Iy, B
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