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On Commuting Transfer Matrices

By Huzihiro ARAKI! and Takaaki TABUCHI

Research Institute for Mathematical Sciences
Kyoto University, Kyoto 606, JAPAN

(22.V.1996)

Abstract. We study the non-singular R-matrices of the 8 vertex model satisfying the free Fermion
condition, with a generalization that we allow non symmetric off diagonals.

Using the result shown in another paper that the transfer matrix 7' constructed from each
such R-matrix commutes with a class of XYh-type Hamiltonian (somewhat generalized, and not
necessarily selfadjoint), we show that such T-matrices commuting with each fixed Hamiltonian
commute with each other at least for generic values of parameters.

In terms of the (Fermion) Clifford algebra obtained by the Jordan-Wigner transformation, the
transfer matrix T' for a generic value of parameters is shown to coincide with a constant multiple
of elements of the group Spin (2N, C) when multiplied by even and odd particle number projection
operator. k

1 Introduction

We consider the transfer matrix 7" for spin 1/2 system (for example, see [1]) constructed as
the trace of a product of R-matrix R along lattice {1,2, -+, N} of a finite length N with
the periodic condition (eq. (2.4)).

Our main results are as follows:

(1) For each R of the type specified below, we find a class of Hamiltonians commuting

with T.

'Present address: Department of Mathematics, Faculty of Science and Technology, Science University of
Tokyo, 2641 Yamazaki, Noda-city, Chiba-ken 278, JAPAN
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(2) The transfer matrices T, commuting with a fixed such Hamiltonian, are shown to
commute each other.

The result (1) is stronger than what has been proved in that the class of R-matrices R we
are considering include non-symmetric matrices. The result (2) seems to be much stronger
than what follow from the known Yang-Baxter equations.

The R-matrices we consider are 4 x 4 matrices with 4 entries at 4 corners, 4 entries in
the central 2 x 2 square, and zero for all other 8 entries (eq. (2.1)). The 8 non-trivial entries
are complex numbers satisfying (1) a homogeneous second degree equation called the “free
Fermion condition” (eq. (2.2)) and (2) the non-singular condition det R # 0 (eq. (2.3)). We
allow non-symmetric matrices, as emphasized above.

The 4-dimensional complex vector space on which R is operating will be identified with
the tensor product of two 2-dimensional spaces, on each of which Pauli spin matrices (2 x 2
matrices) o(¥), aék), o(k) are operating, where the upper index k = a, b distinguishes the two
component spaces of the tensor product.

We will be considering the algebra 2 generated by spin matrices ¢), (« = ,y,%) on
lattice sites j = 1,---,N. The R-matrix based on spin matrices ¢/ and a,gJH) will be
denoted by R; 41 (a = j, b =7+ 1 in the above notation). The Hamiltonians which we find
to be commuting with T are of the following form:

N
H=) Hjjm (Hyne = Hny) (1.1)
i=1
Ha.b = Jno';(c“)crd,(vb) -+ J]gO'a(sa')O'lgb) + ngcr?(ja)oﬂ(:b) + JggO’S(’a)O';b) (12)
@ + o)

The commutativity of H and T is proved by generalizing the proof for symmetric R
by Krinsky [2] to non-symmetric case. Naturally, we have to use somewhat more general
Hamiltonians given above.

We prove the commutativity of 7’s which commute with a fixed H by a method taken
from [3]. It requires three properties of T"s, namely the commutativity with a nontrivial H
of the above form, the translation invariance and T being a multiple of an element of the

group Spin(2N, C).

For the last property, we use the Jordan Wigner transformation to introduce Fermion
creation and annihilation operators ¢}, ¢; (j = 1,-+-,N) (eq. (4.1)). Their linear combi-
nations denoted by B(h) (eq. (4.7)) form a complex Clifford algebra of 2N dimension and
define the group Spin(2N, C) which is denoted by G, below.

In this connection, an important role is played by the modified R-matrix R = RP where
P is the exchange operator of the two component spaces of the tensor product. R-matrices
we are using are exactly characterized among all 4 x 4 matrices by its property that Risa
constant multiple of an element in G, (Proposition 5.2).
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Returning to the transfer matrix T, we modify it by the shift To of lattice sites (to the
left): T = TT;!, where T' and Ty and hence T and Ty commute. Note that Ty does not
depend on parameters, i.e. common for all parameter values. Therefore, the commutativity
of T' for two sets of parameter values is equivalent to the commutativity of the corresponding

1.

We then make a crucial observation (Lemma 2.1) that T is a cyclic product of f?,j,jH,
j=1,---,N (RN,N+1 = RN,I). This is a great simplification because the trace operation
in the original definition of 7' (eq. (2.4)) is gone in this formula, which does not seem to
have been noticed before. Because of this observation, we would obtain the conclusion that
for a generlc values of parameters 7' is a constant multiple of an element of G, if all Hyseq,
7 =1,--+, N, were constant multiples of elements of G.. The latter statement holds for
g=1--, N — 1 but fails unfortunately for j = N (i.e. for Ry 1) because of the presence of
an extra operator S = ﬁ o)

i=1

Because S takes eigenvalues +1 (due to S = 5*,5% = 1) and commute with elements
of G, with Hamiltonians, and more generally with any even elements of 2, we introduce
the spectral projections Ey of S for its eigenvalues 1 (eq. (5.5)). We then make analysis
separately on two subspaces corresponding to Fy.

On the range of Ey, S can be replaced by 1 and Ry coincide with a constant multiple
of an element of G,. However, due to the cyclic product instead of the ordinary product,
we have to make a further computation to reach the conclusion that for a generic values of
parameters T coincides with a constant multiple T% of elements of G-, namely TE, =T*E,.

We also find out that there exist quadratic expressions H* in creation and annihilation
operators satisfying HEy = H*E, for the Hamiltonian H of the form (1.1). It then easily
follows that [H, T] = 0 implies [H* ,T£]E+ = 0. However, it requires a nontrivial argument
to obtain [H¥,T%] = 0.

Similarly, there exist shift automorphisms U* of the Clifford algebra such that
UrTHUF) By = T*E,

follows easily from [T5,T] = 0. However, it is non-trivial to obtain the translation invari-
ance UXT*(U%)™! = T*. Essential parts of the argument for the proof uses some explicit
structure of Fock space and will be given in the Appendix.

- As a consequence of all these arguments, we obtain three properties for T* and hence
mutual commutativity of 7% for different R-matrices commuting with the same Hamiltonian.
This then imply the final conclusion about the commutativity of transfer matrices.

2 Transfer Matrix

(i) Boltzmann Weight.



720 Araki and Tabuchi

In the 8-vertex model, which we will be discussing in this paper, the energy function
k(A e, X, a') at a vertex depends on the configuration A, o, X, o of 4 edges meeting at that
vertex as in figure 1, where the configuration of each edge (i.e. each of A, a, X', o') takes 2
values, say +1.

al

«

Figure 1. Configuration of edges at a vertex
We may consider the corresponding Boltzmann weight
R(A, a3 X, ') = exp —fh(A, a, N, &)
as 4 x 4 matrix in the following manner.

Let V be a two-dimensional complex vector space with an orthonormal basis {e;,e_1}.
R is then interpreted as a 4 x 4 matrix acting on

v= Y v(en®e)EVRV
Aa=%£1

Rv = z ( Z R(A, o, )\',a’)'u)\tar)(e)‘ ® ea),
Ma=£1 Mal=#1
With respect to the basis
El :61®613 52:61 ®e_1, 63:6_]_@61, 64 26,4@6_1,

R takes the following form for our model.

a4 0 d
1o b e 0

B=|0 %7 0| 2.1)
d 0 0 a_

We restrict ourselves to the case where the following “free Fermion condition” is satisfied
aya_ +byb. —cd —dd' =0 (2.2)
Furthermore, we impose a further condition
aya_ —dd #0, (2.3)

which is the condition (under (2.2)) for the existence of R™!. (The significance of the
condition (2.2) will become clear in the next section.)
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We will be dealing with the general case of complex parameters without any other con-
ditions than (2.2) and (2.3). In fact, for our main conclusion of the commutativity, the
condition (2.3) is also not required, just as the limiting case of those satisfying (2.3).

In the following discussion, we have to deal with many 2-dimensional spaces V. In such
a situation, the same matrix R acting on V; ® Vi will be denoted by Rjy.

(i1) Transfer Matrix.

We will be considering the 8-vertex model (2.2) on a two-dimensional M x N lattice with
the periodic condition. The partition function will be of the form

Z = Ze‘ﬂzh" => TIR.()

where the total energy 3" h, is the sum of interaction energy at all vertices, R,(-) is the
Boltzmann weight R(A, a : X,o') (introduced in (i)) at the vertex n and the summation
is over all configuration of edges. The summation will now be interpreted as product and
traces of matrices in the following way.

If we look at a specific edge on m th row between jth and (7 + 1) th columuns, the only

R, (-) which depend on the configuration A’ of this edge are for two vertices n = (m, j) and
n' = (m,j+ 1). We may consider R, to be acting on V5 ® V; and R, acting on V5 ® V41,
where V; and V}; refers to configuration of edges on j th and (7+1) th columns, respectively.
Then the summation over A’ yields

Z Rn(A, aj, )\I, a;-)Rn;(/\', (J{j+1, )\”, a;-+1)

)\I

= (Ran')()‘a Qjy 0115 A, aga o‘;’+1)
where R, is acting on Vo ®V;, R, acting on Vo®Vj41, the product in R, R, is with respect to
the action on the space V4 with the resulting product matrix R, R, acting on V@V, ® V,41.
In this situation, we denote R, as Roj, Rn as Rgj+1 and their product as Ro;Ro j+1 with
the understanding that Ro; is the matrix R, ® 1;4; acting on V5 ® V; ® Vj4; (1,41 denotes
the unit matrix E on Vj;1), Rj4; is a similar matrix for R, and their product is then the
usual product of matrices Ry; and Ry ;41 acting on the same space Vo @ V; @ Vjy.

Repeating the same procedure for summation over configurations on successive edges on

m th row, we obtain the following matrix acting on V; ® V2 ® - - - ® Vv, called the transfer
matrix.

T =try, Ro1Roy - - - Ron (2.4)

Here products and the trace are taken on the space V5. The matrix elements of T will be of
the form

T(ay, ag,...,aN;a),ab, ..., 0)
where a4, ay, ..., an refers to the configuration of the edges on the first, the second, ..., the
N th column between (m — 1) th and mth row and o}, ), ..., )y refers to those between m

th and (m + 1) th rows. The partition function Z is obtained as
Z=trT™
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where products and the trace are now taken on the space V; ® --- ® V.

The quantity we want to discuss in this paper is the transfer matrix T itself as a matrix
acting on

V=V --QW (2.5)

(iii) Translation invariance.
We introduce the translation operator Ty on V by its action
To(ea, ® - ®eay) =€a; @ - @ ay @ €q, (2.6)

on an orthonormal basis ey, @ --- ® e,y of V. It is the translation to the left. The inverse
of Ty is the translation to the right:

To_l(efxl ® T ® BCXN) = eaN ® €o; ® AR @ ecxN_l (2.7)

Then we obtain :
(1v, ® To)Roj(1v, ® To) ™' = Ro,j-1 (2.8)

on Vo ® V. (j — 1 for 7 =1 is to be understood as N.) Hence we obtain from (2.4) and the
trace property tr(AB) = tr(BA), the following translation invariance

ToTTy' =T. (2.9)

In the following, we will be discussing the property of
T =TT =TT (2.10)
which also commutes with Tj.

(iv) Basic formula for 7',

We introduce the following exchange operator acting on V @ V.

Plea @ eg) = e ® eq. (2.11)
Namely
1000
0010
P 010 0 (2.12)
0 001
We then define
a4 0 d
D _ 0 c b+ 0
= RP e 0 b & 0 (2.13)

d 0 0

Q
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We now introduce the notion of circular product. Let fij,k be a matrix acting on V; ® V4,
namely R;x € B(V;) ® B(Vi) where B(V) denotes the algebra of all 2 x 2 matrices acting on
V. Then for RN,N+1 = > ruAr ® By with Wy, = Wi, Ay € %(VN), B, € EB(Vi), we define
the following circular product:

circ.

H Rj,j+1 = Zrkl B —’%1,21{22,3‘ £2 RN—I,N Ay (2.14)

j:1=N k,l

where B; is identified with B ® 1, @ - @ 1y and A with 1, ® - ® 1y_1 ® Ay.

The circular product is almost the same as the ordinary product R1’2R2,3
-« Ry_1,nEn1 except that the matrix of 8(V}) contained in By ; should multiply the ma-

trix of B(V}) contained in Rl'g from the left instead of from the right, namely their order of
product is inverted. We also write it as

: 31,2]%2,3 Tt RN—I,N}%N,l 1 (2-15)

where : --- :; denote the inversion of the order of product of matrices belonging to B8(W)
which are contained in each factor R;;y; (in fact those in R; 5 and in Ry,1). We have the
following formulas:

Formula 1: él,zﬁg,g, e RN,I 1 = 3 {(tl R1,2)R2,3 e (thN,l)} (216)
where ¢! on the left shoulder indicate the transposition of matrices belonging to B(V}).
Formula 2 Rl,gf}z,_g tee RN,]_ 1= RNJR]_’Q st fZN_l,N N (217)

Roughly speaking the circular product is invariant under circular permutation.

The following Lemma gives the basic formula for T, which will be the basis of our
computation in this paper.

Lemma 2.1

circ.

A

T= T Rin (2.18)

11N

where Vivyr = Vi and R; ;41 is R of (2.13) acting on Vi @ V4.

Proof. By definition (2.13)
Bjjvi(ey, 415 05, 0G41) = R(ey, @jya; 0G4, f)

where a;, o} and «a;41, o}, are labels for orthonormal basis vectors of V; and Vj41, respec-
tively. Then

A

(Rij—1iRj 541 ) (o1, 05, gy 0y, 0, 0 )

= E R(aj—h Qs 0{'{, a_lj—l) R(a;”s Q415 0‘3’+1a;)
1

aj-

= Rlajo1,05 X, @fy) R(A, aya1; g, )
g
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where the second equality is simply a relabelling of the summation index from of to A;.

Repeating this computation, we obtain

circ.
&

( H R:i,j+1)(ala-"aaN;a’D"'aa;V)

J:1N
N
= Z H R()‘:‘:ijﬂ; /\j+1a0!;)
Ar-An J=1
where the index N + 1 is to be replaced by 1. Therefore

circ.

{To( H ffj,j.}.l)}(a;, cus y BTN v 3 3 5l

il N
circ. R
:( 11 jsj-l-l)(anala---70~’N-1;0511,...,0{;V)
J:1=»N
N
= > IT RO, a5 Ajir, @)
ArAy a=1

= tT‘g(Rol LR R()N) s
Q.E.D.

We note that the space V; in the definition of T is completely eliminated on the right
hand side of the formula (2.18). This is the merit of this formula.

3 Free Fermion Condition

In this section, we clarify the implication of Free Fermion Condition (2.2) for the purpose of
its application to our main theorem.

We use the following linear basis of 2 x 2 matrices in B(V).

ma=(3 ). = (0 1), wm(% D). m(d )
—%=\o 1) %T\1 o) YT \-1 0) 2T \o -1/

Pauli matrices o, 0y, 0, in B(V;) will be denoted by ¢, o), o{¥). Due to their orthogonality
tr(caog) = 2044,
the coefficients of the expansion
A= Z ' e
for an arbitrary 2 x 2 matrix A can be obtained by

1
gy = ~2—tr(aaA).
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(The coeflicient of io, will be —ia,.)

For expansion of &; ;1 € B(V; ® V;41), we may use the product of above bases for V;
and Vj;;. R is of a special form so that it is a direct sum of 2 x 2 matrices

Re = (Czl‘j‘ ;l ) on (VRV).=Ce; ®e1+Ce; ®ey (3.1)
and b
RO = (g ct) on (V®V)y=Ce ®ey+Ceys Qe (3:2)

where e; = (tl)) and e_; = ((1)) Therefore only the following 8 terms out of 16 possible

terms appear in the expansion of R:

(1 1
1
0o ® 0 = } 1 " 0 Q Oy = 1 )
\ 1 1
(1 \ ( 1
O-U®O-Z = _1 1 ] JQ‘J@ (io'y) = 1 —1 Y

o, ®0op = v (Ey) &y ==

0,0, = ) (iay)®(i0'y) =

We now focus on the coefficient of ¢, ® o,, which is given by

(1/4)try{D(o, @ 0,)} = (1/4)(d11 — daz — dz3 + das)
= (1/4){tr2De — traDo} (3.3)

for any 4 x 4 matrix D = (d;;) € B(V ® V) which is a direct sum of D, € B((V @ V).) and
Do € B((V ® V)o). In this formula, tr, denotes the trace of an n x n matrix (n = 4, 2).

Lemma 3.1 R can be written in the form

A

. - - eD (34&)

b = De ) Do, tT‘gDe = t?‘ng (3.4b)

(namely, the vanishing of (8.3) for D) if and only if the following 3 conditions are satisfied
by parameters:
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(a) The free Fermion condition (2.2) holds.
(b) R is non-singular, i.e. the condition (2.3) holds.

(¢) R is not of the following form:

~

RE=X1+Ne, R°=-)1+N° (3.5)

for A # 0 and non-zero nilpotent matrices N® and N°.

Remark If R has the form excluded in the condition (c), then R can be written as the
product

R=R,R,

of the two matrices
R,=A1&-X1, R=1+N

where

N=X'Ng-)'N°

is nilpotent. Both R, and R, satisfy conditions (a), (b), (c) and hence there exist, by this
Lemma, D, and D, of the form (3.4b) such that

D D
By =e¢"*, Hy=e""Y

R = ePeePr,
Thus & can be written as a product of 2 matrices of the form (3.4) but the product R can
not be written in such a form.
Proof of Lemma 3.1

The necessity follows from the following computation. From (3.4), it follows that
R=el =P @e.

Namely
Rt =ePe, RP=¢

The vanishing of (3.3) for D implies
det R® = ¢'Pe = Do — det RO

where det A denotes the determinant of A, and we have used the formula det e? = P for
a general matrix D. Due to

det R° = aya_ —dd', det R® = cc’ —byb_,

the free Fermion condition (2.2) follows.
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_ For any matrix D, eP has the inverse e~? and hence it is non-singular. Finally, consider
R of the form (3.5). Suppose X
R =ePe, R* =™, (3.6)

If the Jordan form of D, were diagonal, then e”¢ would be diagonal, in contradiction with
the assumed form (3.5). The same argument holds for Dy. Hence

D, = }U'e]- + Me, DO = /J'Ol + M,
for some nilpotent M, and My. By the requirement (3.6), we have
%2 e ko ¢ =)
eMe=14+ M, =14+X1IN,, e =14+My=1-X"1N,.

Thus e*¢ #° = —1 and hence
Po = pe + (2£ + 1)

for some integer £. Hence
Trpol —Trp.1 =2(20+1)m # 0.
So (3.4b) is not satisfied. This completes the necessity proof.

Next we show the sufficiency. First consider the case where the Jordan normal form of
Re is diagonal. By condition (2), both R® and R? are non-singular and hence they can be
written as ePs and eP° for some matrices D, and Dy. If the eigenvalues of ke are A, and
Ae,, then eigenvalues of D, can be taken to be

LogAe, + 2417, LogA., + 2{yme

for any integers ¢; and ¢, (Log is a fixed branch of the logarithmic function) so that for one
choice of D, there is another choice D! satisfying

e =ele = ePe. TrD, =TrD, + 2ri

for any integer £ (simply by adjusting ¢, with ¢; fixed, for example). On the other hand the
free Fermion condition implies

eTrPe — det B¢ = det R® = ¢T7Po

so that
TrD, =TrDgy + 20w

for some integer £. Then we can choose D! which satisfies Re = eP+ and (3.4) by
TrD, =TrD. + 2lri = TrDy.

The same argument holds if R® has a diagonal Jordan normal form. The remaining cases
are when both R® and R° have non-diagonal Jordan normal form, i.e.

R® = A1+ N¢, R°= )1+ N°
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with some nilpotent N® and N°. By the free Fermion condition,
¥
A2 = det B = det B° = A2

Hence Ag = £A.. The case Ay = —A. gives (3.5) with A = A, and is excluded by condition
(c). If Ao = Ae = A, then we can fix one y satisfying e# = A and define

D, =pl +A;'N¢, Do = pul + M;'N°.

Then (3.4) is satisfied.
Q.E.D.

4 Fermion creation and annihilation operators

We will be dealing with the algebra
A=8B(V)® - @8B(Wn).

The notation o¥), Jl(,j), o) for Pauli matrices in each B(V;) will also be used to denote the
corresponding operators in 2, i.e. ¢/) denotes also

LR ®1;,80Y81;® - ®ly

(a = z,y, z) where 14 denotes the unit matrix in B(Vk). We denote by %; the subalgebra of
2 generated by them.

(i) Jordan Wigner transformation.

We introduce the following operators:

¢; = S;(ald) — z'ag(jj))/2, (4.1a)
¢ = 8;(09) + gy /2, (4.10)
S;i=ocW...ocl-1) (5 =1). (4.1¢)
The inverse transformation is given by
o¥) =2¢cjc; — 1, (4.2q)
o) = 8;(c; + ), (4.26)
o'?(;j) = iSj(Cj — C;), (426)

The operator ¢} is the adjoint of ¢; as can be derived from (4.1a) and (4.1b). They satisfy
the following canonical anticommutation relations (CAR):

[cja Ck]+ = [C;aCZh =0, (43(1)
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[cjycil+ =6 (Ofor 7 £k, 1forj=k) (4.3b)
where [A, B], = AB + BA. By (4.2), the set of all ¢; and ¢} (j =1,---, N) generates

A=B(WV® ---@Wy)=83V) @ - B(WN). (4.4)
So 2 is reinterpreted as a CAR algebra or Fermion algebra.
(ii) Self-dual CAR description [4].

For the sake of compact notation, we introduce the following notation. For each

f:(fl)"'afN) Eﬁz({]_,---’N}),

we define
o(f) =2 ficiy <(f)=2_fi. (4.5)

For each
h=(1)er=e@, e, (4.6)

we define
B(h) = c"(f) + c(g) € 2. (4.7)

It satisfies (and characterized by) the following self-dual CAR relations.

(1) heL— B(h) e is (complex) linear.
(2) [B(h1)", B(h2)]+ = (h1, h2) (4.8)

where the £% inner product on L is defined by

(h1,h2) = (f1, f2) + (91, 92)

(o) en m=(g)er

(f)g) = fl:gl g pbl +fngn

for

and

for f,g € £2({1,--,n}).

(3) B(h)”

B(T'h) (4.9)

((2)-3)

The conjugate linear operator I' on L is involutive (I'* = 1) and antiunitary ((Lhy, ['hy) =
(h2,h1)) and hence viewed as an abstract complex conjugation operator on L in the sense that
there exists an orthonormal basis e, -, ean in L satisfying I'e; = e; for all 7 =1,---,2N

where
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and I' is a (concrete) complex conjugation of components of vectors relative to such a I'-
invariant basis.

(iii) Quadratic combination

Let A = (Aij)ij=1,.2n be 2N x 2N matrix. It can be written in terms of N x N matrices

Ake as All A12
A= (A21 A22) . (4.11)
We define
(B,AB) = (c*,AYc) + (c*, AY%c*) + (c, A*'¢) + (¢, A%c)
N
= > (Aiclej + Aijancic]
1,7=1
+Aign jcicj + AigN j+NCCf), (4.12)
which covers all possible quadratic expressions of ¢; and ¢, 7 = 1,- -+, N. It has the following
commutation relations
(B, AB), B(h)] = B(a(A)h), (4.13)
(B, A1B), (B, A2B)] = (B, [a(A1), a(A)] B) (4.14)
a(A)=A-TAT (4.15)

which easily follows from the formula:

[AB,C]= A[B,C]; - [A,C]4 B

The set of all a(A) can be characterized as
o(2N,C) ={A € B(L);TA'T' = —A}. (4.16)

Namely a(A) for any A belongs to (4.16), and a(A) = 2A holds for any A in the set (4.16).
It is a complex linear set closed under commutator and hence is a Lie algebra.

The operator I' may be viewed as a complexification and o(2N, C) is the set of all anti-
symmetric matrices (under transposition) with respect to a I-invariant orthonormal basis.

(iv) Bogoliubov automorphisms
From (4.13), we obtain for A € o(2N,C)
\BAB) B()~(B-AB) = B(2Ap), (4.17)

where

e € O(2N,C) = {S € B(L);TS*F= S~'}. (4.18)
and O(2N,C) is the complex orthogonal group.
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For any S € O (2N, (), there exists a unique algebraic automorphism ag of % (not
necessarily preserving *) satisfying

as(B(h)) = B(Sh). (4.19)

called a Bogoliubov automorphism. It becomes a *-automorphism if and only if U is unitary
i.e.

UeO@2N)={UeB(L): [ILU]=0, UU*=U"U =1} (4.20)
where O(2N) is the real orthogonal group.

The equation (4.17) says that the similarity transformation by eB4B) gives rise to a
Bogoliubov automorphism:
Ad 'B4B) = 04, (4.21)

It obviously belongs to the connected component of the Lie group:
e’ ¢ SO(2N,C).
We shall denote G = SO(2N) and G¢ = SO(2N, C). Their Lie algebras are
g={Ae€ B(L); [IA]=0, A" = —A},
g. = o(2N,C).
The latter is the complexification of g.

Let G, be the subgroup of the group %, of all unitaries in 2 generated by e(®4B) A € g..
Its Lie algebra is the Lie algebra of all (B, AB) which is isomorphic to the Lie algebra g..
Both G, and G, are connected Lie groups with isomorphic Lie algebras. It is known that
the universal covering group of G, for N > 2 covers G, twice. On the other hand

—1 = e;ria(j) — erri(c;c_.,'—cj-c;-‘)

induce the trivial automorphism id. of 2 and (cj¢; — ¢jc;) = (B, AB) for an A € g, so
that the homomorphism G. = G, induced by the isomorphism of their Lie algebra is not
one-to-one. Hence (G, is isomorphic to the universal covering group of G, and the map

VeG.— AdV e G, (4.22)

is exactly two-to-one, namely, for each V € G,, there are two elements £V € G such that

Ad(£V) = V.

5 The operator 7" as an element of G,

(i) By the Jordan-Wigner transformation, the eight 4 x 4 matrices in Section 3 as elements
of B(V; ® V;41) = 2; @ 2,41 can now be written in terms of quadratic expressions of ¢’s and
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c*’s by substitution of (4.2):

co®00 = 1, 00Q®0,=CjyiCir1 — Ci41Ci41,
0:®00 = cj¢j—cicl, 0. ® % = (¢j — ¢f)cja + €54y
0x ® (ioy) = —(¢—&f)eiv1 — 1), (10y) ® 02 = —(¢j + ¢f)(cj1 + ¢f1y)
(ioy) @ (i0y) = (¢j +¢f)(ejn — CJ+1")

0. ®0, = (c;cj - cjcj)(cj+1cj+1 - CJ'+IC;+1)'
By Lemma 3.1 and the subsequent Remark, we obtain the following result.

Lemma 5.1 RM+1 €U QU (j=1,2,---,N—1) is in G, up to a constant multiple
(i.e. Rjj41 € CG. ) if the following two condztzons are satisfied.

(1) Free Fermion Condition. (Condition (2.2))

(2) R is not singular. (Condition (2.3))

(The constant multiple comes from the term oy ® ¢ in D.) Note that G, is a group and
hence

Rl,2R2,3 e RN—I,N

is also in G, up to a constant multiple.

The R-matrix R we are considering is of the form (2.1) with parameters satisfying the
free Fermion condition (2.2) and the non-singular condition (2.3). The matrix R which is
the R-matrix R modified by the exchange operator P as in (2.13) is playing the central role
in our discussion of the transfer matrix T' or 7. It can be characterized among all 4 x 4
matrices by the following condition.

Proposition 5.2 For a 4 by 4 matriz R to belong to G. up to a constant multiple, it is
necessary and sufficient that R = RP is of the form (2.1) and the parameters satisfy (2.2)
and (2.3).

Proof. We have already seen the “if” part in Lemma 5.1. We now prove the necessity. We
consider the even-oddness automorphism O of 2 which is uniquely defined by ©(c;) = —¢;,
O(c;) = —0(c), 3 = 1,...,N. Then (B, AB), being a quadratic expression in c’s, is O-
invanant, hence so is any element R € G.. This implies that R and R are of the form (2.1).
Also, any element of G is invertible, have to be non-singular and hence (2.3) is satisfied.

Finally we note that the free Fermion condition for R is the equality of determinants of
two 2 X 2 matrices in R, one in the central square and the other on the four corners. We
already know by Lemma 3.1 that it is satisfied by e®4B) and hence by their products. In
particular any element of G, (for the case N = 2) satisfies this property for R and hence the
free Fermion condition for R = RP.

Q.E.D.
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Since IA%N,I has a different form, we now want to discuss fZN,l along with other matters
associated with the edge of our lattice.

(ii) Edge of the lattice

At the edge of the lattice, we have the following relations:

oM™ = Sn(en +¢y) = (ew + &y)aM8 = (exy — ey)S
o) =iSy(en — ) = i(en — cy)otMS = i(en + i) S (5.1)
V) =2chen — 1
where
N
S = o'z(}) ... a'gN) = H(C;Cj - Cj(,‘;). (52)
i=1

The operator S anticommutes with every B(h), h € L and hence commutes with quadratic
expressions of ¢/s and ¢*'s. Since S* = S and S? =1, any @ € SO(2N,C) and A € o(2N,C)
split as follows:

Q = @Q++Q-, Qr=QFE:,
A = A, +A_, A= AEy, .
Ey = (1+5)/2 (5.5)

We now investigate }ABN,I and its role in the cyclic product more closely. In terms of Pauli
spin matrices, we have

RN,I = Clf(')(}]- + Olzoagl) + CfOngN) + azza,gl)ggN)

tazoMeM) 4 ayxa?(ll)aiN) + axyafrl)GéN) R

with parameters o;; determined by

Ay = Qoo+ Qzo+ Qoz + Qzzy G- = Qoo — Q0 — Qo2 + Qs

C = oo — Qo + Ogy — sy g = agg + 00 — Qo — Qg

d = gy —toy, — 10y — Quy, d = Qg + 10y + 10y — Qyy,
by = Qpptioyy — 10y + Quy, Do = Qg — 10y 100y + Oy

First we discuss the free Fermion condition, which is equivalent to
ooz — (00 = OpyOlyg — Qg Oyy. (56)

in terms of the new parameters.
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With the abbreviation ) . i
g=Ri2---RBnon € CGe,

we have )
T=Y e,V
(#w)
where a‘(}) is in front of g by the definition of the cyclic product, 0((,1) = cr((,N) = 1, and the
pair of indices (y, ) run over 8 possibilities for the index of a.

By substituting (4.2) with j =1 and (5.1), we obtain

A

T = Awg + Asocic1g + Avsgeyen + Asscicigeyen
+(Ancigen + Aracigey + Anrergen + Azcigey)S,

with
A = Qpo— Qo; — Qo + 0y,  Aszz = da,,
Azg = 2(0lz0 - azz); Agsz = 2(050z - azz),
All = Qggy — iaym &+ z.Q’:txy - Qyy = b21
Az = —0p:+ iaya: & i iaxy + Qyy = _d)
A21 = Qg + iay,; + iazy — Qyy = dly
A22 = —0Ogz — iayz— + iaxy — Oyy = —b]_.

The condition (5.6) is equivalent to
ApoAzz — Azp Aoz = AnAzz — Az Ars. (5.7)

When multiplied by E4, S can be replaced by £1.

Hence we have TE:E = RiQEi with

Ry = Ao+ Asocicr + Aosd’c + Asscierd’e
:l:(AuCTC + Algc’{c’ + A2161C + A22C1CI)

where

¢ =geng™ = ay(en), ¢ =GengT = aglcy)
are B(ghn) and B(ghly) for the test function Ay and hly satisfying cy = B(hn), ¢y = B(hy)
and g is the element of G, o, = Ad § being the Bogoliubov automorphism due to g € CG..
We note that CAR relations are preserved:

o = (CI)Z =0, [t, cI:|+ =L

‘We now show for a generic value of parameters that Ry € C G,. This will imply R g€
C G,. We project out the first component of the test functuions ghy and ghly as
¢ = B(ghy)=pbic1 + P +¢
¢ = B(ghy) = Bic1 + Byci + ¢
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where ¢ and & are linear combinations of ¢;, ¢j, j = 2,..., N and satisfying

F+Bifh=7=0, (@)+88=() =0
&, &)+ + 818y + 5162 = [, ]+ = L.

As shown in the Appendix (Lemma A.5), ¢ and ¢ are linear combinations
e=feo+ne, &=Eetnc
of ¢g and ¢ which are linear combinations of ¢;, ¢}, 7 = 2,..., N and satisfy

0(2] = (66)2 =0, [Cﬂa c:)]+ =1,

under the condition

[6, ]2 —42%(&)? =1 —2(B1B2’ + B1'Ba) + (813" — Bi'B2) # 0. (*)

The fact that they are linear combinations of ¢;, ¢}, j = 2,..., N implies

[C0761]+ = [CO,CI]+ = [cg,c1]+ = [CB>C’{]+ =0.

By using these relations, we can compute &2, (&)? and [¢,&]4+. Substituting the result
into earlier relations, we obtain

En+ BB =€ + B8, =0,
&' + &+ BBy + 8162 = L.

By substitution, we have

A

Ry = Ag+ Agpcier + Apgchco + Agsciecoco
+ Al cico £ Alycicy £ Ay £ Agyeicy,

with

Age = Aoo+ Aos(B182 + n¢') £ AnpBa £ Anfy,
Ay = Aso+ Aws(818; — B28) + Ass(n€' + B152)
+ A5 F Anf2 £ Anf F Axnfs,
Ay = Aws(ln' =€), Az = Ass(én’ —€n),
Ay = Apné+Apt+ Aps(€8; — ¢'B2) £ Ass(€6; — €' B2),
Al A’ + Ay £ Aos(nBy — 1'62) £ Asa(nBz — n'Be),
Al Agi€ + At + Ax(€8] — &' B1),
Az = A’ + Aun £ Aws(nBy — 1'B).

Il
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We now compute expressions corresponding to two sides of (5.7).

AaoAgs - Ai)sAgo = (577’ - fl??){(AooAss - A03A30)
+(B28; — B501) Aos( Aoz + Ass) £ B2 A21( Az + Ass)
iﬂ;Azz(Aos + Ass) F B1A12A03 F f1A11Aws},
A’11A'22 - A’12A121 = (&0 = En){(Andz — A2As)
+(8281 — B301) Aos( Aoz + Ass) £ f2A21( Aoz + Ass)
435 Aza( Aoz + Ass) F 81 A12A0s F B1A11 Aoz}

Thus we have
A60A53 - AbaAgo = A,uAlzz - AInAle- (5-8)

We can now go through the same computation from ¢’s to ¢’s backwards to obtain the
formula

. _ 1 ’ 1 '~ ! 1)~
Ry = agl+ azocrz(, ¥ 4 0,0, + ozzzag )az
r (1) ¢ {1} 1 ()= 1 ()
F0 0, '0p + 00, 0 + 00, 0,0y + 0, 0,70y
where
rot [ Y I P
QpoQ,, — QoA = Qg Oy — Uy Qs (59)
and

G, =2Cc—1, G,=01E+7e), &,=icMe-2).

Then &, &, and &, commute with o{!) and satisfy the algebraic properties of Pauli spin
matrices

~2
o, =1,

Oal0p = —0p30y = 10
for (e, B,7) = (z,¥,2), (y, 2,z) and (z,z,y), except their hermiticity.
For the application of Lemma 3.1, we need the non-singular condition
det By 0. (5.10)

For a specific set of values of the parameters a; = a; =c= =1,y =by=d=d =0,
all }},j,j_}_],j =1,--+,N —1 are the identity matrix and hence Ry is also an identity matrix.
Therefore (5.10) holds. By continuity, (5.10) holds in an open neighbourhood of this specific
set of values of parameters. Thus for a generic values of the parameters (more precisely,
possibly excluding the algebraic manifolds defined by det Ry = 0), (5.10) holds.

Similarly, in the above proof, we need the condition (*). For the above specific set of
values of the parameters, the left hand side of () is 1 and hence (*) is satisfied in an open
neighbourhood of the specific set of values. Thus for a generic values of parameters, () also

holds.
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We can now apply Lemma 3.1 to Ry. The proof of Lemma 3.1 does not use the hermiticity
of Pauli spin matrices, and hence Ry is either of the form P or a product of two such matrices
where D is a quadratic expression of ¢, ¢}, ¢ and ¢’. Hence we have Ry € C G.. (Note that
tro, = 0 follows from the relations 2i0., = [04, 05].)

The foregoing computation shows the following result.

Proposition 5.3 For T of (2.10) (the ratio of the transfer matriz by translation operator),
the following hold for a generic values of the parameters.

TEi =k ViEy, Vi€ éc, ky € C. (5.11)

We note that )
det R;;4; = (apa_ — dd')'/?

under the free Fermion condition and det Ry is also of the same form with deformed pa-
rameters. The parameter k is needed to make det Vi = 1. Thus k? is a polynomial of the
parameters ay,a_,by,b_c,c,d and d'. The ambiguity + for V4 arising from the square root
of k* disappears when mapped into G..

6 Shift Invariance

The operator S defined by (5.2) implements the automorphism © of the algebra 2 (6(A) =
SAS! A € %) satisfying

O(c;) =—¢cj,  O(aP) = o,
(6.1)

@(Gg(f)) - _gg(aj)’ @(aéj)) - _U@(Ij)’

j=1,...,N. Hence S commutes with &;,,; and 7" in (2.18).

From the definition (6.1), it follows that S and E. are invariant under the shift discussed
in Section 2 (iii). Namely )
[To,TEL] = 0. (6.2)

The subalgebra of 2 consisting of all ©-invariant elements A of % (i.e. ©(A4) = A) will
be denoted 2. It is generated as a C*-algebra by quadratic expressions in ¢; and ¢}, i.e. by

CjCk, CiCk, Cick and ik (7,k=1,...,N). Tp, T, S, Ey are all elements of 2.

(i) Shift Automorphisms

The shift operator Tp introduced in Section 2 (iii) induces the following shift automor-
phism of 2.
7(A) = (AdTy 1A = Ty L AT,. (6.3)
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For example, for a = z,y, 2,

(o) = ot if 5 £ N,

(o) = o0,
If j <k# N, then
e = ({08 — iof) /210t 0B otH — i) 2

and hence
7(¢jck) = Cj+1Ck+1- (6.4)
Similarly,

T(cick) = Cj+1CZ+1> T(C;Ck) = j+1ck+1= T(C;CI) = c;+1‘3;+1 (6.5)

By the canonical anticommutation relations (4.3), these equations imply the same equa-
tions for the case k < j # N.

For the case 3 < k = N, we have

1, : ‘ 1 ;
o) = Ho8 —iolto.. L (o) _iofh)
= Cj+1SCl = —Scj_[_lc]. (66)
Similarly, we obtain
T(cicy) = —=Sc¢ipcl, T(cien) = S a, T(Cey) = =S¢ (6.7)

Let 7{AR be the *-automorphisms of 2% = 2A°AR uniquely determined by

e (e) = ¢ 5 # N,
(6.8)
LR e g
Lemma 6.1 For any A € 2,4,
T(AEy) = 19"(A)Ey (6.9)

Since SEy+ = £FEy and 7(Ex) = Eg, (6.9) holds for A = c;cx, ik, ciex, cick (J,k =
1,---,N) by (6.4)—(6.7) and (6.8). Hence (6.9) holds for any A in 24, which is generated by
quadratic expressions in ¢’s and c*'s.

(ii) Shift Invariance



Araki and Tabuchi 739

The transfer matrix 7 (T modified by Tp) belongs to 2, and coincides with a constant
multiple of an element of. G, when projected to E, and to E_:

TEy =ksiVaEy, Vi€G., ki€C (6.10)

Proposition 6.2 Assume N > 2. Then

TaA (Va) = Va (6.11)

The following technical Lemma, to be proved in the Appendix, is the basis for the proof.

Lemma 6.3 Assume N > 2. IfV, € & satisfies Vo Ey = FEy, then

V=0, AdV, ==l (€ G.) (6.12)
V.0=140, AdV. =21 (cG.) (6.13)

where we have two possibilities for V. and for V_ given by the choice of the sign £. The =
in two equations in (6.13) should be the same.

Proof of Proposition 6.2 By (6.2) and (6.9), we have

ARV By = r(VaBy) = ki'r(TEx)
= k‘;ITEi =V,FE,.

Hence

VilrSAR(VL)Ey = By, Vi'ro*R(Vy) € Ge.

We can now apply Lemma 6.3. We know that Vi depends polynomially on 8 parameters
of R except for the over-all factors k1 and hence Vy are continuous in these parameters. We
also know that R = 1 and hence Vi = 1 for a specific set of values of parameters:

G = mp=de=l, bh=b=sd=d =l
Therefore the choice of + in Lemma 6.3, which has to depend continuously on parameters
of R and has to be + for a specific value of parameters, has to be + for all parameter values,
as the set of allowed parameter values is connected (being generic points of the irreducible
algebraic manifold defined by the free Fermion condition). Then Lemma 6.3 (i.e. egs. (6.12)
and (6.13) with + sign) implies
V;quC:AR(Vi) = L.

Q.E.D.

(iii) Fourier analysis.
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The automorphisms 7ZAR introduced above are Bogoliubov *-automorphisms correspond-

- ing to the following transformations of the test function L of (4.6), which may be viewed
as

L = *{1,...,N})®C,

(1)=10(3) 00 (2) e

(fag = 12({15 . aN}))

Defining
(Usf)i=fimn it j#1,
(Usfh =*fn
for f € 1%({1,...,N}), we have
7e"*(B(h)) = B((Ux ® id)h)
for h e L.

Eigenvectors of Uy are given as follows.
(€ = 2N k=1,...,N,
(eV)y = em@HDEIN g — 1 N,
where 7 =0,1,2,..., N — 1. They satisfy
U+€Eg) = 6_2ﬂij/N€&j),

U_eY) = g mi2i+1)/N ()

Both set of vectors {e(ij)}j are orthonormal bases of [({1,..., N}). If any linear operator
V on L commutes with U, ® id, then
V(Y @v)=eY @V, ved
where V1) j =0,..., N —1 are 2 x 2 matrices acting on C2. Thus V is described by {V()}.
The same situation holds when U, is replaced by U_.

If [H,V] = 0 and if both H and V commute with Uy, then [HU), V)] = 0 for all j.
Similarly for U_.

For 2 x 2 matrices A and B with A not a multiple of the unit matrix 1, [A, B] = 0 implies
that B is a linear combination of 1 and A. Thus we obtain the following result.

Proposition 6.4. Assume that all H,V; and V, (acting on L) commute with Uy (or
with U_) and if all HY) are not multiples of the unit matrix, then [H,V;] = 0 and [H, V5] =0
implies [V1, V3] = 0.

Proof is immediate as [H, Vi| implies [H(j),‘/}c(j)] = 0 for all j and, since HY) is not a
multiple of 1, we obtain [V;?), V;{¥)] = 0, which implies [V;, V4] = 0.
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7 Hamiltonian

(i) Fourier analysis of Hamiltonian

The Hamiltonian operator we will be considering is given by (1.1) and (1.2). In terms of
creation and annihilation operators introduced in Section 4, we have

Hj;j+1 = ﬁllc;c]-i-l + ,3126;6;+1 + ﬂQlCJC]+1 + /8226.'1"6;+1
+2A(cjej + ¢ g1 — 1) (7.1)

forj=1,...,N—1 and

Hyi: = —(Bucyea + Bracne + Parener + Bazenci)S
+2A(cyen + e — 1), (7.2)

where

B = —Ju—idig +idn — Jo,
P12 —Ju +edig +1Jo + Jog,
Bo1 = Ju +idiz+ 1o — Jog,
Baz = Ju —iJia+1dor + Jaa.

Il

We now define bilinear Hamiltonians Hy by setting S = £1 in (7.2), so that
HE, =H.FE,. (7.3)

Because Hy are quadratic expressions of ¢’s and ¢*’s, they induce linear transformations K4
on L through the following relations:

[Hi, B(h)] = B(Kyh), h€ L. (7.4)
We now compute K.

We have
{H:l:ac;"] = 5110;_1 + Bai(cj-1 — Cj+1) Bt ﬁzzC;_l_l + 4)\(:}‘,
[H:lzacj] = —'ﬁllcj-i—l + ,Biz(c;_l == C;-‘_{_l) + )82ij_1 — 4)\Cj,
fory=2,...,N—1and
[Hy, ] = £Baier £ Baze] + Pruicy_q1 + Baen-1 + 4Acy,
[H:i:a CN] =+pua £ ﬁuc’_{ + [3126’;\,_1 + Basen—1 — 4Aen,

[H:lz7 Cﬂ = FPBucy F Bacn — Pncs — Baacs + 4Ac],
[H:i:v c)= :Fﬁmc}kv F Basen — Prica — Pracy — 4Aey,
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where the latter 4 equations can be identified with the first two equations where j = N and
1, respectively, and ey41 = Fei, €y = Fei, €0 = Fen, ¢ = Fcy.
Therefore

4\ + B Ux — ByoU B12(Uz — Uz) )
K. = ( ¥ ¥ T = . ;
£ = Bu(Us—Us) | —4A— BulUs + Bl (7:2)

By Fourier transform of the preceding section, we obtain

K9 = AN + P11 CIHDIN _ Boe=miZHD/N 21,5 sin L—“j\}l = 76
+ - 2iﬁ21 sin !Zi}l!ﬂ’ —4)\ — ﬁlle—m‘(z;i»{-l)/N + 62261rz'(2j+1)/N ( . )
2l _ ( 4N+ Pe T — Bre= T, Ziﬁmsin%f_) 1)
B 2iﬁ21 sin %‘1, —4/\ s ﬁ”e_?_’;\;l + ﬁ2262_g;1 .
For a generic values of parameters (Jug,A), we see that Kﬁ_j)’ 7=0,...,N —1 are not

multiples of the unit matrix and hence we can apply Proposition 6.4 to K.
(i) Commutativity of Hamiltonians and transfer matrices.

The following result is obtained in [5] by using a generalization of Krinsky’s method [2].

Theorem 7.1. The Hamiltonian H of (1.1) and the transfer matrix T of (2.4) for the
R-matrix (2.1) commute if the following conditions hold in addition to the free Fermion
condition (2.2).

(K —iL)=pBcdd, (K+iL)= fcd, (7.8)
2J = B(a-by +b_ay), (7.9)
4\ = B(a% — b2 + % —a?), (7.10)
where
J=Ju+Jaw, K=Jy—Js, L=+ Jo, (7.11)

and B € C is an additional parameter introduced for the description of the conditions.

The free Fermion condition defines an irreducible algebraic manifold in the space of
parameters a4, by, c,c,d and d'. For each set of values of these parameters on this manifold
and for # € C, the parameters K, L, J and A are uniquely given by (7.8), (7.9) and (7.10):
Therefore, the conditions (7.8), (7.9), (7.10) and (2.2) (which are the condition for the
commutativity [H,T] = 0 in Theorem 7.1), defines an irreducible algebraic manifold in the
space of parameters

as,by,c,c d, d', Jup, A, B. (7.12)

Thus, for any given generic values of the parameters K, L, J and A, the set of the other
parameters satisfying (7.8), (7.9), (7.10) and (2.2) will again form an irreducible algebraic
manifold.

We note that the commutativity has been obtained in [5] also for other cases, but in this
paper, we concentrate on the parameters satisfying the above conditions.



Araki and Tabuchi 743

(iii) Commutativity of Hy and T%.
Since H 1is shift invariant, the commutativity of H and T by Theorem 7.1 implies
[H,7] =0, or THT'=H, (7.13)
under the same condition. By applying E., we obtain

(TiHiTi_l — Hi)E:t = 1. (714)

We now use the following fact proved in Appendix.

Lemma 7.2. Let H be a quadratic expression in ¢’sand ¢*’s. f HE, =0or HE_ = 0,
then H = 0.

Since (’f"i Hi’f"i‘l — Hy) is a quadratic expression when Ty € CG., we have
TiH:tT£1 =iy &F [Ti, H:t] =U (7.15)

for a generic values of the parameters a4, by, c,c,d,d'.

8 Commutativity of transfer matrices

For a given values of parameters J,5 and ) in the Hamiltonian H of (1.1), the transfer matrix

T and hence T' for the parameter values ax, by, ¢, ¢, d and d’ (for some value of 3) satisfying
(7.8), (7.9), (7.10) and (2.2) commute with H by Theorem 7.1. Furthermore, for a generic
values of parameters a4, by, ¢, ¢, d and d’, we have

TE:E =kyViby, Vi€ éc. (8.1)
Then, by (7.14) and the commutativity [T", H] = 0, we obtain
[Vl‘lza H:i:] = 0. (82)

By proposition 6.2, we also have
TgAR(V:h) = V:I:-
Also by explicit expressions (7.1) and (7.2), we have

T:(F:AR(H:;:) - H:k-

For a generic values of parameters (J,s, A), K(j), j=0,...,N —1 are not multiples of
the unit matrix and hence, by applying Proposition 6.4, we obtain the commutativity

Vi, v =0 (8.3)
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where V:|(:1) and Vi(z) are Vi for two sets of generic values of parameters a+,by,c,c/,d and d,
both sets of parameters satisfying (7.8), (7.9), (7.10) and (2.2) for the given generic values of

parameters (J,4,A), and the corresponding Vf), Vf) € G, are defined by Vi(I)B(h)Vf)_l =
B (Vf)h), [ =1,2. The commutativity (8.3) implies in general

VAV VN T =1 o -1 (8.4)

due to double covering of G, by G.. However the generic points (a4,by,c,c,d,d') satis-
fying (7.8), (7.9), (7.10) and (2.2) for a given generic values of (J,g,A) are connected by
the irreducibility of the manifold defined by (7.8), (7.9), (7.10) and (2.2). Hence we may

continuously deform Vi(l) to Vf), keeping the relation (8.4), in which the choice of +1 and

—1 has to be constant by continuity. When Vf) is replaced by Vf), the left hand side is 1
and hence the right hand side of (8.4) must be 1 also for a generic values of parameters for

Vf) which are different from Vf). Therefore, we have the commutativity
Vi, v =o.

This implies the commutativity of 7'®) and 7'® (T for the two sets of parameter values).
As pointed out in Section 1, Ty is common for all parameter values and commutes with T'.
Therefore, we obtain the commutativity of the transfer matrices

[TW, 73] =0 (8.5)

for two generic sets of parameters (ay, by, ¢, ¢, d,d"), both set satisfying (7.8), (7.9), (7.10)
and (2.2) for a given generic values of (Jug, A).

Once we obtain the commutativity (8.5) for a generic values of parameters, we may
obtain the commutativity at general values of parameters (J,g,A) and (a4,bs,c¢,c,d,d') by
changing their values and taking limits, always keeping relations (7.8), (7.9), (7.10) and
(2.2).

Appendix Lemmas about the CAR algebra.
In this appendix, we have the standing assumption N > 2.

(i) Proof of Lemma 6.3.
We divide the proof into two cases of £, and FE_.

Lemma A.1. Assume N > 2,V € G. and VE, = E,. Then

VQ =9, VB(h)V™'==£B(h), helL. (A.1)
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Proof. We shall be working on a Fock space with the vacuum vector §2, annihilated by all
Cj.

=0, j=1,...,N. (A.2)

To distinguish ¢; and ¢} in the dual formalism of Section 4, we introduce a projection operator
p acting on L defined by

(fog)=Ffa0 (fogel)
Then B(h) = ¢(g) if and only if ph = 0. Similarly B(k) = ¢*(f) if ph = h. (In general,
B(h)=c'(f) +clg)for h = f&g.)

The operator E, is a projection operator to vectors in the Fock space with even number
of particles. In particular, VE, = E, implies

VQ=VE,Q=E.Q=09. (A.3)

Since V € G,, there is V € G, such that
(AdV)B(h) = VB(h)V~! = B(Vh).

For any h satisfying ph = 0 (or (1 — p)h = h),

B(h)2=0

by (A.2). We then obtain for such vector h in L
0=VB(h)Q=VBh)VVQ=BVh)Q.

Hence B(Vh) is an annihilation operator and

pVh=0.
Since (1 — p)h = h, satisfies ph; = 0 for any h € L, we have

pV(1—p) =0. (A.4)

Similarly, VE, = E, implies (by taking adjoint of both sides of this equation) V*E, (=
E,V*) = E, and hence

V= Q.
Using
V*B(h)(V*)~! = (V-1B(h)*V)* = (V-'B(Th)V)*
= B(V-'Th)" = B(I'V~'Th), (A.5)
we obtain

0 = V*B((1-ph)Q=V*"B((1 - p)h)(V*)'V*Q
B(L'V™IT(1 — p)h)Q
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for any h € L and hence, due to pI' = I'(1 — p),
0=plV7 (1 —p)=T(1 —p)V'pl
which implies

(1-p)V~ip=0 (A.6)

By inserting 1 = p+ (1 — p) in the middle of VV~! = 1 and using (A.4), we obtain

(PVp)(pV~'p) = pV(p+(1-p))Vip=p
= (pV7'p)(pVp) (A7)

where the last equality is by the finite dimensionality of L.
By (A.6), we obtain
0 = 1-p(VV )p=(10-pV+{1-p)V'p
= (L=p)Vp(pV'p).

By multiplying pV'p from the right and using (A.7), we obtain

0=(1-p)Vp.

Combining with (A.4), we obtain
V=pVp+(1-p)V(1-p) (A.8)

Therefore we may write V(f ©0) = Vif @0 and V(0@ g) = 0 & V,9. Since VE; = Ey

implies V' = 1 on vectors with an even number of particles, we have

V() (i) = E(f) - (fa) *
=V (f)VHVS(f)VTH - Q= (Vifi) - (Vifen)R2

This implies on the Fock space

HAfaN- A fan=Vifi AVifa Ao AV fa. (A.9)

Let us assume that V f is not proportional to f and derive a contradiction. Since N > 2,
there exists f; orthogonal to both f and V;f. We then take n = 2, f; = f and f, to be just
that f,. Then V;f can not be a linear combination of f and f, and hence f A fo cannot be
equal to Vif A f3 with any fs = Vifa. (Vif A(fA f2) Z0but Vif A(Vif A f3) =0.) Hence
Vif = A;f for any f € L. This is possible only if A/ is independent of f, namely V; = A1.
By substituting this into (A.9), we obtain A = 1 and hence

V, = +1.
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Since V* € G, and V*E, = E, (as proved above), we obtain
(W)l = o1,

By (A.5), this implies. )
Va = £1.

Because of the CAR relations,
(f,9) = VI['(f),clg)l+ V' = (if, Vag),
the signs of V; and V5, must be the same and we obtain
V=41, VB(h)V~!'==xB(h).
Q.E.D.

Lemma A.2. Assume N >2,V € G. and VE_ = E_. Then
VQ =40, VB(h)V™!=+B(h).

(The choice of + and — in the two places should be the same.)

Proof. As before, there is V € G, such that
VB(h)V~' = B(Vh).
Since B((1 — p)h1)B(hs)t = ((1 — p)hy, Thy)S, we obtain
((1 = p)h1,Thy)VQ = VB((1 — p)h1)V 'V B(h3)Q

= B(V(1 - p)h1) B(h2)42,
where we have used VE_ = E_ (and hence V B(h2)Q2 = B(h3)?). This holds for all Az only

if B(V(1 — p)hy) is an annihilation operator, namely
pV(1 —p) =0.
As before, we obtain by the use of V*E_ = E_
(1-p)V7'p=0
and hence by the same argument as before

V=pVp+(1-pV(-p)

Denoting V(f @ g) = (Vi.f ® V2g), we obtain

0=c(g)Q = Ve(g)VVQ = ¢(Vag)VQ
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Since V; is invertible (because V € G, is invertible), ¢(V4g) for all g exhausts all annihilation
operators and hence

V= A
for some A. We then have from VE_ = E_

SN = Ve (HQ=VE(HVIve
= A (Vi)

This implies A # 0 and

Vi=A"l

Since N > 2, we have linearly independent fi, fa, f3, for which VE_ = E_ implies

0 # (N ()’ ()R =V (fi)e'(f2)e(f5)
= A (V) (V) (V)0 = A2 (fi)e* (f2) e (f3)Q.

This implies A2 = 1 and A = 1. Hence
V=40 and WV, ==+1
with the same sign.
Working with V* € G, which satisfies V*E_ = E_, we obtain
(V*); = £1.

By using (A.5) again, this implies )
Vo ==1

and the CAR relations imply that V; and V; must have the same sign (of 41). Therefore
VB(h)V™' = £B(h)

with the same sign as VQ = £0. Q.E.D.

(ii) Proof of Lemma 7.2.

Again, we divide into two cases of £, and F_
Lemma A.3. Let H be a quadratic expression in ¢’s and ¢*’s. If HE, = 0, then H = 0.
Proof. Let [H, B(h)] = B(Kh). By HE, = 0, we obtain H{ = 0 and hence
0= HB((1 —p)h)t =[H,B((1—p)h)]t = B(K(L—p)h)Q.
Hence B(K (1 — p)h) is an annihilation operator and we have

pK (1 — p) = 0. (A.10)
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We also note that HE, = 0 implies
H*E, =(E,H)"=(HE,)" =0.
Furthermore,
[H*, B(h)] = —[H, B(h)*]* = —B(KTh)* = B(-TKTh).
By the same argument as above we obtain

pI'KT(1 —p) =0,
which implies
(1—p)Kp=T(pI'KT(1 —p))L =0
Together with (A.10) we obtain
K =pKp+ (1 -p)K(1—p).
In other words, K(f @ g) = (K1 f ® Kag).
From HE, = 0, we obtain

0 = HB(h)B(h) = [H, B(h)|B(h2)2 + B(ha)[H, B(h2)|9
= B(Kh1)B(hy)Q + B(hy) B(Khs)2.

If hy = fi®0 and hy = fo @ 0, this implies
Kifihfo=—fi A Kifa. (A.11)

If K, f1 is not proportional to fi, we may take non-zero f; to be orthogonal to both f; and
Kifi (due to N > 2). Then f; is not a linear combination of f; and K f; and hence this
equation can not hold (unless K, f; = K; f = 0 which implies that K f; is a zero multiple of
f1). Therefore K; = A (by an exactly the same argument as in (i)). However, (A.11) then
shows that A = 0. Hence K; = 0.

By the same argument for H*, we obtain (I'KT'); = 0, which implies K; = 0 and hence
K = 0. Thisimplies H = 1 and hence HE, = 0 implies ¢ = 0. Namely H = 0. Q.E.D.

Lemma A.4. Let H be a quadratic expression in ¢’s and ¢*’s. If HE_ = 0, then H = 0.

Proof. There exists an operator K on L such that [H,B(h)] = B(Kh) for h € L. From
HE_ =0, we have for any h € L

0= HB(h)Q = [H,B(h)]Q+ B(h)(HQY) = B(Kh)Q + B(h)(HQ).
Since H is quadratic in ¢’s and ¢*’s, H) is a linear combination of {2 and two particle vectors.

If it has two particle vector parts, then there exists A € L such that B(h)(HS?) has 3
particle parts due to N > 2. Since B(Kh)Q is a one-particle vector, this is not possible.
Hence |

HQ =)0, B(Kh)Q=-\B(h)Q. (A.12)
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This then implies pK (1 — p) = 0 (due to B((1 — p)h)Q = 0).

Working with H* which also satisfies H*E_ = 0, we obtain p’K['(1 — p) = 0 (due to
[H*, B(h)] = —B(I'KTh)) and hence (1 — p)Kp = 0. Therefore

K =pKp+ (1 -p)K(1 - p).
By substituting this into (A.12) when ph = h and B(h) is a creation operator, we obtain
pKp= -\
From the same computation for H*, we obtain

HQ=pQ, (1-p)K(1-p)=p.

From the CAR relations, we have

0 = [Ha[B(hl)ﬂB(h2)]+]
= [B(Kh1), B(ha)]+ + [B(h1), B(Kh2)]
= (Khy,Thy)+ (h1,TKh,),

we obtain KT = —K* and hence pu = .
Again using HE_ = 0, we obtain

0 = Hc'(fi)c" (f2)c"(f3)
= [H,c"(fi)le"(f2)c" (f2)@ + " (fi)[H, c"(f2)]e" (fs)Q
+ ¢ (H) (f)H, ¢ (f2)]Q + ¢ (fi)e" (f2)e™ (f3) HO
= =2X(fi)e"(fo)em (f5)Q.

By N > 2, we may choose mutually orthogonal non-zero fi, f2, fa, for which ¢*(f1)c*(f2)c*(f3) #
0 and hence A = 0. Therefore K = 0.

This implies that H is a multiple of identity, and HE_ = 0 then implies H = 0.
Q.E.D.

(iii) Finally we prove the following Lemma needed in Section 5 after the equation (5.7).

Lemma A.5. Let ¢ and @ be linear combinations of ¢’s and ¢*’s. Ifa =¢*, 3 =¢?%,v = [¢,¢]
satisfy

'72 _4aﬁ % 01

then there exist linear combinations ¢g and ¢ of ¢ and & such that ¢ and ¢ are linear
combinations of ¢y and ¢ and

Cg = 662 =0, [cO,cE)]+ =1
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Proof. We first look for solutions of
0= (ze +y@)* = 2’a + yzy + By°

We have three cases.

(1) We consider the case v? # 4a3, o # 0. Then we have two solutions
1 =—7+Vy —4af, y1=2a
Ty = —v— /7 —4afB, 1y, =2«
where /72 — 4af is one of the square root of 42 — 4af3. Set
A=zxc+y €, B=x3c+ysC.
We then have A? = B% = 0. Furthermore
(A= B)/(2y/7*—4aB) = ¢,
(20) M (A=z08) = ¢,
so that both ¢ and & are linear combinations of A and B. Finally,

[A, Bly = 2azi22 +7y(21y2 + 22y1) + 28y192
= 8a’B + 8a’8 — 40y® = 4a(4af — +*) # 0.

Now we can set, for example,
co=A, c=(4a(4ap—~*))""B.
They satisfy
=gl [epehly =1

Furthermore, ¢ and ¢ are linear combinations of ¢, and ¢.

(2) Case v* # 4af3, 8 # 0. By exchanging the role of ¢ and &, we obtain the desired
result.

(3) Case v # 0, a = 8 =0. Already ¢y = ¢, ¢ = v~ satisfy all the properties.
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