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Time of Events in Quantum Theory!

By Ph. Blanchard’® and A. Jadczyk!®

® Faculty of Physics and BiBoS, University of Bielefeld
Universitatstr. 25, D-33615 Bielefeld

¥ Institute of Theoretical Physics, University of Wroctaw
Pl. Maxa Borna 9, PL-50 204 Wroclaw

(21.V.1996)

Abstract. We enhance elementary quantum mechanics with three simple postulates that enable
us to define time observable. We discuss shortly justification of the new postulates and illustrate
the concept with the detailed analysis of a delta function counter.

Zeit ist nur dadurch, daf etwas
geschieht und nur dort wo etwas

geschieht.
(E.Bloch)

1 Introduction

Time plays a peculiar role in Quantum Mechanics. It differs from other physical quantities
like position or momentum. When discussing position a dialogue may look like this: 4

IThis paper is dedicated to Klaus Hepp and to Walter Hunziker on the occasion of their sixtieth
anniversary

2e-mail: blanchard@physik.uni-bielefeld.de

3e-mail: ajad@ift.uni.wroc.pl

“We use the method chosen by Galileo in his great book ” Dialogues Concerning Two New Sciences”[1].
Galileo is often refered to as the founder of modern physics. The most far-reaching of his achievements
was his counsel’s speech for mathematical rationalism against Aristotle’s logico—verbal approach, and his
insistence for combining mathematical analysis with experimentation.
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SP: What is the position?

SG: Position of what?

SP: Of the particle.

SG: When?

SP: At t=t1.

SG: The answer depends on how you are going to measure this position. Are you sure you
have detectors put everywhere that interact with the particle only during the time interval
(t-dt,t+dt) and not before?

When talking about time we will have something like this:

SP: What is time?

SG: Time of what?

SP: Time of a particle.

SG: Time of your particle doing what?

SP: Time of my particle leaving the box where it was trapped. Or time at which my
particle enters the box.

SG: Well, it depends on the box and it depends on the method you want to apply to
ascertain that the event has happened.

SP: Why can’t we simply put clocks everywhere, as it is common in discussions of special
relativity? And let these clocks note the time at which the particle passes them?

SG: Putting clocks disturbs the system. The more clocks you put - the more you disturb.
If you put them everywhere - you force wave packet reductions a‘la GRW. If you increase
their time resolution more and more - you increase the frequency of reductions. When the
clocks have infinite resolutions - then the particle stops moving - this is the Quantum Zeno
effect [2].

SP: I do not believe these wave packet reductions. Zeh published a convincing paper
whose title tells its content: * There are no quantum jumps nor there are particles” [3], and
Ballentine [4, 5], proved that the projection postulate is wrong.

SG I remember these papers. They had provocative titles...

SV. First of all Ballentine did not claim that the projection postulate is wrong. He said
that if incorrectly applied - then it leads to incorrect results. And indeed he showed how
icorrect application of the projection postulate to the particle tracks in a cloud chamber
leads to inconsistency. What he said is this: ”According to the projection postulate, a
position measurement shou’d ”col’apse” the state to a position eigenstate, whicn is spheri-
cally symmetric and would spread in all directions, and so there would be no tendency to
subsequently ionize only atoms that lie in the direction of the incident momentum. An ap-
proximate position measurement would similarly yield a spherically symmetric wave packet,
so the explanation fails.” This is exactly what he said. And this is correct. This shows how
careful one has to be with the projection postulate. If the projection postulate is understood
as operating with an operator on a state vector: ¢y — Ry/||Rt||, then the argument does
not apply. Thus a correct application would be to multiply the moving Gaussian of the

In the dialog SG=Sagredo, SV=Salviati, SP=Simplicio
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particle, something like:

Y(z,t) = exp(ip(z — a(t)) exp(—(z — a(2))*/o(t))

which is spherically symmetric, but only up to the phase, by a static Gaussian modelling a
detector localized around a:

f(z) = exp(—a(z — a)?)
The result is again a moving Gaussian. And in fact, such a projection postulate is not a
postulate at all. It can be derived from the simplest possible Liouville equation.

SP: Has this "correct”, as you claim, cloud chamber model been published? Have its
predictions been experimentally verified?

SV: A general theory of coupling between quantum system and a classical one is now
rather well understood [6]. The cloud chamber model has been published quite recently, you
can take a look at [7, 8]. Belavkin and Melsheimer [9] tried to derive somewhat similar result
from a pure unitary evolution, but I am not able to say what assumptions they used, what
approximations they made and what exactly are their results.

SP: Hasn’t the problem been solved long ago in the classical paper by Mott [10]?

SV Mott did not even attempt to derive the timing of the tracks. In the cloud chamber
model of Refs. [7, 8], that I understand rather well, because I participated in its construction,
it is interesting that the detectors — even if they do not "click” — influence the continuous
evolution of the wave packet between reductions. They leave a kind of a ”shadow”. This
is another case of a "interaction-free” experiment discussed by Dicke {11, 12], and then by
Elitzur and Vaidman [13] in their "bomb-test” allegory, and also by Kwiat, Weinfurter,
Herzog and Zeilinger [14]. The shadowing effect predicted by EEQT ° may be tested exper-
imentally. I believe it will find many applications in the future, and I hope these will be not
only the military ones! Yet we must now not digress upon this particular topic since you
are waiting to hear what I think about the problem of time in quantum theory. We already
know that "time” must be ”"time of something”. Time of something that happens. Time
of some event.® But in quantum theory events are not simply space-time events as it is in
relativity. Quantum theory is specific in the sense that there are no events unless there is
something external to the quantum system that ”causes” these events. And this something
external must not be just another quantum system. If it is just another quantum system -
then nothing happens, only the state vector continuously evolves in parameter time.

SP But is it not so that there are no sharp events? Nothing is sharp, nothing really
sudden. All is continuous. All is approximate.

SG How nothing is sharp, do we not register ”clicks” when detecting particles?

SP I do not know what clicks are you talking about ...

SG How you don’t know? Ask the experimentalist.

SP I am an experimentalist!

SV The problem you are discussing is not an easy one to answer. I pondered on it many
times, but did not arrive at a clear conclusion. Nevertheless something can be said with

5Salviatti refers here to ” Event Enhanced Quantum Theory” of reference [6] - paper apparently well know
to the participants of the dialog.

®Heisenberg proposed the word "event” to replace the word ”measurement”, the latter word carrying a
suggestion of human involvement.
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certainty. First of all you both agree that in physics we always have to deal with idealiza-
tions. For instance one can argue that there are no real numbers, that the only, so to say,
experimental numbers are the natural numbers. Or at most rational numbers. But real
numbers proved to be useful and today we are open to both possibilities: of a completely
discrete world, and of a continuous one. Perhaps there is also a third possibility: of a fuzzy
world. Similarly there are different options for modeling the events. One can rightly argue
that they are never sharp. But do they happen or not? Do we need counting them? Do
we need a theory that describes these counts? We do. So, what to do? We have no other
choice but to try different mathematical models and to see which of them better fit the
experiment, better fit the rest of our knowledge, better explain what makes Nature tick. In
the cloud chamber model that we were talking about just a while ago the events are unsharp
in space but they are sharp in time. And the model works quite well. However, if you
try to work out a relativistic cloud chamber model, then you see that the events must be
also smeared out in the coordinate time.” Nevertheless they can still be sharp in a different
"time”, called "proper time” after Fock and Schwinger. If time allows I will tell you more
about this relativistic theory, but now let us agree that in a nonrelativistic theory sharp
localization of events in time does not contradict any known principles. We will remember
at the same time that we are dealing here with yet another idealization that is good as long
as it works for us. And we must not hesitate to abandon it the moment it starts to lead us
astray. The principal idea of EEQT is the same as that expressed in a recent paper by Haag
[17]. Let me quote only this: ”... we come almost unavoidably to an evolutionary picture of
physics. There is an evolving pattern of events with causal links connecting them. At any
stage the ‘past’ consists of the part which has been realized, the ‘future’ is open and allows
possibilities of new events ...”

SG Let me interrupt you. Perhaps we should remember what Bohr was telling us. Bohr
insisted that the apparatus has to be described in terms of classical physics; this point of
view is a common-place for experimental physicists. Indeed any experimental article ob-
serves this rule. This principle of Bohr is not in any way a contradiction but simply the
recognition of the fact that any physical theory is always the expression of an approximation
and an idealization. Physics is always a little bit false. Epistemology must also play role in
the labs. Physics is a system of analogies and metaphors. But these metaphors are helping
us to understand how Nature does what it does.

SP 1 agree with this. So what is your proposal? How to describe time of events in a
nonrelativistic quantum theory? Does one first have to learn EEQT - your ”Event Enhanced
Quantum Theory” that you are so proud of? I know many theoretical physicists dislike your
explicit introduction of a classical system. They prefer to keep everything classical in the
background. Never put it into the equations.

SV Here we have a particularly lucky situation. For this particular purpose of discussing
time of events it is not necessary to learn EEQT. It is possible to describe time observation
with simple rules. This is normal in standard quantum mechanics. You are told the rules,
and you are told that they work. So you believe them and you are happy that you were
told them. In EEQT Schrédinger’s evolution and reduction of the wave function appear
as special cases of a single law of motion which governs all systems equally. EEQT is one

7Cf. an illuminating discussion of this point in [15, 16].
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of the few approaches that allow you to derive quantum mechanical postulates and to see
that these postulates reflect only part of the truth. Here, when discussing time of events
we do not need the full predictive power of EEQT. This is so because after an event has
been registered the experiment is over. We are not interested here in what happens to our
system after that. Therefore we need not to speak about jumps and wave packet reductions.
It is only if you want to derive the postulates for time measurements, only then you will
have to look at EEQT. But instead of deriving the rules, it is even better to see if they
give experimentally valid predictions. We know too many cases where good formulas were
produced by doubtful methods and bad formulas with seemingly good ones. Using the right
tool makes the job easier.

SP I become impatient to see your postulates, and to see if I can accept them as reason-
able even before any experimental testing. Only if I see that they are reasonable, only then
I will have any motivation to see whether they really be derived from EEQT, or perhaps in
some other way.

2 Time of Events

We start our discussion on quite a general and somewhat abstract level. Only later on,
in examples, we will specialize both: our system and the monitoring device. We consider
quantum system described using a Hilbert space H.2 To answer the question "time of
what?”, we must select a property of the system that we are going to monitor. It must give
only "yes-no”, or one-zero answers. We denote this binary variable with the letter «. In our
case, starting at ¢ = 0, when the monitoring begins, we will get continuously o = 0 reading
on the scale, until at a certain time, say t = t,, the reading will change into "yes”. Our aim
is to get the statistics of these "first hitting times”, and to find out its dependence of the
initial state of the system and on its dynamics.

Speaking of the ”time of events” one can also think that "events” are transitions which occur;
sometimes the system is changing its state randomly - and these changes are registered.
There are two kinds of probabilities in Quantum Mechanics the transition probabilities and
other probabilities - those that tell us when the transitions occur. It is this second kind of
probabilities that we will discuss now.

2.1 First Postulate - the Coupling

Our first postulate reads: the coupling to a ”yes-no” monitoring device is described by an
operator A > 0 in the Hilbert space H. In general A may explicitly depend on time but
here, for simplicity, we will assume that this is not the case. That means: to any real
experimental device there corresponds a A. In practice it may be difficult to produce the A
that describes exactly a given device. As it is difficult to find the Hamiltonian that takes

8More generally we would need two Hilbert spaces: Hn, and Hy., that can be different, but for the
present discussion we need not be pedantic, so we will assume them to be identified.
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into account exactly all the forces that act in a system. Nevertheless we believe that an
exact Hamiltonian exists, even if it is hard to find or impractical to apply. Similarly our
postulate states that an exact A exists, although it may be hard to find or impractical to
apply. Then we use an approximate one, a model one.

It should be noticed that we do not assume that A is an orthogonal projection. This
reflects the fact that our device - although giving definite "yes-no” answers, gives them
acting upon possibly fuzzy criteria. In the limit when the criteria become sharp one should
think of A as A —s AE, where X is a coupling constant of physical dimension ¢! and F a
orojection operator. 'n the genera! case i‘ is usua''y convenien? ‘o write A = AAg, where Ag

is dimensionless.

It is also important to notice that the property that is being monitored by the device need
not be an elementary one. Using the concepts of quantum logic (cf. [18, 19]) the property
need not be atomic - it can be a composite property. In such a case, when thinking about
physical implementation of the procedure determining whether the property holds or no,
there are two extreme cases. Roughly speaking the situation here is similar to that occurring
in discussion of superpositions of state preparation procedures. Some procedures lead to a
coherent superpositions, some other lead to mixtures. Similarly with composite detectors:
one possibility is that we have a distributed array of detectors that can act independently
of each other, and our event consists on activating one of them. Another possibility is that
we have a coherent distributed detector like a solid state lattice that acts as one detector.
In the first case (called incoherent) A will be of the form

A=) gkga
[+ 4
while in the second coherent case:

A= (Zga)*(z goz)a

where g, are operators associated to individual constituents of the detector’s array. More
can be said about this important topic, but we will not need to analyze it in more details
for the present purpose.

2.2 Second Postulate - the Probability

We assume that, apart of the monitoring device, our system evolves under time evolution
described by the Schrodinger equation with a self-adjoint Hamiltonian Hy = Hf. We denote
by Ko(t) = exp(—iHot) the corresponding unitary propagator. Again, for simplicity, we will
assume that Hy does not depend explicitly on time.

Our second postulate reads: assuming that the monitoring started at time ¢t = 0, when
the system was described by a Hilbert space vector g, ||| = 1, and when the monitoring
device was recording the logical value "no”, the probability P(t) that the change no — yes
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will happen before time ¢ is given by the formula:
P(t) =1 — || K(t)ol®, (2.1)

where

K (t) = exp(—iHpt — %-t-) (2.2)

Remark: The factor  in the formula above is put here for consistency with the notation

used in our previous papers.

It follows from the formula (2.1) that the probability that the counter will be triggered
out in the time interval (t,t+dt), provided it was not triggered yet, is p(t)dt, where p(t) is
given by

p(t) = S P(t) =< K(tho, AK (o > - (2.3)

We remark that [5° p(t)dt = P(o0) is the probability that the detector will notice the particle
at all. In general this number representing the total efficiency of the detector (for a given
initial state) will be smaller than 1.

2.3 Third Postulate - the Shadowing Effect

As noticed above in general we expect P(o0) < 1. That means that if the experiment is
repeated many times, then there will be particles that were not registered while close to
the counter; they moved away, and they will never be registered in the future. The natural
question then arises: is the very presence of the counter reflected in the dynamics of the
particles that pass the detector without being observed? Or we can put it as a "quantum
espionage” question: can a particle detect a detector without being detected? And
if so - which are the precise equations that tell us how?.

To answer this question it is not enough to use the two postulates above. One needs to
make use of the Event Engine of EEQT once more.

Our third postulate reads: prior to any event, and independently of whether any event
will happen or not, the state of the system is described by the vector ¥, undergoing the
non-linear evolution given by:

ho— Y
d)t - ||¢t” LR ) (24)
where
Pe = K(t)o. (2.5)

It is not too difficult to think of an experiment that will test this prediction.
Fig. 1 shows four shots from time evolution of a gaussian wavepacket monitored by a gaussian
detector placed at the center of the plane. The efficiency of the detector is in this case ca.
P(00) ~ 0.55. There is almost no reflection. The shadow of the detector that is seen on the
fourth shot can be easily interpreted in terms of ensemble interpretation: once we count only
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those particles that were not registered by the detector, then it is clear that there is nothing
or almost nothing behind the detector. However a careful observer will notice that there is
a local maximum exactly behind the counter. This is a quantum effect, that of ”interference
of alternatives”. It has consequences for the rate of future events for an individual particle.

2.4 Justification of the postulates

The above postulates are more or less "natural”. They are in agreement with the existing
ideas of non-unitary® evolution. So, for instance, in [20] the authors considered the ionization
model. They wrote: ‘According to the usual procedure the ionization probability P(¢) should
be given by P(t) =1 — |¥|?.

Even if our postulates are natural, it is worthwhile to notice that EEQT allows us to interpret
them, to understand them and to derive them, in terms of classical Markov processes. First of
all let us see that the above formula for P(t) can be understood in terms of an inhomogeneous
Poisson decision process as follows.!® Assume the evolution starts with some quantum state
tho, of norm one, as above. Define the positive function A(t) as

A(t) = (!Z’t, A'j)t)a (2-6)

where Then P(t) above happens to be nothing but the first-jump probability of the inho-
mogeneous Poisson process with intensity A(¢). It is instructive to see that this is indeed
the case. To this end let us divide the interval (0,¢) into n subintervals of length At = t/n.
Denote t; = (k — 1)At, k = 1,...,n. The inhomogeneous Poisson process of intensity A(¢)
consists then of taking independent decisions ‘jump—or-not—jump’ in each time subinterval.
The probability for jumping in the k-th subinterval is assumed to be py = A(tx—1)At (that
is why A is called the intensity of the process). Thus the probability P,,:(¢) of not jumping

up to time ¢ is
n

Paas(®) = Jim TL( ~ 1) = exp( [ A(s)ds). 27

k=1
Let us show that 1 — P,,(t) can be identified with P(¢) given by Eq. (2.7). To this end
notice that

%(1 — P(t) = = <, Ay >= —A(0)|[]°
= (1)1 - P(1)).

Thus 1 — P(t), given by Eq. (2.1) satisfies the same differential equation as P,,(t) given
by Eq. (2.7). Because 1 — P(0) = P,,(0) = 1, it follows that 1 — P(¢) = P,,(t), and so
P(t) = 1 — P,ut(?) indeed is the first jump probability of the inhomogeneous Poisson process
with intensity A(%).

This observation is useful but rather trivial. It can not yet stand for a justification of
the formula (2.1) - this for the simple reason that the jump process above, based upon a

YKnown in the literature also under the name of ”non-hermitian”
1°A mathematical theory of a counter that leads to an inhomogeneous Poisson process, starting from
formal postulates that are different than ours was given almost fifty years ago by Res Jost [21] .
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continuous observation of the variable o and registering the time instant of its jump, is not
a Markovian process. It would become Markovian if we know A(t), but to know A(t) we
must know 1,&. This leads us to consider pairs z; = (gzvt, at), Where W is the Hilbert space
vector describing quantum state, and a; is the yes-no state of the counter. Then ; evolves
deterministically according to the formula (2.4), the intensity function A(t) is computed on
the spot, and the Poisson decision process described above is responsible for the jump of
value of « - in our case it corresponds to a "click” of the counter. The time of the click is a
rancom variable 77, well defined anc. computable by the above prescription.

This prescription sheds some light onto the meaning of the quantum state vector ¢. We
see that ¢ codes in itself information that is being used by a decision mechanism working
in an entirely classical way - the only randomness we need is that of a biased (by A(t))
classical roulette. Until we ask why the bias is determined by this particular functional of
the quantum state, until then we do not have to invoke more esoteric concepts of quantum
probability — whatever they mean. But, in fact, it is possible to understand somewhat more,
still in pure classical terms. We will not need this extra knowledge in the rest of this paper,
but we think it is worthwhile to sketch here at least the idea.

In the reasoning above we were interested only in what governs the time of the first jump,
when the counter clicks. But in reality nothing ends with this click. A photon, for instance,
when detected, is transformed into another form of energy. So, if we want to continue our
process in time, after T, we must feed it with an extra information: how is the quantum
state transformed as the result of the jump. So, in general, we have a classical variable «
that can take finitely many, denumerably many, a continuum, or more, possible values, and
to each ordered pair (a — f3) there corresponds an operator g,3. The transition (a — f) is
called an event, and to each event there corresponds a transformation of the quantum state
Y — II_iiz_iil' In the case of a counter there is only one (. In general, when there are several
(3-s, we need to tell not only when to jump, but also where to jump. One obtains in this
way a piecewise deterministic Markov process on pure states of the total system: (quantum
object, classical monitoring device). It can be then shown [6, 22] that this process, including
the jump rate formula (2.6) follows uniquely from the simplest possible Liouville equation
that couples the two systems.

3 The Time of Arrival

As the most natural application of the above concept of "time of event” we consider the
notion of "time of arrival” of a particle to a certain state. There are several methods
available for computing the "time of arrival” distribution given our postulates. We shall
take the approach that seems to us to be the simplest one. One by one we shall specialize
our assumptions about A.
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3.1 One elementary detector

Let K(t) be given by Eq. (2.2), and let!!
Ko(t) = exp(—iHot). (3.1)

Then K(t) satisfies the Schrodinger equation

&

K = —iHoK(t) — SK(1). (3.2)

This differential equation, together with initial data K(0) = I, is easily seen to be
equivalent to the following integral equation:

K(2) = Kolt) - % | " Ko(t — s)AK(s)ds. (3.3)

By taking the Laplace transform and by the convolution theorem we get the Laplace trans-
formed equation:

K=k - %R’OAI"{. (3.4)

Let us consider the case of a maximally sharp measurement. In this case we would take
A = |a >< a|, where |a > is some Hilbert space vector. It is not assumed to be normalized; in
fact its norm stands for the strength of the coupling (notice that < a|a > must have physical
dimension ¢7!). Taking look at the formula (2.3) we see that now p(t) = | < a|¢; > |* and
so we need to know < a|K(t)ipo > rather than the full propagator K(t). Multiplying Eq.
(3.4) from the left by < a| and from the right by |p > we obtain:

_ 2 < alf(al(bo >

<alp >= 2 3.5
alv 2 + < a|Kpla > (3:5)

where 1) is the Laplace transform of ¢ — (t) :
#(z) = fo e p(t)dt = K(2)po,  R(z) > 0. (3.6)

3.2 Composite detector

We consider now the simplest case of a composite detector. It will be an incoherent compo-
sition of two simple ones. Thus we will take:

A=la; >< ay| 4+ |a; >< ay. (3.7)

BFrom this time on the subscript o may refer to either the initial state, as in ¥ or to free evolution, as
in Hy, or to initial state evolving under free evolution. In case of confusion the actual meaning should be
derived from the context.
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Remark Notice that if < a;|a; >= 0, then coherent and incoherent compositions are indis-
tinguishable, as in this case, with ¢; = |a; >< a;|, we have that 3°; g:*g; = (32, 9i)*(X; 94)-
For p(t) we have now the formula:

p(t) = 3| < alibe > P, (33)

and to compute the complex amplitudes < a;|1); > we will use the Laplace transform method
as in the case of one detector. To this end one applies < a;| from the left and |4} > from
the right to Eq. (3.4) and solves the resulting system of two linear equations to obtain:

<alp> = 2 ((24(22)) < arlho > —(12) < azhzu > ) }
(3.9)
< az!'(,b > = % ((2 + (11)) < a2|1,bo > ——(21) < a1|¢o > )
where we used the notation }
(i7) =< a;|Kola; >, (3.10)
o >= Koltbo >, (3.11)
and where A stancs for
A=4+2((11) + (22)) + ((11)(22) — (12)(21)). (3.12)
The probability density p(t) is then given by
p(t) = S0, (313)
where ¢; is the inverse Fourier transform
1 oo .~ .
8ilt) = o= [ eV, (iy)dy (3.14)
M J—o0
of ) )
$i(ty) = im < aild(z +3y) > (3.15)
By the Parseval formula we have that P(oo) is given by:
P(oo) = 5= [ Iu(iv)Pdy . (3.16)
2n ¥ —00 ‘

3.3 Example: Dirac’s § counter for ultra-relativistic particle

Let us now specialize the model by assuming that we consider a particle in R! and that the
Hilbert space vector |a > approaches the improper position eigenvector y/kd(z — a) localized
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at the point a. This corresponds to a point-like detector of strength & placed at a.'? We see
from the equation (2.3) that p(t) is in this case given by:

p(t) = 16(t)I%, (3.17)
where the complex amplitude ¢(t) of the particle arriving at a is:
¢(t) =< alp(t) >, (3.18)

or, from Eq. (3.5)

jo_ WE g
¢= 2+n1"(0(a,a)¢°( ) (3.19)

where 9o stands for the Laplace transform of Ko(t)vo.
Let us now consider the simplest explicitly solvable example - that of an ultra-relativistic

particle on a line. For H, we take Hy = —icj—x, then the propagator Kj is given by
Ky(z,2';t) = é(z' — z + ct), and its Laplace transform reads Ky(z,2';2) = %e(x“"")"/c.

In particular Ko(a,a;z) = % and from Eq. (3.19) we see that the amplitude for arriving at
the point a is given by the ”"almost evident” formula:

&(t) = const(k) x ¥P(a — ct), (3.20)

where const(k) = \/k/(1+ ). It follows that probability that the particle will be registered
is equal to
k/c

i+
which has a maximum P(oo0) = 1/2 for k = 2c if the support of vy is left to the counter
position a. We notice that in this example the shape of the arrival time probability distri-
bution p(t) does not depend on the value of the coupling constant - only the effectiveness of
the detector depends on it. For a counter corresponding to a superposition 3, \/k:d(z — a;)
we obtain for P(oo) exactly the same expression as for one counter but with « replaced with

Zi Ki.

P(c0) = [_ oo dz|yo(z)|? (3.21)

3.4 Example: Dirac’s § counter for Schrodinger’s particle

We consider now another example corresponding to a free Schrodinger’s particle on a line.
We will study response of a Dirac’s delta counter |a >= /ké(z — a), placed at z = a, to a
Gaussian wave packet whose initial shape at ¢t = 0 is given by:

—(z — x0)?

‘12The case of Hermitian singular delta—function perturbation was discussed by many authors - see [23, 24,
25, 26, 27, 28, 29] and references therein



Blanchard and Jadczyk 625

In the following it will be convenient to use dimensionless variables for measuring space,
time and the strength of the coupling:

T ht mnK
= = = — 3.23
We denote
§o = zo/2n, & = a/2n, v =20k (3.24)
In these new variables we have:
vo(€) = (")1’ 4 o= (€0 +2i(6—60) (3.25)
1/2 2
Ko(¢,&7) = (n) exp (-‘~—~’-—‘E ) (3.26)
Ko(¢,6:2) = (iz)"Zexp (MQ\/—zz & — El) (3.27)
We can compute now explicitly $(z) of Eq. (3.6):
. 1 .
Fola;2) = £(2m) (i) 22 () + ()] (3.28)
where
=iV —iz £ (v — id), d= & — &, (3.29)
and the amplitude ¢ of Eq. (3.19), when rendered dimensionless,' reads
: i +w(u)
= (2 1/4 1/2 d?—2ivd W(U+) 3.30
¢(2) = (2) 9/iz + o ( )
with the function w(z) defined by
w(u) = e erfe(—iu) (3.31)

(see Ref. [30], Ch. 7.1.1 - 7.1.2). We have also used the formula

oo 1 b — b
[J e—(a.x7+2b:v+c)dx ez _i\/gexp ( > GC) i (%) (332)

valid for R(a) > 0 (see [30], Ch. 7.4.2).

To compute p(t) from Eqgs. (3.13,3.14) the correct boundary values of the complex square
root (with the cut on the negative real half-axis) must be taken. Thus for z = z 41y, = 0+
we should take

e Wy y>0

Viz { = Y <0 (3.33)
g = % y=20

o R @31

13We should have |¢(t)|2dt = |¢(7)|%dr
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The time of arrival probability curves of the counter for several values of the coupling
constant are shown in Fig.2. The incoming wave packet starts at ¢ = 0, z = —4, with
velocity v = 4. It is seen from the plot that the average time at which the counter, placed
at x = 0, is triggered is about one time unit, independently of the value of the coupling
constant. This numerical example shows that our model of a counter serves can be used for
measurements of time of arrival. It is to be noticed that the shape of the response curve is
almost insensitive to the value of the coupling constant. Fig.3 shows the curves of Fig.2, but
rescaled in such a way that the probability P(co) = 1. The only effect of the increase of the
coupling constant in the interval 0.01 — 100 is a slight shift of the response time to the left
- which is intuitively clear. Notice that the shape of the curve in time corresponds well to
the shape of the initial wave packet in space.

For a given ve'ocity of the packet there is an optima’ va'ue of the coup’ing constant. ‘n our
dimensionless units it is @,y < 2v. Figure 4 shows this asymptotically linear dependence.
At the optimal coupling the total response probability P(co0) approaches the value 0.5, - the
same as in the ultra-relativistic case.

By numerical calculations we have found that the maximal value of P(occ) that can be
obtained for a single Dirac’s delta counter and Schrodinger’s particle is slightly higher than
0.7, that corresponds to the value @ = 1.3 of the coupling constant. The dependence of
P(00) on the coupling constant for a static wave packet (that is v = 0) centered exactly over
the detector is shown in Fig.5. Fig.6 shows the dependence of P(oc0) on both variables: v
and a.

The value 0.7 for the maximal response probability P(co) of a detector may appear to be
rather strange. It is however connected with the point-like structure of the detector in our
simple model. For a composite detector, for instance already for a two-point detector, this
restriction does not apply and P(oo) arbitrarily close to 1.0 can be obtained. Our method
applies as well to detectors continuously distributed in space. In this case the efficiency of
the detector (for a given initial wavepacket) will depend on the shape of the function A(z).
The absorptive complex potentials studied in [31, 32] are natural candidates for providing
maximal efficiency as measured by P(oo) defined at the end of Sec. 2.2.

4 Concluding Remarks

Our approach to the quantum mechanical measurement problem was originally shaped to a
large extent by the important paper by Klaus Hepp [33]. He wrote there, in the concluding
section: ‘The solution of the problem of measurement is closely connected with the yet un-
known correct description of irreversibility in quantum mechanics...’Our approach does not
pretend to give an ultimate solution. But it attempts to show that this ”correct description”
is, perhaps, not too far away.

In the present paper we have only been able to scratch the surface of some of the new math-
ematical techniques and physical ideas that are enhancing quantum theory in the framework
of EEQT, that free the quantum theory from the limitations of the standard formulation.
For a long time it was considered that quantum theory is only about averages. Its numerical
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predictions were supposed to come only from expectation values of linear operators. On
the other hand in his 1973 paper [34] Wigner wrote: ‘It seems unlikely, therefore, that the
superposition principle applies in full force to beings with consciousness. If it does not, or
if the linearity of the equations of motion should be invalid for systems in which life plays a
significant role, the determinants of such systems may play the role which proponents of the
hidden variable theories attribute to such variables. All proofs of the unreasonable nature
of hidden variable theories are based on the linearity of the equations ...". Weinberg [35]
attempted to revive and to implement Wigner’s idea of non-linear quantum mechanics. He
proposed a nonlinear framework and also methods of testing for linearity. Warnings against
potential dangers of nonlinearity are well known, they were summarized in a recent paper by
Gisin and Rigo [36]. The scheme of EEQT avoids these pitfalls and presents a consistent and
coherent theory. It introduces necessary nonlinearity in the algorithm for generating sample
histories of individual systems, but preserves linearity on the ensemble level. It is not only
about averages but also about individual events (cf. the event generating PDP algorithm of
ref. [6]). Thus it explains more, it predicts more and it opens a new gateway leading beyond
today’s framework and towards new applications of Quantum Theory. These new applica-
tions may involve the problems of consciousness. But in our opinion (supported in the all
quoted papers on EEQT, and also in the present one) quantum theory does not need neither
consciousness nor human observers - at least not more than any other probabilistic theory.
On the other hand, to understand mind and consciousness we may need Event Enhanced
Quantum Theory. And more.

In the abstract to the present paper we stated that we "enhance elementary quantum me-
chanics with three simple postulates”. In fact the PDP algorithm replaces the standard
measurement postulates and enables us to derive them in a refined form. This is because
EEQT defines precisely what measurement and ezperiment is - without any involvement of
consciousness or of human observers. It is only for the purpose of the present paper - to
introduce time observable into elementary quantum mechanics as simply as possible - that
we have chosen to present our three postulates as postulates rather than theorems. The
time observable that we introduced and investigated in the present paper is just one (but
important) trace of this nonlinearity.’® Time of arrival, time of detector response, is an
”observable”, is a random variable whose probability distribution function can be computed
according to the prescription that we gave in the previous section. But its probability dis-
tribution is not a bilinear functional of the state and as a result "time of arrival” can not
be represented by a linear operator, be it Hermitian or not. Nevertheless our "time” of
arrival is a ”safe” nonlinear observable. Its safety follows from the fact that what we called
"postulates” in the present paper are in fact "theorems” of the general scheme EEQT. And
EEQT is the minimal extension of quantum mechanics that accounts for events: no extra
unnecessary hidden variables, and linear Liouville equation for ensembles.

Our definition of time of arrival bears some similarity to the one proposed long ago by Allcock
[40]. Although we disagree in several important points with the premises and conclusions
of this paper, nevertheless the detailed analysis of some aspects of the problem given by
Allcock was prompting us to formulate and to solve it using the new perspective and the

14This is why our time observable does not contradict the well known objections by Pauli [37). Cf. also
the discussion in a recent book by Bush, Grabowski and Lahti [38]). For the same reason it does not fall
into the family analysed axiomatically by Kijowski [391.



628 Blanchard and Jadczyk

new tools that EEQT endowed us with. Our approach to the problem of time of arrival goes
in a similar direction as the one discussed in an (already quoted) interesting recent paper
by Muga and co-workers [32]. We share many of his views. The difference being that what
the authors of [32] call "operational model” we promote to the role of a fundamental new
postulate of quantum theory. We justify it and point out that it is a theorem of a more fun-
damental theory - EEQT. Moreover we take the non—unitary evolution before the detection
event seriously and point out that the new theory is experimentally falsifiable.

Once the time of arrival observable has been defined, it is rather straightforward to apply
it. In particular our time observable solves Mielnik’s ”waiting screen problem” [41]. But not
only that; with our precise definition at hand, one can approach again the old puzzle of
time—energy uncertainty relation in the spirit of Wigner’s analysis [42] (cf. also [43, 44]. One
can also approach afresh the other old problem: that of decay times (see [45] and references
therein) and of tunneling times ([46, 47, 48] and references therein). This last problem needs
however more than just one detector. We need to analyse the joint distribution probability
for two separated detector. We must also know how to describe the unavoidable disturbance
of the wave function when the first detector is being triggered. For this the simple postulates
of this paper do not suffice. But the answer is in fact quite easy if using the event generating
algorithm of EEQT.

More investigations needs also our "shadowing effect” of section 2.3. Every "real” detector
acts not only as an information exchange channel, but also as an energy-momentum ex-
change channel. Every real detector has not only its ”information temperature” described
by our coupling constant A (cf. Sec. 2.1), but also ordinary temperature. Experiments
to test the effect must take care in separating these different contributions to the overall
phenomenon. This is not easy. But the theory is falsifiable in the laboratory and critical
experiments might be feasible within the next couple of years.

In the introductory chapter the problem of extension of the present framework to the rel-
ativistic case has been shortly mentioned. Work in this direction is well advanced and we
hope to be able to report its result soon. But this will not be end of the story. At the very
least we have much to learn about the nature and the mechanism of the coupling between
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Figure 1: Four shots from the time evolution of a gaussian wavepacket monitored by a
gaussian detector placed at the center of the plane. The efficiency of the detector is in this
case ca. P(oo) ~ 0.55.
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Figure 2: Probability density of time of arrival for a Dirac’s delta counter placed at x = 0,
coupling constant alpha. The incoming wave packet starts at t = 0, ¢ = —4, with velocity
v=4

Rescaled probability density p(t)

2.500 T T

2000

1.500 + g

0.500 +

0.000 - L
0.0 1.0 20

Figure 3: Rescaled probability densities of Fig.1
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Figure 4: Optimal coupling constant as a function of velocity of the incoming wave packet.
The dependence pretty soon saturates to a linear one. At the saturation value P(oco) < 0.5.
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Figure 5: P(oco) as a function of « for a static wave packet centered over the counter. The
maximum, of P(co0) = 0.725448 is reached for o = 1.3216.
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