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Abstract. We review the theory of Cn-, C°°-, and analytic elements for a strongly continuous

representation of a Lie group in a Banach space. We simplify some of the existing proofs and

give a new, short, proof for a characterization and density of the analytic elements of a unitary
representation.

1 Introduction

The distinctive feature of Lie groups is not algebraic but analytic. Each Lie group is an
analytic manifold and consequently possesses a differential and analytic structure. Our

purpose is to review briefly the current status of the foundations of the analytic theory and

provide simplified proofs of some of the principal results.

The algebraic theory of Lie groups is largely modelled on the theory of compact groups
with an emphasis on reduction theory and irreducible or factorial representations. A key role
is played by certain central elements, the Casimir operators. These operators are quadratic
elements in the enveloping Lie algebra which commute with the Lie algebra and are basic
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invariants of the theory. In contrast the analytic theory is modelled on the theory of partial
differential equations for which the elliptic operators are fundamental. The simplest elliptic

operators are Laplacians and their Lie analogues are again quadratic elements in the
enveloping Lie algebra, the sum of squares of a basis of the Lie algebra. The Laplacians
have, however, no particular invariance properties, their importance arises from properties of
dissipativity and domination. In each representation the Laplacians dominate, in a precise
sense, the action of the elements of the Lie algebra. Consequently they give a method of
quantitatively assessing the group action. The accuracy and utility of this assessment
depends on the precise measure of domination provided by the Laplacian. This in turn depends

upon the nature of the representation. Unitary representations provide optimal examples
and their structure will be examined in detail in Section 3.

The prime analytic observation is that each Laplacian generates a continuous semigroup,
the 'heat' semigroup, in each continuous representation of the Lie group. The analytic
features of the representation are largely embodied in the action of this heat semigroup.
This action is determined by an integral kernel which has many properties analogous to the
Gaussian kernel of the standard heat equation. Initial investigations [11] [12] of the analytic
structure of Lie groups were based on detailed properties of the 'heat' kernel and much recent
work has been dedicated to examination of the kernels (see, for example, [14] [17] [7]). But
our description of the basic structure of the analytic theory requires no knowledge of this
kernel on the Lie group.

2 Preliminaries

Let G be a Lie group, X a Banach space and U a representation of G by bounded operators
{U(g) : g G G} on X. Then U is called strongly continuous if the map g h-+ U(g)x from
G into X is continuous for each x G X. A unitary representation is a strongly continuous

representation in which the space X H is a Hilbert space and the U(g) are unitary, i.e.,

U(g)* U(g)~l U(g~l), for all geG. There are two other standard notions of continuity.
The representation U is called weakly continuous if the map g i—> (/, U(g)x) from G into
C is continuous for all x G X and / G X*, the dual of X. But it is a consequence of the

group structure that the notions of strongly and weakly continuity coincide (see, for example,
[1] Corollary 3.1.8). In the case of a unitary representation (H,G,U) the equivalence is a

consequence of the identity

\\(I ~U(g))xf 2Re(x,(I -U(g))x)

which is valid for all x G 7i and g G G. Alternatively, if X y* is the dual of a Banach space

y, the predual, then U is called weakly* continuous if the adjoints U(g)* leave y invariant
and g i—» (y, U(g)x) from G into C is continuous for all x G X and y G y. If the Banach

space X is reflexive then weak* continuity is the same as weak continuity, but in general they
differ. For example, the representation of R by translations (U(y)f)(x) f(x — y) on L00(R)
is weakly* continuous, but not weakly (strongly) continuous. Since we mainly deal with
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representations in Hilbert spaces we will only consider strongly continuous representations.
For the general theory of elliptic operators, however, weakly* continuous representations play
a fundamental role.

If a G 0, the Lie algebra of G, then t i—» U(exp(—taf)) is a continuous one parameter
group of operators on X. Here exp is the exponential map from g into G. We denote the
infinitesimal generator of this one parameter group by dU(a), which exists by the Hille-
Yosida theorem and it is a closed operator. So U(exp(—toi)) e_tdc/(a) for all t G R. If the
representation U is unitary then it follows from the Stone-Von Neumann theorem that the

operator dU(a) is skew-adjoint. For the sequel it is important to fix a basis aj,..., ad for g.
Then we set At dU(af), for simplicity.

The Lie group is a (real) analytic manifold, so it has a Gn-, G°°-, and an analytic
structure. If x G X and n G N then x is called a G"-element, a G°°-element or an analytic
element for U if the map g i—> U(g)x from G into X is a G"-function, a G°°-function or
a (real) analytic function, respectively. We denote the space of Gn-elements, G°°-elements
and analytic elements for U by Xn(U), XX(U) and Xa(U), respectively. Occasionally we set

Xo(U) X. If no confusion is possible we write simply Xn, Xx and Xu. Since U(h) is a

continuous linear map from X into X and U(hg)x U(h) U(g)x for all g G G the element x is

a G"-element, a G°°-element or an analytic element for U if, and only if, the map g i—> U(g)x
is a Gn-function, a G°°-function or a (real) analytic function from a neighbourhood of the

identity element e of G into X. Using the exponential map, it is both necessary and sufficient
that a i—» U(expa)x is a map from a neighbourhood of 0 G 0 into X with the desired

regularity. Moreover, for all h G G one deduces from the identity U(gh)x U(g) U(h)x for
all g G G that the spaces Xn(U), X^U) and XU(U) are invariant under U(h).

There is an infinitesimal description of the Cn-subspaces Xn(U). For this characterization
it is convenient to introduce a multi-index notation. If n G N0 and a (ii,... ,in) with
ii, • • •, in G {1,..., d} we write Aa Atl Ain and set |a| n, the length of a. We adopt
the convention Aa I if |a| 0. Then one has the following identifications.

Lemma 2.1 If n G N then Xn(U) C\\a\<nD(Aa). Hence Xœ(U) C\aD(Aa).

Proof First, suppose x G Xn(U). Let a (ii,..., ik) be a multi-index with k G {0,... ,n}.
Then the map (ti,. ¦ ¦ ,tk) >—> Lr(exp(t1ail)... exp(tkaik))x is fc-times continuously differentiable

in a neighbourhood of (0,... ,0) G R*. Taking one derivative in each variable one
deduces that x G D(Ah Aik) D(Aa).

The proof of the converse is by induction. We first establish the case n 1. Let

x G (iti D(Ai). Define /: Rd -> G by f(tu td) £/(exp(Mi) ¦ ¦ • exp(tdad))x. Then it
follows from the Duhamel formula that

/(ti,...,td) =x + y'C/(exp(t1o1)...exp(t,-_iai_1)) / dsU(exp(sai))AiX
~1 Jo
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for all (ti,... ,td) G R Since U is strongly continuous it follows that / is once norm-
differentiable at the origin and the differential equals (Aix,..., Adx). But then the map
(ii,... ,td) i—? U(exp(tiai + + tdad))x is also norm-differentiable at the origin, with the
same differential. In particular, 4U(exp(ta))x\t=o dU(a)x exists for all a G g and the map
a i—> dU(a)x is a linear map. Since £tU(gexp(ta))x\t=o U(g)dU(a)x for all g G G and
a G g the map g h-? U(g)x is a Gx-function and x G Xi(U). This establishes the case n 1.

Next let n G N and suppose C\\a\<nD(Aa) C Xn(U). Let x G P,H<n+i D(Aa). Then
AiX G rì|Q|<n D(Aa) C Xn(U) for alli G {1,..., d}. But the first order right derivative in the
direction at of the map g <-+ U(g)x equals g i—> t/(g) Atx, this map is n-times differentiable
in g and the derivatives are continuous. Thus x G Xn+i(U) and the first statement of the
lemma is established.

The second statement of the lemma is a direct consequence of the first. D

We define a norm || • ||„ on Xn(U) by

||x||„ max ||A°x||

Since all the At are closed operators the space Xn(U) is a Banach space. There are many
other equivalent norms which could be used in place of the foregoing ^-norm. In the
subsequent discussion of unitary representations some estimates are optimized by use of an
l2-version of the norm.

We have shown that the space Xn(U) is invariant under U. Next we prove that the
restriction of the representation of U to the space Xn(U) is (strongly) continuous.

Lemma 2.2 If n G N then the restriction of U to Xn(U) is strongly continuous.

Proof Since the representation U is bounded on bounded subsets of G one easily deduces

that for each compact subset K of G the maps g *—> U(g)x are equicontinuous from G into
X uniformly for all x G K.

Let k G {l,...,n} and ii,...,ik G {l,...,d}. Then for all x G Xn(U) one has the

decomposition

An...Alk(U(g)x-x)

(U(g) dU(Ad(g~1)ali)... dU(Ad(g-1)aik)x - dU(Ad(g-1)an) dU(Ad(g-1)alk)x)

A (dU(Ad(g-1)an)... dU(Ad(g-1)alk)x - dU(ah). ..dU(alk)x)

for all g G G. The lemma follows from this decomposition, the above uniform continuity and

some elementary estimates. D
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It follows from this lemma that one has a discrete family of continuous representations
(Xn, [/("), G) obtained by restriction of U to the Gn-subspaces and the next lemma shows

that the Gn-structures are compatible.

Lemma 2.3 Ifn,m G N and UA) denotes the restriction ofU to the space y Xn(U) then

ym(U An+m(U), with equivalent norms.

Proof First, let Af1' dUA)(af) be the infinitesimal generator with respect to the
representation [/W. Then A\n) Ç At for all i. Let x G ym(U(n)). Then x G Ç\H<mD(A^n>).
Therefore for all a with |q| < m one has x G D(Aa) and

Aax A{n)ax G Xn(U) Q D(Aß)
\ß\<n

Hence x G r\hì<n+m D(A^) Xn+m(U).

Conversely, let x, G Xn+m(U). Then the map (g, h) k-> C/(/i) U(g)x from G x G into A" is

a Gn+m-function. Differentiating with respect to /i and evaluating at /i e one deduces that
the function g i—» A^t/^z from G into A" is a Gm-function for all a with |a| < n. Hence

the map g <-> U^(g)x from G into Xn(U) y is a Gm-function and x G ym(U^). D

There is also an infinitesimal description of analytic elements.

Lemma 2.4 If x e X then x G XW(U) if and only if, x G D(Aa) for all a and there exist

c, t > 0 such that \\Aax\\ < ci'a'|a|! uniformly for all multi-indices a.

Proof First assume the norm bounds on Aax. Then, using the inequalities (n + m)! <
2n+mn\ m\, it follows that there exist 6, M > 0 such that

\\A? An/x\\ < bMni+-+ndn1\ ...nd\

uniformly for n\,..., nd G Ng. Hence the series

oo jn, ,n<ill ¦¦¦'ii
„,,. ,rM=Onl!---"d!

converges for ti,...,tde (-M'1, M^1). Therefore

E !rr^hA?¦¦¦*?*

oo jui pi,l
(h,...,td)^ Y, 11

' ' ' d
i AT ¦ ¦ ¦ Ad"x U(exp(tiai)... exp(tdad))x

is a real analytic function from (—M~l, M~l)d into G and x G X^HJ).
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Conversely, suppose x G XW(U). Then x G X^U) C\aD(Aa). Since the map
(ti,... ,td) h-> U(exp(tiai)... exp(tdad))x from Rd into X is (real) analytic there exist c, t > 0

such that
\\A? An/x\\ < ctni+-+n"(ni + ...A nd)\ (2.1)

for all ni,...,na £ No where we may assume that t > 2dK, with K maxjj^ |cy| and
dfe the structure constants. Similar bounds follow for any other reordering of the a*.
Unfortunately this argument does not establish bounds ||^4ax|| < ctlal|a|! for all multi-indices
a. Nevertheless one can deduce the bounds for general multi-indices from the bounds for
ordered multi-indices, i.e., the indices (ij,... ,in) with i\ < i2 < < in, by the following
argument.

Let Jn<m. be the set of all multi-indices of length n with the property that if one deletes

m indices from a G Jn>m then the remaining n — m indices are ordered. We shall prove that

||yiaa:|| < c2mtnn\ for all a G Jn,m (2.2)

for all n,m G No with n > m. Once this is achieved one has ||Aax|| < c(2t)lQl|a|! for each

a, because a G Jja|,|a|, and the proof is complete.

The proof of (2.2) is by double induction, first on n and then on m.

If n 0 then (2.2) is trivial. Let N G N and suppose (2.2) is valid for n N — 1 and
all m G {0,..., N — 1}. Now for m 0 and n N the bounds (2.2) are a reformulation of
(2.1). So let M G {1,..., N} and suppose that (2.2) is valid for n N and m M - 1.

Since JNyN Jn,n-i we may assume that M < N — 1. Let a G Jn,m- We now commute
one of the misordered indices to the correct place. Since

k

A Aix AikAjA A AjAix AikA + 2_^ A Ait Aiti [A^, Aj\Ail+1AikA
l=i

there exist a0 G Jn,m-i, tti,..., ad^ G J/v-i,m and Ci,.. ¦, cdN G [— K, K] such that

dN
Aa Aa° + Y, c, Aa'

t=i

Using the two induction hypotheses it then follows that

dN

\\A°x\\ < \\Aa"x\\+Y\ci\\\Aa'A
x=l

< c2M-1tNN\ + dNKc2MtN~1(N-1)1

< c2M~HN N\ + c2M-1tNN\ c2MtNN\

and (2.2) is valid for n N and m M. D
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We have defined several spaces associated with a strongly continuous representation but
it is not clear that these spaces are non-trivial. But the next proposition shows that it is

rather easy to deduce that the space X^U) of G°°-elements is dense in X. Hence the spaces
Xn(U) are dense in X for all n G N.

Proposition 2.5 (Gârding, [8]) The space Xœ(U) is dense in X.

Proof If tp G C™(G) and x G X then

U{<p)x f dgtp(g)U(g)xeXao(U)
J G

by an elementary calculation. Now let tpi, <p2,... G Cf(G) be a bounded approximation of
the identity. Then lim,^.*, U(tpn)x x in X for all x G X and X^U) is dense in X. 0

Corollary 2.6 For all n G N the space /£«,(£/) is dense in Xn(U).

Proof Let U™ denote the restriction of U to the space y Xn(U). Then }>«, (£/<")) is

dense in y Xn(U) by Proposition 2.5. But X^HJ) ^([/W) by Lemma 2.3. D

It follows from the proof of Proposition 2.5 that the vector space

XG(U) span{f/(v3)x : <p G C™(G), x G X}

which is usually called the Gârding space, is dense in X and is a subspace of Xoo(U). It
is a much deeper result of Dixmier and Malliavin [4] that the spaces Xq(U) and X^U) are

equal.

Despite the short proof for the density of the G°°-elements for any representation, it is

much more difficult to deduce that the space X^(U) of analytic elements for U is dense in

X. This result has been proved by Cartier-Dixmier [3], Nelson [12], Langlands [11] and

Gârding [9] for any continuous representation. For a self-contained, direct proof we refer to
[14] Theorem II.2.2. In the next section we give a new, short and rather easy proof for the

density of the analytic elements for unitary representations. In Section 4 we explain how
this proof can be extended to a general continuous representation.

3 Unitary representations

The aim of this section is to characterize the spaces of Cn-, C°°-, and analytic elements for a

unitary representation. All these spaces involve the infinitesimal generators Ai,..., Ad, i.e.,
the generalized partial derivatives, and the remarkable fact is that they can be characterized
by one single operator, the Laplacian.



662 ter Eist and Robinson

Let U be a unitary representation of the Lie group G in a Hilbert space H, fix a basis

Oi,..., ad for the Lie algebra g of G and set Ai dU(af). The Laplacian is initially defined
as A -E?=i A2 with domain D(A) (]f=iD(A2), the space of all separately twice
differentiable elements. One readily checks that A is a positive, symmetric, operator but
it is not evident that it is closed or self-adjoint and one aim of the subsequent analysis is
to establish these properties. For this purpose it is useful to consider two other possible
definitions of the Laplacian involving different domains.

The largest natural domain occurs with the quadratic form definition. Let S denote the
sesquilinear form <5: Hi x Hi —» C with values

d

<%> x) Y (AiV> A*x) ¦

i=l

Then 6 is positive, symmetric, densely defined and closed. Hence it automatically determines
a positive, self-adjoint, operator which we denote by Ag (see [10] Chapter VI). The domain
D(A() of Ag consists of those x G Hi for which there is a z G H such that

6(y,x) (y,z)

for all y G Hi. Then the action of A{ is given by A^x z. It follows straightforwardly that
A{ is an extension, the self-adjoint form extension, of A. The advantage of this definition
lies in the self-adjointness of A^ which gives access to spectral theory, functional calculus,
etc., but the disadvantage is that the domain of A{ is only specified in an implicit manner.

The smallest natural domain for the Laplacian is the subspace of C°°-elements and we
denote by Aoo the restriction of A to this domain, i.e., D(AX1) Hoc,. Then Ax is symmetric,
and hence closable, but it is not closed in general.

One of the main conclusions of this section will be that the operator A equals A«. Hence
A is closed and self-adjoint on the domain D(A). Moreover, this explicitly identifies the
form domain D(A^) with jD(A). In addition we prove that A is equal to the closure of A^.
Thus the C°°-elements H^, are a core of A.

It is convenient for the subsequent discussion to introduce a fourth Laplacian A2 as the
restriction of A to the subspace H2 of all jointly twice differentiable elements. Since Hoo is
dense in H2 by Corollary 2.6 it follows that the closures of AM and A2 coincide.

Set M Ç£,tjk=i l^jl2)1^2! where c& are the structure constants of the Lie algebra with
respect to the basis ai,... ,ad.

Proposition 3.1 If e > 0 then

Y ll^xf (x, A2x) < £||A2xf + (4£)-1||x||2 (3.1)
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and

Y WAÄjxf < (1 + e)||A2x||2 + 2M4(1 + e)4e-3||x||2
i,j=l

uniformly for all x G H2.

Proof The identity in (3.1) follows because the A{ are skew-symmetric and the bounds
because

|(x, A2x)| < ||x|| • ||A2x|| < £||A2x||2 + (4£)-1||xf

for all e > 0. Next set Ux(x) (£f=1 ||Ax||2)1/2 and U2(x) (Y$J=1 || AiAjxf)1'2. Then

U2(xf -£(AJx,AiAix)-'£{Aix,lti,Ai]x)
i,j=l i,j=l

d d

Y (Afa Aìx) - Y 4 {(AJX> A>AkX) + (AJX> AkAi*))
ij—1 i,j,k=l

for all x G H^. Therefore,

d

U2(x)2 < \\A2x\\2 + Y 4[(AjX, AiAkx) + (AjX, AkA\x))
i,j,k=\

< ||A2x||2 + 2M[/1(x)C/2(x) (3.2)

< ||A2x||2 + e(l + e)-1^)2 + M2(l + s)s-1Ui(x)2

for all e > 0 and x G Hx by use of the Cauchy-Schwarz inequality. But this can be solved

to yield
U2(x)2 < (1 + e)||A2x||2 + M2(l + e)2E-xUi(xf

and then using the first statement one finds

U2(x)2 < (1 + 2e)||A2x||2 + 4-lM\l + e)4£-3||x||2

Finally replacing e by e/2 one obtains the second statement for all x G Hoc and then by
closure for all x G H2. D

These estimates establish that the seminorm x i—> U2(x) is relatively bounded by the
seminorm x i—> ||A2x|| on H2 with relative bound one. Obviously, ||A2x||2 < d}/2U2(x) for
all x G H2- Hence the norms x i—> ||A2x|| + ||x|| and x i-» U2(x) + \\x\\ are equivalent with the

norm || ¦ ||2, the G2-norm on 7-f;2. But since H2 is complete one has the following conclusion.

Corollary 3.2 The operator A2 is closed.
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Much more is true. The operator A2 is in fact self-adjoint on H2. This property is the
most critical element in the analysis of the differential structure of the representations and
its proof requires techniques from the classical theory of elliptic differential operators. The
basis of the proof is the exponential map which gives a local diffeomorphism from Rrf to G.

Theorem 3.3 The operator A2 is self-adjoint.

Proof Since A2 is closed, Corollary 3.2, and symmetric it suffices to prove that the range of
XI + A2 is equal to H for some A > 0. This relies on comparison with the Rd-theory. There
are various ways of accomplishing this but we use a parametrix axgument which requires no
deep knowledge of the properties of elliptic operators.

Let fì C G be an open relatively compact neighbourhood of the identity e G G and Wo an

open ball in g centred at the origin such that expl^ : W0 —? Cl is an analytic diffeomorphism.
Set ax EiLi XiO-i, for x G Rd, and W {x G Rd : ax G W0}. Then for tp: tt —> C define

tp: W —> C by tp(x) ip(exp(ax)). If tt is small enough the image of Haar measure under
this map is absolutely continuous with respect to Lebesgue measure. In particular, there
exists a positive C°°-function a on W, bounded from below by a strictly positive constant,
with all derivatives bounded on W and such that

/ dgip(g) / dxa(x)ip(x)
Jn Jwin Jw

for all tp G Li(tt ; dg). We normalize the Haar measure dg such that <r(0) 1.

On G one has the generators Bi of left translations (Bitp)(g) J^(exp(—toi) g)\t=o- The
key feature of the exponential map is to transpose these vector fields to G°°-vector fields

Xi,..., Xd on W with the property

(Xi<p)(x) (Bif)(x) (Biip)(exp(ax)) —tp(exp (-taf) exp (a,

for all tp G Cf(tt). Moreover,
Xi<p -ditp A Yitp

for all tp G C^°(tt) where the Yt are G°°-vector fields of the form F; Y,j=ifjdj and the

fj G C°°(W) have a first-order zero at the origin. But then

(ABtp)~ Ätp + H'tp

where Aß — J2i=i B2 is the Laplacian on G, A — Z)f=i d2 is the ordinary Laplacian on
Hd and H' is an operator of the form

H'= YkdidjAYfidi + fo

with fihfi,fo G C°°(W) and /„(0) 0.
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Let x,X? e C™(G), suppx' C tt, x(e) 1 and x' 1 on suppx- Then for all (eHM
and 77 G H one has for all r G C%°(G) with suppr C suppx

JGdgr(g)(ri,(XI + A2)U(g)0 fa, (AJ + A2) tf(r)fl

/ dg ((XI+ AB)r)(g) (7,^(9)0 X'(9)
Jg

[ dgr(g)((XI + AB)T)(g) (3.3)
Jg

where r(g) (77, £/(<?)£) x'(ö)- Since C£°(G) is dense in Iq(G) it follows by continuity that
(3.3) is valid for all r G Ji(G) with suppr Ç suppx- Now let r\ be the function on G with
support contained in tt such that fx R\x where Rx denotes the kernel of the resolvent of
(XI + Ä)"1 on Rd. Then

(r,,(XlAA2)U(rx)Ç) / dxa(x) Rx(x) x(x) ((XI + A + H')f)(x)
Jw

j dxa(x)((XI + A + H')(Rxx))(x)f(x)
Jw

/ dxa(x)6(x)x(x)f(x)+ dxa(x)sx(x)(r),U(exp(ax))Ç)
Jw Jw

in the sense of distributions, where s\ has the form

SA(x) £(L«.flOOr) Xfc(x)x'(z) ¦

k

Here the xk G C°°(W) and the l/fc) are operators of the same form as H' with coefficients

/#°, etc., in G°°(W) and with /£°(0) 0.

Now Rx(x) f0°°dte-MKt(x), where i^(x) (47rt)-d/2e"x2/(4t' is the Gaussian. So

||Äa||i A"1 and ||rA||i < aX~ll2. Since \(did5Kt)(x)\ < at~(d+2)/2e-2/(st) and \fg\x)\ <
c \x\, for suitable a, c > 0, if W is small enough, it follows that

11/^ö.öfÄAlli < / dxcfdte^at-V+^dxlH-^e-*2^

< a' T dte-xtt-^+1^2 f dxe~x2l^<a"X'll2
Jo Jr'1

for all A > 0, for suitable a', a" > 0. Similarly, one can estimate the contributions of the
other terms in L(fc) and deduce that ||L(fc)ÄA||i < aA"1/2 for some a > 0, uniformly for all
A > 1. Hence ||sA||i < aX~ll2 for some a > 0, uniformly for all A > 1. So

(77, (XI + A2)U(rx)0 (r,, 0 + (77, U(sx)0

Therefore, if Rx U(rx) and Sx U(sx) then ||fiA£|| < aA"1!^! and ||SA£|| < aA"1/2!!^.
Hence

(XI + A2)RXÇ £ + SXÇ (3.4)
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for all £ G H^. By density it follows that RXH Ç D(Â2) D(A2) and (3.4) is valid for all
£ G H. Thus if a A-1/2 < 1 then (/ + Sx) has a bounded inverse and

£ (AJ + A2)RX(I + Sx)-^

This establishes that the range of (XI + A2) is equal to H. Hence A2 is self-adjoint. D

Since a self-adjoint operator has no proper symmetric extension it immediately follows
that A2 A{. Therefore one has the following characterization of the Laplacian.

Corollary 3.4 The Laplacian A is self-adjoint and A A2 Ag. The G°°-elements H,*,
are a core of A and

H2=f]D(A2)

Proof Originally A2 Ç A Ç Aj. Then since A2 and As axe both self-adjoint all three
Laplacians must be equal. But Hoo is clearly a core of A2 and hence of A. Finally the
equality means that H2 D(A2) 0(A). D

The last statement of the corollary is rather striking as it establishes that

H D(AiAj) Q D(A2)
1,3=1 1=1

i.e., an element of the Hilbert space is jointly twice differentiable if, and only if, it is separately
twice differentiable.

Next we consider the characterization of the ra-times differentiable elements Hn. First we
begin by remarking that as A is now known to be self-adjoint the estimates of Proposition
3.1 can be rephrased in terms of the resolvent of A.

Corollary 3.5 The operators (XI + A)1/2, A > 0, are bijections from Hi to H and from H2
to Hi- Moreover,

d

E
t=i
Y\\Mu+±r1/3x\\2<\w

and

Y \\AA}(XI + A^xf < (1 + 2MX-l'2)2\\xf

for all x G H and À > 0.
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Proof As A As it follows from the identification of the form domain as the domain
of the square root of the associated positive self-adjoint operator that D(5) D(All2)
D((XI + Af'2). Therefore D((XI + A)1'2) Hi and (XI + Afl2Hi H for all A > 0.

Moreover, as A A2 it follows that D(A2) D(A) D(XI + A) and (XI + A)H2 H for
all A > 0. But then (XI + A)XI2H2 (AJ + A)~ll2H Hi.

Next

Y WMV + Ar^xll2 (x, A(AJ + A)"1*) < ||x||2
i=l

because A is positive. Moreover,

Y WMU A Ay'xf (x, A(XI + A)-2x) < A-ixH2
i=l

Hence

Yi3=i\\AMuaAy^xW2 < \\a(xi + Ay'xW2

+ 2m(y\\a(xi + a)-1x\\2)1/2-( Y IIAa^aj + a^xII2)172
Ki=l ' Vij=l '

by the estimate (3.2). Therefore

d s l/2 s 2

Y WMA^XI + A)"1*!!2) - MA-^Hxll < (1 + M2A-1)||x||2
i,j=l '

and the last statement of the corollary follows straightforwardly. D

It is an easy consequence of this last corollary that || ¦ ||i is equivalent to the graph norm
x i-> || (AJ + A)1/2x|| on 7ii and || • ||2 is equivalent to the norm x h-> ||(AJ + A)x|| on H2 for
all A > 0. But these results are just the simplest cases of the following characterization of
the G"-subspaces.

Theorem 3.6 If n G N then D((I + A)nA) Hn and the norms x^ \\(I A A)n/2x|| and
|| ¦ ||n are equivalent. In particular (i^i D(An) Hoc-

One has D((I + A)1/2) Hi and D(I + A) H2 by the foregoing discussion. The
general case can then be established by induction. Basically one needs to prove the operators
Aa(XI + A)~n/2 are bounded for all a with |a| n. In order to do this inductively it is

necessary to commute the Ai with the resolvents. This can be done with the aid of the
structure relations

d

[Ai,A)]x~ Y cijAkX '

which are valid for all x G Ji2. But care has to be taken with the domains.
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Lemma 3.7 For all i,j, k G {1,..., d} there exists dA G R such that

d

Ai(I + A)-*x (J + A)-1AlX + Y d}k(I + A)-lAjAk(I + A)"^ (3.5)
j,k=l

for all x G Hi and i G {1,..., d}.

Proof Let d]k c% + éki. Then

d

[A,Al]y= Y dikAjAky
3,k=l

for all y G H3. Moreover,

(z, MI + A)-'(I + A)y) (z, (I + A)-XA(J + A)y) A (z, (I + A)-X[(J + A),Az]y)

-(MI A AY'z, (I + A)y) A Y d}k(AkAj{I + A)"1*,»)
i,k=i

for all y G H3 and z G H, because the operators A^J-I-A)-1 and AjtA^J+A)-1 are bounded.
Since H3 is a core for A and J + A is a bijection from H2 onto H it follows that

(z,Aî(J + A)-1x) -(A1(J + A)-1z,x)+ Y d]k(AkA3(I + A)-lz,(I + A)-lx)
},k=l

for all x G H. Hence for x G Hi the desired result follows by taking adjoints. D

The commutation property of the lemma immediately allows one to deduce that the
resolvent improves differentiability properties by two units.

Lemma 3.8 If n G N0 then (I + A)~xHn Hn+2.

Proof If x G Hn+2 then y (J + A)x G Hn and x (I + A)~1y. Hence Hn+2 Ç

(I + A)-lHn.

The proof of the converse inclusion is by induction. The case n 0 follows from Corollary
3.5. Let n G N0 and suppose that (I + A)_17-i!„ Ç Hn+2. Then for x G Hn+i Ç Hi
one has Afx G Hn and (J + A)_1AjX G 7^„+2 by the induction hypothesis. Moreover,
(J + A)-Xx G Hn+2 and A3Ak(I + A)~lx G Hn. Hence (I + A^A^J + A)"1! G Hn+2,
where we have again used the induction hypothesis. Therefore the right hand side of (3.5)
is in Hn+2. Hence A,(J + A)^x G Hn+2 and (J + A)_1x G Hn+3. U

Now the proof of the theorem is immediate.
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Proof of Theorem 3.6 Since Hi D((I + A)1?2) (I + A)'^2H by Corollary 3.5 it
follows by induction from Lemma 3.8 that Hn — (I A A)~n/2H for all even and odd n G N.
But (J + A)~nl2H D((I + A)n'2).

Finally the equivalence of the norms is a consequence of the closed graph theorem, since
the Banach spaces D((I + A)n/2) and Hn are both continuously embedded in H. G

Next we compare the analytic elements HU(U) of the representation with the analytic
elements HU(AXI2) of the operator A1/2. In general, if T is an operator in a Banach space X
then the space XW(T) of analytic elements for T is defined as the set of all x G flneN D(Tn)
for which there exist c, t > 0 such that ||Tna;|| < ctnn\ for all n G N0. Our aim is to prove
the following.

Theorem 3.9 If (H, G, U) is a unitary representation then

H„(U) H„(A1'2)

and the subspace HU(U) of analytic elements is dense in H.

Proof The inclusion HW(U) Ç H^A1'2) is straightforward since || An/2x|| (x, Anx)1>2 <
rfn/2||x||„ for all n G N0 by the triangle inequality. The converse is more difficult.

It is readily verified that Hu(Al/2) HU((I + A)1'2) and so it suffices to prove that
7C((J + A)V2)ç HW(U).

Set H I + A. Obviously H^H1'2) Ç n„eN £>(A") ^oc by Theorem 3.6. Next
introduce the functions MUt7n on H^, with values

Mn,m(x)= sup ||FA"JJ™x||
a; ja|=n

for all ?n,n G N0. One has

Mn<m(x)< sup \\AaHm+1x\\ + sup ||[JJ,Aa]JJmx|| (3.6)
a; |a|=n a; |a|=n

for all n G N0. But it follows from Corollary 3.5 that

||x||i < \\Hl'2x\\ and ||x||2 < (1 + 2M)\\Hx\\

for all x G X^. Hence

sup ||AiJJm+1x|| < ||JJm+3/2s||
Ki<d

and

sup ||AaJfm+1x|| < (1 + 2M) sup ||JJAßHm+1x\\ (1 + 2M)Mn_2,m+i(x) (3.7)
a; \a\=n ß- \ß\=n-2
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for n > 2 and m > 0. Moreover, the commutator in the second term on the right hand side
of (3.6) can be expressed as

[H, Aa] Y (MAi,Aa) A [M Aa]Ai)
ì=i

and each term in the sum can be evaluated with the aid of the structure relations as a linear
combination of at most dn products A7 with |7| n + 1. Therefore one has bounds

supa;H=n||[JJ,Aa]J7mx|| < 2d2Mn sup ||A7JJmx||
7; |tI="+i

< 2rf2M(l + 2M)nMn_i,m(x)

for n > 1 and m > 0 where the last bound uses (3.7). Combination of these estimates then
yields

Mi,m(x) < \\Hm+3'2x\\ + c \\Hm+1x\\ < (1 + c)||Hm+3?2x|| (3.8)

where c 2d2 M(l + 2M), for all m G N0 together with the recursive inequalities

M„,m(x) <bMn_2,m+i(x) + cnMn_lim(x) (3.9)

where 6=1 + 2M, for all n,m G N0 with n > 2 and all x G H^,. The remainder of the

proof relies on 'solving' (3.8) and (3.9) for x G H^H1'2) Ç H^.

First, if x G Hu(Hxl2) there are a0 > 0 and to > 1 such that

||JJm/2x|| <a0t%m\ (3-10)

for all Tn G No- Therefore, one has

M0,m(x) ||Hm+1x|| < a0 t2om+2 (2m + 2)! < (3a0t2) (2t0)2m (2m)!

for all m G N0 where we have used (3.10). Moreover, (3.8) gives

Mi,m(x) < (1 + c)||JJ™+3/2x|| < (3(1 + c)a0t2o) (2t0)2m+1 (2m + 1)!

for all m G N0 where we have again used (3.10). Therefore

M„,m(x) < ai sntlm (2m + n)\

for n G {0,1}, m G N0 and all s > 1 with ax 3a0(l A c)t\ and tx 2t0.

Secondly, let N > 2 and suppose

Mn,n(x) < ai sn t\m (2m + n)\

for all n < N, m G N0 and s > 1. Then (3.9) gives

MN,m(x) < aisNt2m(2m + N)i(bs-2t2i + cs-1N(2m + N)-1)

< a1sNt2m(2m + N)\(bt2i + c)s-1
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for all s > 1. But bt2 + c > b > 1. Hence if s bt\ A c then

Mntm(x)<a1snt2m(2m + n)\ (3.11)

for n N and all m G No- Therefore one concludes by inductive reasoning that (3.11) is
valid for all 777, n G N0.

Thirdly, specializing (3.11) to the case m 0, one deduces that

||Aax|| < ||JJAQx|| MWi0(x) < alSlQl \a\\

for all a. Hence x G HU(U) by Lemma 2.4 and HU(H1'2) Ç HU(U).

Finally it follows from spectral theory that the space of analytic elements for any self-

adjoint operator is dense. Hence the density of the subspace H^UJ) follows from the density
oîH^H1'2). D

The advantage of the foregoing discussion is that the main conclusions are based on general

features of the representation which are largely independent of the Hilbert space setting.
Hence many of the arguments and conclusions extend to Banach space representations of
the group.

4 Banach space representations

The structure of general Banach space representations of a Lie group G is very similar to the
structure of the unitary representations discussed in the previous section. There are, however,

some significant differences. The C°°-, and analytic, elements are again characterized by
the Laplacian but the Gn-subspaces do not always coincide with the domains of powers
of the Laplacian. The difficulty is not an algebraic problem but an analytic one. The
usual Laplacian A — J2d=i d2/dx2 on L2(Rd ; dx) is closed and its domain coincides with
the twice L2-differentiable functions, in accord with Corollaries 3.2 and 3.4 applied to the

unitary representation of G Rd acting by translations on L2. But the Laplacian on

Li (Hd ; dx) is not closed and the domain of its closure contains some functions which are
not twice differentiable in the Li-sense [13]. Nevertheless all functions in the domain of the
Laplacian on Li are once Li-differentiable and the derivatives are Li-Holder continuous with
Holder exponent arbitrarily close to one, i.e., the domain consists of functions which are
'almost' twice differentiable. A similar situation occurs with Banach space representations
of a general Lie group. There can be a slight mismatch between the domain of the closure
of the Laplacian and the G2-subspace. A similar mismatch then occurs for the domains
of higher powers of the Laplacian. But this small discrepancy is no longer evident at the
level of the G°°-, or analytic, elements. The latter elements are again characterized by the
Laplacian in the same manner already seen for unitary representations. But the proofs have

to take into account the differences in the differential structures.
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Let (X, G, U) denote a continuous Banach space representation of the Lie group G and
Aj dU(af) the representatives of the basis a\,..., ad of the Lie algebra g. The Laplacian A
is again defined as A - £?=1 A2 with domain D(A) fill D(At)- Therefore Xx Ç D(A)
and the Laplacian is densely defined. But the adjoint is also densely defined since its domain
contains the G°°-subspace of the adjoint representation. Consequently A is closable but it
is not generally closed [13]. In a unitary representation A is a positive self-adjoint operator,
Corollary 3.4, and hence generates a continuous semigroup which is holomorphic in the open
right half-plane. These latter properties are a general characteristic and give some basic

dissipativity estimates which replace the positivity.

Theorem 4.1 The Laplacian A is closable and its closure A generates a continuous
semigroup S which is holomorphic in the open right half-plane.

Moreover, there are m,Xo>0 such that

||(AJ + Ä)x||>m||x|| (4.1)

for all A > Ao and all x G D(A).

The generation result, which is the basis of all the subsequent analysis, can be proved
in several ways [11], [12], [14]. A short proof along the lines of the proof of Theorem 3.3 is

given in [7]. The principal idea behind the proof of [11], and its variants in [14] and [7], is

to approximate G locally by Rd and then to lift the comparable result for Rd to G by some
form of parametrix argument. This form of reasoning is superficially similar to perturbation
theory.

Once one has established that A generates a continuous semigroup the bounds (4.1)
follow by general semigroup theory. Continuity implies growth bounds ||5t|| < Me"' and
then Laplace transformation gives the resolvent bounds

||(AJ + Ä)-1x||<M(A-Wr1||x||

for all A > u> and x G X. These readily yield (4.1). The growth bounds also allow one to
use standard functional analytic techniques to define fractional powers of (AJ + A) if A > to

which are useful for the detailed discussion of the analytic structure.

The parametrix arguments used to pass from Rd to G transform information about the
action of the usual Laplacian on L2(Rrf ; dx) into information about the Laplacian on A". In
particular the arguments yield fairly detailed properties of the domain of the Laplacian. The
simplest of these is the 'elliptic regularity' property D(A) Ç Xx. Thus X2 Ç D(A) Ç Xi.
These inclusions denote continuous embeddings of Banach spaces expressed by corresponding
norm inequalities. In fact the parametrix gives precise quantitative estimates of the form

IMIi^llÄxll+c^Uxll (4.2)
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for all e G (0,1] and x G D(A), comparable to the first estimates of Proposition 3.1. There
are analogous conclusions for powers of A. If n G N then X2n Ç D(A Ç X2n^1 and

||s||m<e||Snai|| + ci,e-m/<2B-m>||iB||

for some c„ > 0, all e G (0,1], x G DCA") and m G {1,2,..., 2n — 1}. Even more detailed
properties can be deduced but only these simplest aspects of elliptic regularity are sufficient
to elucidate the G°°-structure.

Theorem 4.2 The Cx'-elements ofU coincide with those of A,
oo

XX(U) fi D(Än) DX(A)
n=l

Hence A00([/) is a core of A.

Proof The identification of the two sets of G°°-elements follows from the inclusions

x2n ç d(a7) Ç X2n_i

by taking intersections over n. As the semigroup S is holomorphic it follows that St maps
J)oo(A) into itself for all t > 0 and hence J?oo(A) XX(U) is a core of A. Ü

The characterization of the analytic elements by the Laplacian is more difficult and

requires better understanding of the G^-structure. The earlier discussion of unitary
representations was based on an identification D(A) X2 but this is only valid for special

representations. We will discuss a second important class below, the Lipschitz representations.

The identification 0(A) X2 is equivalent to A|^2 being closed and this property
fails for the left regular representation of G on Jq(G ; dg). If, however, D((XI + A)1/2) Xi
for large A then one has JJ((AJ + A)n/2) Xn for all n G N (see [6] Corollary 3.14). But the

validity of the identity for n 2 does not necessarily imply its validity for n 1. In the left
regular representation of R in J-a(R) the Laplacian A is closed, but D((XI + A)1'2) Xi
fails since the Riesz transform is not bounded on Li(R).

The key to understanding the details of the differential structure lies in the Lipschitz
substructure. Elements in the domain of A are once differentiable, D(A) Ç X\, but in
addition the derivatives are Holder continuous in the sense that

SUp |flr||(J-[/(<7))Ax||<00
o<M<i

for each i G {!,... ,d} and 7 G (0,1) where | • | is some modulus on the group G. A more
precise statement can be made in terms of the Lipschitz spaces An+7, where n G N and

7 G (0,1), defined as the subspaces of X for which the corresponding norm

||x|U7 ||x||+ sup max \g\^\\(I - U(g))Aax\\ (4.3)
0<|s|<la' m<n
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is finite. Since

\\(I-U(g))Aax\\<c\g\-\\x\\n+i
for suitable c > 0 it follows that the Lipschitz spaces are intermediate to the Gn-spaces, i.e.,

X„+l Ç Xn+y C Xn

Moreover, the Lipschitz construction is transitive with respect to the family of Gn-subspaces,

e.g., the (n + 7)-Lipschitz space formed with respect to the representation f/(m) of G on Xm
is the space Am+n+7. In fact || • ||n+7 is equivalent to the norm

s->||aC+, IMI»+ sup \gr\\(I-U(g))x\\n
0<|9|<1

These various properties clearly indicate that the index n + 7 corresponds to a fractional
order of differentiability.

The Lipschitz spaces give the possibility of delineating more detailed domain properties
of the Laplacian. One can establish that

X2n C D(A7) Ç A2n_1+7

This is one way of expressing the fact that J)(A is very nearly equal to X2n, that elements
of J) (A are very close to being 2n-times differentiable.

The Lipschitz spaces also give a different method of describing regularity. Each space
An+7 is automatically invariant under the representation U. In particular one has a family
of representations f/n+7 f/|^ But these representations are not usually continuous
because of the use of the supremum in the definition of the norm (4.3). Hence it is convenient
to modify this definition. If g G [l,oo) then the spaces An+7g are defined as the subspaces
of X for which the corresponding norm

,1/9
11

||x||n+7>, ||x|| + max (/ dg\g\-d(\gr\\(I-U(g))A"x\\)
a; \a\<n \ Jne x '

is finite where tte is a bounded open neighbourhood of the identity. These spaces are again
intermediate to the Gn-subspaces and have similar transitivity properties relative to the Gn-

subspaces as those described above. In addition one again has precise embedding properties
for the Laplacian

X2n Ç D(A ç A2n_i+7>9

The modified Lipschitz spaces are [/-invariant but now the representations f/7)9 U\x^%q

are continuous. The interesting feature of these representations is that they are, in general,
more regular than the original representation or the representations associated with the
G"-subspaces.

Consider the spaces X^A. These spaces are intermediate to X and Xi,

sCl C_ Pi~y
q

C. ri
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and the embeddings are continuous; there are c^, > 0 such that

INI < \\x\\y,q <<h,q\\x\\i

for all x G X\ ¦ These latter inequalities are essential in what follows. Now one can associate
with the spaces Xlq and the corresponding representations U1A families of Gn-subspaces
A7i9;n etc.. Let A79 denote the closed Laplacian associated with the representation U1A, and
the basis a\,...,ad. Since £/7:9 is obtained by restriction of U the Lipschitz Laplacian A7,9 is

obtained by restriction of A. But it is convenient to retain the notational distinction. The

operator A7i, generates a continuous semigroup on A7i9 and satisfies dissipativity bounds

||(AJ + A7,9)x||7,g>m||x||7,„ (4.4)

for all large A analogous to (4.1). The important point, however, is that the Lipschitz
Laplacian also satisfies the regularity bounds

\\x\\ytgii<ayJ(XlAAyiq)^2x\\y,a (4.5)

and

||x||7,?;2<b7,g||(AJ + A7,,)x||7,9 (4.6)

for A sufficiently large, analogous to the bounds coming from Corollary 3.5. This is the

surprising element of the Lipschitz representations, their increased regularity. The regularity
of the Lipschitz spaces is well known in the by now classical theory of function spaces over
Rd (see, for example, [15], Chapter V, or [16]) but it is only recently that the importance of
these properties for the Lie group theory has been emphasized [14].

The regularity properties (4.5) and (4.6) allow one to deduce that the domains of the

powers of the Lipschitz Laplacians A7i9 coincide with the Gn-subspaces of the Lipschitz
spaces,

D(Alq) Xy,q,2n

by the argument used to prove Theorem 3.6. Moreover, the estimates (4.4), (4.5) and (4.6)
suffice to prove the Lipschitz equivalent of Theorem 3.9.

Theorem 4.3 If (Xlq, G, t/7i9) is a Lipschitz representation associated with the Banach

space representation (X,G,U) then

^(f/7,,) ^((AJ + A7,,)1/2)

for all large X, where y Xyq.

It might appear that Theorem 4.3 misses the point since it does not give any direct statement

about the analytic structure of the underlying Banach space representation (X, G, U).
But it immediately leads to the desired conclusion by a straightforward embedding argument.
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Corollary 4.4 If (X, G, U) is a continuous Banach space representation then

XU(U) XU((XI+ Ä)1'2)

for all large X and the subspace XU(U) of analytic elements is dense in X.

Proof If x G XU((XI + A)1/2) there are a, t > 0 such that

||(AJ + Ä)n/2x|| <atnn\

for all n G N0. But
ii(Aj+A7,,r/2x|i7,,<C|i(Aj+Är/2x|ii

because Xlq is continuously embedded in X\ and U1A is the restriction of U. The embedding
D(A) Ç Xi gives, however, continuity estimates

||y||i<cn|(AI + 5)y||

for all y G D(A), e.g., these follow by combination of (4.1) and (4.2). Therefore

\\(XI + A7,,)n/2x||7,, < c"||(AJ + Ä)^2+1x|| < ac"in+2 (77. +2)! < oit>!
with aj 3ac"t2 and tx 2t. Thus x G X,((AJ + A7i,)1/2) X,(t/7,,) and there are b, s > 0

such that
IMksin <bsnn\

for all n G N0. Since ||x||n < ||x||7iî;„ it follows that x G XU(U) and this establishes that
XU((XI-r-Âf'2) Q XU(U).

The converse inclusion follows by a similar argument. But it can also be established by
a simple direct argument based on the bounds ||A x|| < dn ||x||2n.

Finally, since (AJ + A)1/2 generates a holomorphic semigroup the space A„([/) is dense

in A. D

In conclusion Theorem 4.2 and Corollary 4.4 establish that the G°°-, and analytic, structures

of a general Banach space representation are characterized by the Laplacian in the

same manner found earlier for unitary representations.

The characterization of the Gn-structure by the Laplacian established in Theorem 3.6

for unitary representations is also valid for many other representations. It holds for the
Lipschitz representations and is also valid for principal series representation of a semi-simple
Lie group [5] or for the left regular representation of G in LP(G) if 1 < p < oo [2]. It is an
interesting question whether it is possible to characterize those representations for which the
differential structure is determined by the Laplacian in this manner.
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reach their sixtieth birthdays.

Part of this work was carried out whilst the second-named author was visiting Hokkaido
University as a guest of Akitaka Kishimoto. This visit was made possible by the exchange

program of the Australian Academy of Science and the Japan Society for the Promotion of
Science.
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