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Loop Quantum Gravity and Black Hole Physics

By Carlo Rovelli!

Department of Physics and Astronomy,
University of Pittsburgh, Pittsburgh Pa 15260, USA

Abstract. 1 summarize the basic ideas and formalism of loop quantum gravity. I illustrate the
results on the discrete aspects of quantum geometry and two applications of these results to black
hole physics. In particular, I discuss in detail the derivation of the Bekenstein-Hawking formula for
the entropy of a black hole from first principles.

1 Introduction

The lack of understanding of the quantum behavior of the gravitational field, and therefore the
lack of understanding of quantum geometry, remains a major open problem in fundamental
physics. There are tentative theories which are presently intensively investigated. For in-
stance, there is perturbative string theory, and non-perturbative string theory, much studied
in these days.? A less ambitious attempt to solve the problem is nonperturbative quantum
gravity, or “loop quantum gravity”.® This is the project of taking the conceptual novelties in-
troduced in physics by general relativity very seriously, and trying to make sense of quantum
general relativity (or any other high energy extension of general relativity) nonperturbatively.

The program is based on the hypothesis that perturbative approaches fail to describe
Planck scale physics because at the Planck scale the separation between a background metric
and a quantum field is not physically justified. At short scale, spacetime is not Minkoskian.
A posteriori, loop quantum gravity supports the hypothesis, since the short structure of the

1E-mail: rovelli@pitt.edu
2For an overview of other current ideas on quantum geometry, see [1], [2], and [3]
3Ted Jacobson calls it “Loopy quantum gravity”.
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geometry turns out to be strongly non-Minkoskian in the nonperturbative theory [4]. Thus,
“Man shall not separate what Einstein put together”. we should not separate the gravitational
field from the metric.

If this idea is correct, then the quantum gravitational field cannot be described as a
quantum field over a metric manifold, because there is no background field to provide the
metric structure. Therefore we have to learn how to construct a quantum field theory living
over a structure weaker than a metric manifold: namely over a differential manifold. The aim
of nonperturbative quantum gravity is to understand what is quantum field theory (QFT)
on differential manifolds (as opposed to QFT on metric spaces). In other words, we want a
QFT which is formulated in a diffeomorphism invariant way, and therefore may incorporate
the essential physical content of general relativity (GR), which I am convinced- is encoded
in its active diffemorphism invariance.

In such a context, most of the techniques of QFT that we like and love become useless.
Therefore a QFT on a manifold turns out to have a structure profoundly different from usual
QFT’s. The manifold itself is “washed away” by diffeomorphism invariance, and therefore
the excitations of the quantum field do not live “over a space”; they live “nowhere”, since
they are the space over which physics happens. In other words, QFT must undergo the
same deep transformation that classical field theory had to undergo in the evolution from
pre-general relativistic physics to general relativistic physics: In general relativistic physics,
the “location” of physical objects and physical fields is not determined with respect to a
preexisting space. Rather, physical quantities (which include the gravitational field) are only
“located” with respect to each other [5]. The challenge of quantum gravity is to incorporate
this relational notion of localization, introduced by general relativity, into QFT. As we shall
see, the physical elementary excitations of the quantum gravitational field are described in
loop quantum gravity by abstract objects (s-knots), which do not live “inside a given space”.
Rather, they are physical space, at the quantum level.

The resulting theory fails to satisfy even the simplest assumptions on which conventional
local QFT is based. The theory is hard to analyze; it often contradicts our intuition and
some of our accepted believes, developed in the context of local QFT’s. This is a fact
which unfortunately often complicates the communication between quantum gravity and other
sectors of theoretical physics.

The idea of exploring quantum GR nonperturbatively is old. But during the last decade,
the research program has developed intensely, prompted by two technical advances. One
is the reformulation of classical general relativity due to Ashtekar [6], which has substan-
tially simplified the formalism. The second is the introduction of the loop representation
for quantum gravity [7, 8].* The loop representation is a technique for defining a nonper-
turbative quantum theory on a manifold. The idea is to replace creation and annihilation
operators, which are the essential ingredients of conventional QFT and which make sense
only if there is a background metric, with a different set of operators: the loop operators.
The loop operators do not require a background metric to be defined. The theory defined by

4For a recent overview of canonical gravity, see [9]; for introductions to loop quantum gravity, see [10, 11,
12, 13, 14, 15, 16].
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a representation of the creation and annihilation operator algebra is naturally in the Fock,
or particle, basis. The theory defined by the loop operators is naturally in a basis, denoted
the loop basis, or more precisely the spin network basis, which turns out to be particularly
suitable for dealing with the quantum kinematics and dynamics of the theory, as well as for
analising the nonperturbative aspects of quantum geometry.

The loop approach to nonperturbative quantum gravity has now developed in many dir-
ections. Here, I present a brief overview of the main ideas, techniques and results, and 1

focus on a particularly interesting result: the explicit computation of the spectrum of the
area [17, 18, 19, 20].

A traditional problem in quantum gravity is the difficulty of testing ideas and results [2].
This is due not only to the lack of direct experimental or observational access to Planck
scale physics; but also to the intrinsic difficulty of extracting results from the theory that
could be tested indirectly. However, there is an area of theoretical physics that gives us
indirect information on quantum gravity: black hole thermodynamics. The great power of
thermodynamics to put constraints on theoretical constructions, and even provide precise
quantitative indications on microscopic theories is well known: quantum mechanics itself was
born to a large extent in order to satisfy thermodynamical consistency requirements (Planck’s
spectrum, solid state...). Now, black hole thermodynamics derives a surprising set of simple
laws just from classical general relativity and quantum field theory in curved spacetime (for
an introduction, see [21]). These laws have not been experimentally tested, but are very
well motivated. However, they are thermodynamical “phenomenological” laws, and their
derivation from first principles requires a quantum theory of gravity, and, at present, is
lacking.

This state of affairs provides the ideal testing ground for loop quantum gravity. The study
of the applications of loop quantum gravity to black hole thermodynamics has just begun.
Here, I describe two of these applications. The first [22] is a discussion of the Bekenstein
Mukhanov effect [23]. The second [24, 25] and more important application is a derivation of
the Bekenstein-Hawking black hole entropy formula [26, 27] from first principles. In some
parts of this lecture I will follow, and sometimes expand, references [16, 22, 24].

2  Overview of loop quantum gravity

Classical general relativity can be formulated in phase space form as follows [6, 28, 29]. We
fix a three-dimensional manifold M and consider two real (smooth) SO(3) fields A}(z) and
E?(z) on M. We use a,b,... =1,2,3 for (abstract) spatial indices and i,7,... = 1,2,3 for
internal SO(3) indices. We indicate coordinates on M with z. The relation between these
fields and conventional metric gravitational variables is as follows: E%(z) is the (densitized)
inverse triad, related to the three-dimensional metric g,5(x) of the constant-time surface by

g g% =FE'FE, (2.1)
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where g is the determinant of g,;; and
A (w) = Ty () + kg(x); (2.2)

Where I (z) is the SU(2) spin connection associated to the triad and ki (z) is the extrinsic
curvature of the three surface (up to indices’ position). Notice the absence of the ¢ in (2.2),
which yields the real Ashtekar connection.

The spinorial version of the Ashtekar variables is given in terms of the Pauli matrices

o;,t = 1,2, 3, or the su(2) generators 7; = -% o;, by
E%(z) = —iE%z)o0;=2E=z) (2.3)
Agz) = —% Ai(z) 0i = Al (z) 7 .. (2.4)

A, (x) and E*(z) are 2 x 2 complex matrices.

The theory is invariant under local SO(3) gauge, three-dimensional diffeomorphisms of
the manifold on which the fields are defined, as well as under (coordinate) time translations
generated by the Lorentzian Hamiltonian constraint. The full dynamical content of GR is
captured by the three constraints that generate these gauge invariances [6]. The Lorentzian
Hamiltonian constraint does not have a simple polynomial form if we use the real connection
(2.2). For a while, this fact was considered an obstacle defining the quantum Hamilto-
nian constraint; therefore the complex version of the connection was mostly used. However,
Thiemann has recently succeded in constructing a satisfactory Lorentzian quantum hamilto-
nian constraint [30] in spite of the non-polynomiality of the classical expression. This is the
reason we use here the real connection. This choice has the advantage of greatly simplifying
the “reality conditions” problem.

To construct the quantum theory, we have to promote the fields to operators on a Hilbert
space. Ome possibility is to consider the positive and negative frequencies of A and E, and
define a Fock representation. The definition of positive and negative frequencies requires a
metric. Thus, one may consider an unperturbed background field around which expanding A
and E, and use the unperturbed field as background metric. The problem is that the expansion
becomes unsuitable precisely at the Planck scale, which is the scale we are interested in.

The loop representation is based on the choice of other quantities to be promoted as basic
operators. These are: the trace of the holonomy of the Ashtekar connection, which is labeled
by loops on the three manifold; and the higher order loop variables, obtained inserting the
E field (in n distinct points, or “hands” of the loop variable) into the holonomy trace. More

precisely, given a loop a and the points s;, s5,..., s, € a we define:
Tla] = —Tr[Us), (2.5)
Ta)(s) = —Tr[Ua(s,s)E*(s)] (2.6)

and, in general

T"%[a)(s1,82) = —Tr[Uas(s1, 32)15{“2(52)Ua(52,51)ﬁa1 (s1)], ~ (2.7)
i st i [CM](Sl % i .S'N) = —TT[UQ(Sl, SN)Ea'N (SN)UQ(SN, SN—I) o5 gt (81)]
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where U is the parallel propagator of A, along y. (See [16] for more details.) These are
the loop observables. They coordinatize the phase space and have a closed Poisson algebra.
Thus, we may pick a unitary representation of this algebra as the definition of the kinematic
of the quantum theory.

2.1 The Hilbert space

A representations of the loop algebra can be defined as follows (The first introduction of the
loop representation, in the context of Yang Mills theory, is in [31]). We consider the free
algebra A/[L] over the set of the loops in the three manifold, namely the set of objects ®
which are (finite) formal linear combinations of formal products of loops:

@ =co+ ) ca] + D i eyllox] +... (2.8)
: jk

where the ¢’s are arbitrary complex number and the o’s are loops (see also [11]). The loop
observable (2.5) has an immediate extension to this algebra as®

T[q)] =C + ZCiT[ai] -+ Z CjkT[O!j] T[Ctk] + ... (29)

ik
The algebra A/[L] contains the ideal
K={®ec Al[L] | T[®]=0}, (2.10)
and we define the carrier space V of the representation by
v =AL)/K. (2.11)

In other words, the state space of the loop representation is defined as the space of the
equivalence classes of linear combinations of multiloops, under the equivalence defined by the
Mandelstam relations

o~V if T[®]=TI[¥], (2.12)

namely by the equality of the corresponding holonomies [11].

There is natural basis in this linear space, denoted the spin network basis, which was
introduced in [32], and developed in [33]. This is defined as follows. A spin network S is
here a graph imbedded in the three dimensional space M, with a “color” (a positive integer)
assigned to each link of the graph. Vertices with valence higher than three are (arbitrarily)
expanded in tree-like “virtual” trivalent graphs and the “virtual” edges are colored as well
(see [16]). Colors satisfy a condition at the vertices: in a trivalent vertex, each color is not
larger than the sum of the other two (Clebsh-Gordon condition), and the sum of the three
colors is even.

5The following formula corresponds to equation (2.15) in ref.[16]. However, equation (2.15) in [16] contains
an additional (—2) factor in the first term. The (—2), and the motivation given in [16] for its introduction,
are not correct. I thank Laszlo Szabados for pointing this out.
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There exists a procedure to associate a linear combination of formal products of loops, and
therefore an element of the quantum state space V, to each such spin network. The procedure
(introduced by Penrose [34]) consists in replacing each (real and virtual) edge colored p with
p overlapping lines, joining these lines at the vertices and then anti-symmetrizing the lines
in each (real and virtual) edge. One can then prove that the quantum states |S) obtained in
this way form a basis in V.

Finally, a scalar product is naturally defined over V (see [16], and below). We can complete
in the Hilbert norm, obtaining the (“unconstrained” or “kinematical”) Hilbert space of the
quantum theory, which we denote as H.

2.2 Structures in H

The Hilbert space ‘H has a rich structure that has been extensively explored. First of all, the
spin network states satisfy the Kauffman axioms of the tangle theoretical version of recoupling
theory [35] (in the “classical” case A = —1) at all the points (in 3d space) in which they meet
6. For instance, weave consider a 4-valent intersection of four edges colored a,b,c,d. The
color of the vertex is determined by expanding the 4-valent intersection into a trivalent tree;
in this case, we have a single internal edge. The expansion can be done in different ways (by
pairing edges differently). These are related to each other by the recoupling theorem of pg.
60 in Ref. [35] b 5

A =s{ti] Xd (219

a d i a

where the quantities { ﬁ Z ; } are su(2) six-j symbols (normalized as in [35]). Equation

(2.13) follows just from the definitions given above. Recoupling theory provides a powerful
computational tool in this context.

Since spin network states satisfy recoupling theory, they form a Temperley-Lieb algebra
[35]. The scalar product in H is given by the Temperley-Lieb trace of the spin networks, or,
equivalently by the Kauffman brackets, or, equivalently, by the chromatic evaluation of the
spin network. Spin network states form an orthogonal base. See Ref. [16] for an extensive
discussion of these relations.

Next, the space H can be constructed as the projective limit of a (projective) family of
Hilbert spaces Hr of SU(2) lattice gauge theories defined over arbitrary lattices I" in three-
space [36]. The space Hr naturally sits into the space Hp when the graph I' is a subgraph
of I', and, correspondingly, the spaces Hr form a projective family.

®This fact is often misunderstood: recoupling theory lives in 2d and is associated by Kauffman to knot
theory by means of the usual projection of knots from 3d to 2d. Here, the Kauffmann axioms are not satisfied
at the intersections created by the 2d projection of the spin network, but only at the true intersections in 3d.
See [16] for a detailed discussion.



588 Rovelli

Next, ‘H can be viewed as the space of gauge-invariant functions over (the closure in a
suitable norm of) the space A of the SU(2) gauge connections, which are square integrable
under the Ashtekar-Lewandowski-Baez measure du 41 5[A] [37]. A can be thought as a space of
“distributional connections”. The Ashtekar-Lewandowski-Baez measure is a diffeomorphism
invariant measure over such space. (Or, equivalently, a “generalized measure” over the space
of smooth connection [33].) The cylindrical functions over which the measure is constructed
correspond precisely to the spin network states defined above.

The relation is as follows. When restricted to the (dense) subspace of A formed by
smooth connections, the cylindrical function 1s[A] = (A|S) corresponding to a given spin
network state |S) is formed by parallel propagators of the SU(2) connection along the edges
of S, in the representation p/2, where p is the color of the edge, contracted at the vertices
by means of invariant tensors in the tensor product of the representations associated to the
edges joining at the vertex. The colors of the vertex (namely the colors of the internal edges)
label the independent invariant tensors’. This construction gives a rigorous meaning to the
loop transform, which was used as an heuristic devise to build the loop representation in [8].
In fact, we can write, for every spin netwok s, and every state [A]

W(S) = (S1¥) = [ duarslA] PslA] v(4] (2.14)

One can show that this equation defines a unitary mapping between the two presentations
of H: the “loop representation”, in which one works in terms of the basis |S); and the
“connection representation”, in which one uses wave functionals [A].

For a recent discussion of the unitary equivalence between loop and connection represent-
ations see [39] and [40]. The relation between the two representations is also an implement-
ation of the well known duality between SU(2) representation theory and the combinatorics
of planar loops. This duality has been much exploited in physical applications, and underlies
all graphical methods for dealing with SU(2) representation theory [41]. It was Penrose who
first had the intuition that this mathematics could be relevant for describing the quantum
properties of the geometry, and who gave the first version of spin network theory [34].

Finally, Ashtekar and Isham [38] have recovered the representation of the loop algebra by
using C*-algebra representation theory: The space A/G, where G is the group of local SU(2)
transformations, is precisely the Guelfand spectrum of the abelian part of the loop algebra.
One can show that this is a suitable norm closure of the space of smooth SU(2) connections
over physical space, modulo gauge transformations.

Thus, a number of powerful mathematical tools are at hand for dealing with nonperturb-
ative quantum gravity. Some of these have already been extensively used in this context.
These include: Penrose’s spin network theory, SU(2) representation theory, Kauffiman tangle
theoretical recoupling theory, Temperly-Liebb algebras, Gelfand’s C*algebra spectral repres-
entation theory, infinite dimensional measure theory and differential geometry over infinite
dimensional spaces.

"Because a basis of invariant SU(2) tensor on the tensor product of a finite number of irreps. is obtained
by progressively decomposing tensor products or irreps. into irreps., two by two.
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2.3 The representation

We now define the quantum operators, corresponding to the 7-variables, as linear operators
on H. These form a representation of the loop variables Poisson algebra. The operator 7 |c],
acting on a state (®| simply adds a loop to (®|:

<c0 + Y6 fod] + Y ey [0y +| Pl =
_ <co[a] + Y fenllod + X onllogllo] + - ‘ . (2.15)

(The consuetudinal bra notation is just a historical left-over from the period when the scalar
product was not known.) Higher order loop operators are expressed in terms of the elementary
“grasp” operation: acting on an edge with color p, the hand of the loop operator creates two
“virtual” trivalent vertices, one on the spin-network state and one the loop of the operator.
The two virtual vertices are joined by a virtual edge of color 2.

(2.16)
where we have introduced the elementary length [y by
b =hG= M = 167 Ip1nck (2.17)
C
and '
a%1p,s) = [ dr fo(r)8[5(r), 5] (2.18)

The sign of the tangent of 3 in A%[3, 5] is determined by the orientation of 3 consistent with
the positive-terms of the loop expansion of the spin network. Higher order loop operators

act similarly. One can verify that these operators provide a representation of the classical
Poisson loop algebra.

All the operators in the theory are then constructed in terms of these basics loop operat-
ors, in the same way in which in conventional QFT one constructs all operators, including
the Hamiltonian, in terms of creation and annihilation operators. The construction of the
composite operators requires the development of regularization techniques that can be used
in the absence of a background metric. These have been introduced in [12] and developed in
[4, 17, 16, 36]. I will illustrate these techniques below.



590 Rovelli

2.4 Diffeomorphism invariance

The next step in the construction of the theory is to factor away diffeomorphism invariance.
This is a key step for two reasons. First of all, H is a “huge” non separable space. It is
far “too large” for a quantum field theory. However, most of this redundancy is all gauge,
and disappears when one solves the diffeomorphism constraint, defining the physical Hilbert
space ‘Hpp. This is the reason for which the loop representation, as defined here, is of great
value in diffeomorphism invariant theories only.

The second reason is that Hpp, turns out to have a natural basis labeled by knots. More
precisely by “s-knots”. An s-knot s is an equivalence classes of spin networks S under
diffeomorphisms. An s-knot is characterized by its “abstract” graph (defined only by the
adjecency relations between edges and vertices), by the coloring, and by its knotting and
linking properties, as in knot-theory.® Thus, the physical quantum states of the gravitational
field turn out to be essentially classified by knot theory.

There are various equivalent way of obtaining H p; from H. One can use regularization
techniques for defining the quantum operator corresponding to the classical diffeomorphism
constraint in terms of elementary loop operators, and then find the kernel of such operator.
Equivalently, one can factor H by the natural action of the Diffeomorphism group that it

carries. Namely
H
Hpp = —————. 2.19
™" Diff(M) -
For a rigorous way for defining such a quotient of an Hilbert space by an infinite dimensional
group, see [36] and references therein.

2.5 Dynamics

Finally, the definition of the theory is completed by giving the Hamiltonian constraint. A
number of approaches to the definition of a Hamiltonian constraint have been attempted
in the past, with various degrees of success. Recently, however, Thiemann has succeded
in providing a regularization of the Hamiltonian constraint that yields a well defined, finite
operator in ‘Hpy,. Thiemann’s construction [30] is based on several clever ideas. I will not
describe it here. Rather, I will sketch below the final form of the constraint (for the Lapse=1
case), following [44].

I begin with the Euclidean Hamiltonian constraint Hg. We have

H|s) = 333 Y Aw(®i--pn) Di;([.]),ec' |s > . (2.20)

i (IJ) e=x1 &=+1

Here 4 labels the vertices of the s-knot s; (IJ) labels couples of (distinct) edges emerging
from ¢. p;...p, are the colors the edges emerging from i. Dy is the operator that acts

8Finite dimensional moduli spaces associated with high valence intersections appear [42]. Their physical
relevance is unclear at this stage.
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Figure 1: Action of f),-;(1 Pt

on an s-knot by: (i) creating two additional vertices, one along each of the two links I and
J; (i1) creating a novel link, colored 1, joining these two nodes, (iii) assigning the coloring
pr + € and, respectively, ¢; + € to the links that join the new formed nodes with the node 3.
This is illustrated in Figure 1.

The coefficients A (p;...pn), which are finite, can be expressed explicitly (but in a rather
laborious way) in terms of products of linear combinations of 6 — j symbols of SU(2), following
the techniques developed in detail in [16]. Some of these coefficients have been explicitly
computed [43]. The Lorentzian Hamiltonian constraint is given by a similar expression, but
quadratic in the D operators.

2.6 Developments

In the previous section, I have sketched the basic structure of the loop representation. This
has been developed in a great number of directions. Without any ambition of completeness,
I list below some of these developments.

e Solutions of the Hamiltonian constraints. One of the most surprising results of the
theory is that it has been possible to find exact solutions of the Hamiltonian constraint.
This follows from the key result that the action of the Hamiltonian constraints is non
vanishing only over vertices of the s-knots [7, 8]. Therefore s-knots without vertices are
physical states that solve the quantum Einstein dynamics. There is an infinite number
of independent states of this sort, classified by conventional knot theory. The physical
interpretation of these solutions is still rather obscure. But the issue has received much
attention, and various other solutions have been found. See the recent review [15] and
reference therein. See also [13, 14, 45, 46].

o Time evolution. Strong field perturbation expansion. “Topological Feynman rules”.
Trying to describe the temporal evolution of the quantum gravitational field by solving
the Hamiltonian constraint yields the conceptually well-defined [47], but notoriously
very non-transparent frozen-time formalism. An alternative is to study the evolution
of the gravitational degrees of freedom with respect to some matter variable, coupled
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to the theory, which plays the role of a phenomenological “clock”. This approach has
lead to the definition of a physical Hamiltonian [48], and to a preliminary investigation
of the possibility of transition amplitudes between s-knot states, order by order in a
(strong coupling) perturbative expansion [49]. In this context, diffeomorphism invari-
ance, combined with the key result that the Hamiltonian constraint acts on vertices
only, imply that the “Feynman rules” of such an expansion are purely topological and
combinatorial.

e Classical limit. Quantum states representing flat spacetime. Weaves. Discrete small
scale structure of flat space. The s-knots do not represent excitations of the quantum
gravitational field over flat space, but rather over a “no-space”, or g,, = 0 solution. A
natural problem is then how flat space (or any other smooth geometry) is represented in
the theory. Notice that in a general relativistic context the Minkowski solution does not
have all the properties of the conventional field theoretical vacuum. (In gravitational
physics there is no real equivalent of the conventional vacuum, particularly in the
spacially compact case.) One then expects that flat space is represented by some highly
excited state in the theory. States in #H that describe flat space when probed at low
energy (large distance) have been studied in [4]. These have a discrete structure at the
Planck scale. Furthermore, small excitations around such states have been considered
in [50], where it is shown that H contains all “free graviton” physics, in a suitable
approximation.

e Fermions. Fermions have been added to the theory [51]. Remarkably, all the important
results of the pure GR case survive in the GR+fermions theory. Not surprisingly,
fermions can be described as open ends of “open spin networks”.

e Mazwell. The extension of the theory to the Maxwell field has been studied in [52].

o Application to other theories. The loop representation has been applied in various
other contexts such as 2+1 gravity [53], some topological field theories, and others.

o Lattice and simplicial models. A number of very interesting discretized versions of the
theory are being studied. See in particular [54].

e Spectra of geometrical quantities. Area and volume. Finally, the results that I consider
most characteristic and potentially most fruitful regard spectral properties of geomet-
rical quantities, such as area and volume of regions physically defined (say by matter).
I will focus on these results in the next section.

3 Area

Consider a physical situation in which the gravitational field is interacting with some matter.
We are interested in the area of a surface defined by the matter. For instance, imagine we
are studying the explosion of a supernova. One second after the explosion, the matter of the
supernova is approximately spherical, and defines a surface ¥: the surface of the star. The



Rovelli 593

physical area of ¥ depends on the matter as well as on the metric, namely on the gravitational
field. In a quantum theory of gravity, the gravitational field is a quantum field operator, and
therefore we must describe the area of ¥ in terms of a quantum observables described by
an operator A. We now ask what is the quantum operator A in nonperturbative quantum
gravity.

Consider a 2d surface ¥ imbedded in M with coordinates o* = (o',0%). We write
S:¥ — M, — z%(0). The metric and the normal one form on ¥ are given by
oz® oz°
= * bX
= ® == —— Gab; 3.1
g 9, Guv = o pou Jab (3.1)
1 ox® 9z°

uwy

=€ €bey A
2 do* da*

(3.2)

The area of ¥ is

AlZ] = /dz \det g -—/dg \/e““e””guvguv
= f Lo \nn, E5E?, (3.3)
>

(On the role of played by surface area in the Ashtekar’s formulation of GR, see [55].) We want
to construct the quantum area operator fl[Z], namely a function of the loop representation
operators whose classical limit is A[X]. Following conventional quantum field theoretical
techmques we deal with operator products by defining A[Z‘] as a limit of regularized operators

A.[X] that do not contain operator products. The difficulty in the present context is to find a
regularization that does not break general covariance. This can be achieved by a geometrical
regularization [12].

Following [17], we begin by constructing a classical regularized expression for the area,
namely a one parameter family of classical functions of the loop variables A.[X] which con-
verges to the area as e approaches zero.? Consider a small region ¥, of the surface ¥, whose
coordinate area goes to zero with €2. For every s in X, the smoothness of the classical
fields implies that E®(s) = E*(z;) + O(€), where z; is an arbitrary fixed point in ¥.. Also,
Ua(5,8) & = 6L +O(e) for any s,t € ; and « a (coordinate straight) segment joining s and
t. It follows that to zeroth order in ¢

T*aw)(s,t) = —Tr [E(s)Uals, t) E*()Ua(t, 5)]
= 2E%(z)EY(z;). (3.4)

Using this, we can write

e Be) =L [ donio) [ b
T, )(0, 7) + Ofe), (3.5)

®1 simplify here. For regularization that works in the general case, see [19)]
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where «,, is, say, a (coordinate) circular loop with the two points ¢ and 7 on antipodal
points. Next, consider the area of the full surface ¥. By definition of Riemann integral, (3.3)

can be written as
AlE] = /):dQU Vnany B4 E? (3.6)

= lim Zez \/na(xl)nb(x,—)E“"(a:I) 2 (r)

I

where, following Riemann we have partitioned the surface ¥ in N small surfaces ¥ of
coordinate area € and z; is an arbitrary point in £j,. Inserting (3.5) in (3.7), we obtain the
desired regularized expression for the classical area, suitable to be promoted to a quantum
loop operator

AlZ] = lim AJlZ] , (3.7)
AlD) = Y /4, (3.8)
AR = L 4 ®C§Ud27’ na(0)ny(1) T?[y-](0, 7). (3.9)

Notice that the powers of the regulator € in (3.5) and (3.7) combine nicely, so that € appears
in (3.7) only in the integration domains.

We are now ready to define the area operator:

AlZ] = lim AJ[5], (3.10)
AR = YA, (3.11)
Te
£ = X @i n(o)mr) Tae](o,7). (3.12)
¢ 2 2. Q%

The meaning of the limit in (3.10) is discussed in detail in [16].

We now study the action of the area operator A[X] given in (3.10) on a spin network state
(S|. We label by an index i the points where the spin network graph I's and the surface &
intersect. (Here we disregard spin networks that have a vertex lying on ¥ or a continuous
number of intersection points with ¥. The complete spectrum of the area, including these
cases is given in [18, 19].)

For small enough €, each intersection 7 will lie inside a distinct ¥;, surface. Let us call
Y, the surface containing the intersection i (at every fixed €), and e; the edge through the
intersection i. Notice that (S|/12,31€ vanishes for all surfaces I, except the ones containing
intersections. Thus the sum over surfaces 3°; reduces to a sum over intersections. Bringing
the limit inside the sum and the square root, we can write

(SIAE] = Y (SIyA2 (3.13)

ie{SNT}

A? = limA? (3.14)

¢ e—0
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For finite €, the state (S |Af€ has support on the union of the graphs of S and the graph
of the loop ¢, in the argument of the operator (3.12). But the last converges to a point on
I's as € goes to zero. Therefore

The operator A[Z] does not affect the graph of (S |. Next, we have to compute the combinat-
orial part of the action of the operator. By equation (3.13), this is given by a sum of terms,
one for each i € {SNX}. Consider one of these terms. By definition of the 7 loop operators
and of the grasp operation (Section 3), this is obtained by inserting two trivalent intersec-
tions on the spin network edge e;, connected by a new edge of color 2. (The circle I'y_, has
converged to a point on e;; in turn, this point is then graphically expanded following back
and forward a segment connecting the two intersections. By indicating the representation of
the spin network simply by means of its e; edge, we thus have

Pelaz = L Podr ng(o)ny(r) (P | Taes)(0,7) (3.16)

2 Jz, 0%,

Pe
= l; d20d2'f na(U)Aa[ﬁeaa]nb(T)Ab[/Be,T] pg( p‘bz

L. ®%;,

where we have already taken the limit (inside the integral) in the state enclosed in the brackets
( |- Notice that this does not depend on the integration variables anymore, because the loop
it contains does not represent the grasped loop for a finite e. Notice also that the two integrals
are independent, and equal. Thus, we can write

A 14 % Pe 2
(P 1 22, = =8 ([ 0 nalo)alpol) 52( > (3.17)

Pe

The parenthesis is easy to compute. Using (2.18), it becomes the analytic form of the inter-
section number between the edge and the surface

faz 1a(0)A%Be, 0] = /dana )/ﬁe dr 33(7)8%[Be(7), 5]
_ (3.18)

where the sign, which depends on the relative orientation of the loop and the surface, becomes
then irrelevant because of the square. Thus

Pe
i l4 2
(Ipe ‘ A’? _5 pe< b ’ (319)
Pe

where we have trivially taken the limit (3.14), since there is no residual dependence on e. We
have now to express the tangle inside the bracket in terms of (an edge of) a spin network
state. But tangles satisfy recoupling theory, and we can therefore use the formula (E.8) in
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the appendix of [16], obtaining

. 0(pe, Pe, 2)
Pe 2 me L 4 2 ) ? Pe ==
<| | Aze l[} pe 2Ape (I [
_aPe(Pet2) p 4 Pe (pe ) pe
= 1§ PR ¢ = S (5+1) (L

The square root in (3.13) is now easy to take because the operator A? is diagonal.

/A2 == \/l‘* i ) (. (3.20)

Inserting in the sum (3.13), we obtain the final result

(s| A[z]:(” > p1+z) (s (3.21)

ie{SNx}

Pe A == Pe

(

This result shows that the spin network states (with a finite number of intersection points
with the surface and no vertices on the surface) are eigenstates of the area operator. The
corresponding spectrum is labeled by multiplets o = (py, ..., pn) of positive half integers, with
arbitrary n, and given by

A [E 0 Z D pz L 2 (322)

Shifting from color to spin notation, we have
(Bl =15 > i+ 1), (3.23)
i

where jy, ..., j, are half integer. This expression reveals the SU(2) origin of the spectrum.

A similar result has been obtained for the volume.

4 'Two applications

The first hint on the thermodynamical behavior of black holes comes from classical general
relativity. Hawking’s theorem [56] tells us that the area of the event horizon of a black hole
cannot decrease in time, in classical general relativity. In ref. [26], Bekenstein speculated that
one can associate an entropy S(A) to a Schwarzschild black hole of surface area A, where

K
e A 4.1
e (4.1)
(c is a constant of the order of unity, £ the Boltzman constant, and I put the speed of light

equal to one). Bekenstein provided a number of physical arguments supporting this idea;
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but the reaction of the physicists community was cold, mainly due to the fact that since the
black hole area A is connected to the black hole energy M by

A

M = 16wG?’

(4.2)
the standard thermodynamical relation T~! = k dS/dE would imply the existence of a black

hole temperature
h

T= c32rkGM’
and therefore in vacuum the black hole should emit thermal radiation at this temperature:
a result difficult to believe. However, shortly after Bekenstein’s suggestion, Hawking [27]
derived black hole emission just from quantum field theory in curves spacetime. Hawking
computed the emission temperature to be

(4.9)

h
T=—"—— 4.4
8rkGM’ (44)
which beautifully supports Bekenstein’s speculation, and fixes the constant ¢ at
1
CHawking = Z (45)

Hawking’s result opens many problems. I will consider two of these problems. First, in
Hawking’s derivation the quantum properties of gravity are neglected. Are these affecting
the result? Second, in general we understand macroscopical entropy in statistical mechanical
terms as an effect of microscopical degrees of freedom. What are the microscopical degrees of
freedom responsible for (4.1)? Can one derive (4.1) from first principles? Clearly a complete
answer of these questions requires a quantum theory of gravity.

4.1 The Bekenstein-Mukhanov effect

Recently, Bekenstein and Mukhanov [23] have suggested that the thermal nature of Hawking’s
radiation may be affected by quantum properties of gravity (For a review of earlier suggestions
in this direction, see [57]). Bekenstein and Mukhanov observe that in most approaches to
quantum gravity the area can take only quantized values [58]. Since the area of the black
hole surface is connected to the black hole mass, black hole mass is likely to be quantized
as well. The mass of the black hole decreases when radiation is emitted. Therefore emission
happens when the black hole makes a quantum leap from one quantized value of the mass
(energy) to a lower quantized value, very much as atoms do. A consequence of this picture is
that radiation is emitted at quantized frequencies, corresponding to the differences between
energy levels. Thus, quantum gravity implies a discretized emission spectrum for the black
hole radiation.

By itself, this result is not physically in contradiction with Hawking’s prediction of a
continuous thermal spectrum. To understand this, consider the black body radiation of
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a gas in a cavity, at high temperature. This radiation has a thermal Planckian emission
spectrum, essentially continuous. However, radiation is emitted by elementary quantum
emission processes yielding a discrete spectrum. The solution of the apparent contradiction
is that the spectral lines are so dense in the range of frequencies of interest, that they give
rise —effectively— to a continuous spectrum. Does the same happen for a black hole?

In order to answer this question, we need to know the energy spectrum of the black hole,
which is to say, the spectrum of the Area. Bekenstein and Mukhanov pick up a simple
ansatz: they assume that the Area is quantized in multiple integers of an elementary area
Ap. Namely, that the area can take the values

An = TLAQ, (46)
where n is a positive integer, and Ag is an elementary area of the order of the Planck Area
AO = ahG 3 (47)

where « is a number of the order of unity (G is Newton’s constant and ¢ = 1). Ansatz (4.6)
is reasonable; it agrees, for instance, with the partial results on eigenvalues of the area in the
loop representation given in [4], and with the idea of a quantum picture of a geometry made
by elementary “quanta of area”. Since the black hole mass is related to the area by (4.2), it
follows from this relation and the ansatz (4.6) that the energy spectrum of the black hole is
given by

nah
167G’

Consider an emission process in which the emitted energy is much smaller than the mass M
of the black hole. From (4.8), the spacing between the energy levels is

M, = (4.8)

ah
32rGM’

From the quantum mechanical relation F = fiw we conclude that energy is emitted in fre-
quencies that are integer multiple of the fundamental emission frequency

AM = (4.9)

_e
32rGM’

This is the fundamental emission frequency of Bekenstein and Mukhanov [23] (they assume
a = 41n2). Bekenstein and Mukhanov proceed in [23] by showing that the emission amplitude
remains the same as the one in Hawking’s thermal spectrum, so that the full emission spectrum
is given by spectral lines at frequencies multiple of @, whose envelope is Hawking’s thermal
spectrum.

W=

(4.10)

As emphasized by Smolin in [57], however, the Bekenstein-Mukhanov spectrum is drastic-
ally different than the Hawking spectrum. Indeed, the maximum of the Planckian emission
spectrum of Hawking’s thermal radiation is around

2.82kTy 282  282-4
h T 8TGM T «

WH

O R Q@. (4.11)
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That is: the fundamental emission frequency @ is of the same order as the maximum of the
Planck distribution of the emitted radiation. It follows that there are only a few spectral lines
in the regions where emission is appreciable. Therefore the Bekenstein-Mukhanov spectrum
is drastically different than the Hawking spectrum: the two have the same envelope, but
while Hawking spectrum is continuous, the Bekenstein-Mukhanov spectrum is formed by
just a few lines in the interval of frequencies where emission is appreciable. Notice that such
a discretization of the emission spectrum is derived by Bekenstein and Mukhanov on purely
kinematical grounds, that is using only the (assumed) spectral properties of the area. To
emphasize this fact, we will denote it as the kinematical Bekenstein-Mukhanov effect.

This result is of great interest because, in spite of its weakness, black hole radiation is
still much closer to the possibility of (indirect) investigation than any quantum gravitational
effect of which we can think. Thus, a clear quantum gravitational signature on the Hawking
spectrum is a very interesting effect. Is this Bekenstein-Mukhanov effect credible?

As first suggested in [57], and, independently, by Briigmann, one may use loop quantum
gravity to check the Bekenstein-Mukhanov result, by replacing the naive ansatz (4.6) with
the precise spectrum computed in loop quantum gravity.

Consider a surface ¥ —in the present case, the event horizon of the black hole-. The area
of ¥ can take only a set of quantized values. These quantized values are labeled by unordered
n-tuples of positive integers ' = (py, ..., pn) of arbitrary length n. The spectrum is given in
(3.22). If we disregard for a moment the term +1 under the square root in (3.22), we obtain
immediately the ansatz (4.6), and thus the Bekenstein-Mukhanov result. However, the +1
is there. Let us study the consequences of its presence. First, let us estimate the number of
Area eigenvalues between the value A >>> l; and the value A + dA of the Area, where we
take dA much smaller than A but still much larger than ly. Since the +1 in (3.22) affects in
a considerable way only the terms with low p;, we can neglect it for a rough estimate. Thus,
we must estimate the number of unordered strings of integers 7 = (p1, ..., pn) such that

A
= >> 1. 4.12
Q_ZZMP 8ThG (4.12)

This is a well known problem in number theory. It is called the partition problem. It is the
problem of computing the number N of ways in which an integer I can be written as a sum
of other integers. The solution for large 7 is a classic result by Hardy and Ramanujan [59].
According to the Hardy-Ramanujan formula, N grows as the exponent of the square root of
I. More precisely, we have for large I that

N(I) ~ ﬁeﬂ/%_f . (4.13)

Applying this result in our case we have that the number of eigenvalues between A and A+dA
is

p(A) =~ eV e (4.14)

Now, because of the presence of the +1 term, eigenvalues will overlap only accidentally: gen-
erically all eigenvalues will be distinct. Therefore, the average spacing between eigenvalues
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decreases exponentially with the inverse of the square of the area. This result is to be con-
trasted with the fact that this spacing is constant and of the order of the Planck area in the
case of the naive ansatz (4.6). This conclusion empties the Bekenstein-Mukhanov argument.
Indeed, the density of the energy levels becomes

4nG

p(M) = eVamM (4.15)

and therefore the spacing of the energy levels decreases exponentially with M. It follows that
for a macroscopical black hole the spacing between energy levels is infinitesimal, and thus the
spectral lines are virtually dense in frequency. We effectively recover in this way Hawking’s
thermal spectrum (except, of course, in the case of a Planck scale black hole). A weaker but
rigorous lower bound on the density of eigenvalues, consistent with the argumented given
here, is given in [18]. The conclusion is that the Bekenstein-Mukhanov effect disappears if
we replace the naive ansatz (4.6) with the spectrum (3.22) computed from loop quantum
gravity. More generally, the kinematical Bekenstein-Mukhanov effect is strongly dependent
on the peculiar form of the naive ansatz (4.6), and it is not robust. In a sense, this is a pity,
because we loose a possible window on quantum geometry.

Mukhanov and, independently, Smolin have noticed that the possibility is still open for
the existence of a “dynamical” Bekenstein-Mukhanov effect [60]. For instance, transitions
in which a single Planck unit of area is lost could be strongly favored by the dynamics. To
explore if this is the case, one should make use of the full machinery of quantum gravity, for
instance by computing transition probabilities between horizon’s area eigenstates induced in
a first order perturbation expansion by the coupling between the area of the horizon and a
surrounding radiation field. This could perhaps be done following the lines of Ref. [44].

The conclusion is that the argument for the discretization of the black hole emission
spectrum given by Bekenstein and Mukhanov is not valid, if we use quantitative result from
loop quantum gravity. As emphasized by Mukhanov, this fact does not prove that the
spectrum is indeed continuous, since a discretization could be still be consequence of other
(dynamical) reasons.

4.2 Black Hole Entropy from Loop Quantum Gravity

Finally, I present a derivation [24, 25] of the Bekenstein-Hawking expression (4.1) for the
entropy of a Schwarzschild black hole of surface area A via a statistical mechanical compu-
tation [61]. The strategy I follow is based on the idea that the entropy of the hole originates
from the microstates of the horizon that correspond to a given macroscopic configuration.

This idea was first suggested in a seminal work by York [62]. York notices that the hole’s
radiance implies that the (macroscopic) event horizon is located slightly inside the quasistatic
timelike limit-surface, leaving a thin shell between the two, which he proposes to interpret as
the region over which the microscopic horizon fluctuates. He interprets these fluctuations as
zero point quantum fluctuations of the horizon’s quasinormal modes, and, by identifying the
thermal energy of these oscillations with the shell’s (“irreducible”) mass, he is able to recover
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Hawking’s temperature. I take two essential ideas from York’s work: that the source of the
hole entropy is in the degrees of freedom associated with the fluctuations of the shape of the
(microscopic) horizon; and that the quasilocal measure of mass-energy governing energetic
exchanges between the horizon and its surroundings can be taken as the Christodoulou-Ruffini

[63] “irreducible mass”
[ A

Can we replace York’s perturbative semiclassical approach with a direct calculation within
nonperturbative quantum gravity?

The relevance of horizon’s surface degrees of freedom for the entropy has been recently
explored from various perspectives [64]. (See also [65] for an attempt to use the “membrane
paradigm” [66]: interactions of a black hole with its surroundings can be described in terms
of a fictitious physical membrane located close to the horizon). An approach strictly related
to the one I am going to describe has been suggested in Refs. [67], where it is argued that
a physical split of a gauge system gives rise to boundary degrees of freedom, since the
boundary breaks the gauge group. Using this idea the Bekenstein-Hawking formula can be
derived, by counting boundary states, in 3-d gravity. The relation is the following. In GR,
the broken component of the gauge group includes diffecomorphisms that move the surface,
and the boundary degrees of freedom can probably be viewed as fluctuations of the horizon.

Consider a physical system containing a non-rotating and non-charged black hole (say a
collapsed star) as well as other physical components such as dust, gas or radiation, which we
denote collectively (improperly) as “matter”. We are interested in the statistical thermody-
namics of such a system. A key observation is that because of Einstein’s equations the mi-
croscopic time-dependent inhomogeneities of the matter distribution generate time-dependent
“microscopic” inhomogeneities in the gravitational field as well. One usually safely disreg-
ards these ripples of the geometry. For instance, we say that the geometry over the Earth’s
surface is Minkowski (or Schwarzschild, due to the Earth gravitational field), disregarding the
inhomogeneous time-dependent gravitational field generated by each individual fast moving
air molecule. The Minkowski geometry is therefore a “macroscopic” coarse-grained average of
the microscopic gravitational field surrounding us. However, in a statistical-thermodynamical
treatment, these fluctuations should not be disregarded, because they are precisely the sources
of the thermal behavior.

Statistical thermodynamics is based on the distinction between the macroscopic state of a
system, determined by coarse-grained averaged physical quantities, and its macroscopic state
determined by a (hypothetical) complete description of the system’s dynamics. A system in
equilibrium at a finite temperature T is macroscopically stationary. However, its microstate
fluctuates over microscopic non-stationary configurations. The family of the microstates over
which the system fluctuates when in a given macrostate form the statistical “ensemble” asso-
ciated to the given macrostate. For instance, the macrostate of a gas in thermal equilibrium
in a box is time-independent and spatially homogeneous, while the microstates in the cor-
responding ensemble are individually time dependent and non-homogeneous. Thus, we must
have two descriptions of a physical black hole interacting with surrounding matter at finite
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temperature. The macroscopic description is a stationary coarse grained description in which
inhomogeneities are smoothed out. The microscopic description does not neglect the minute
thermal motions.

Macroscopically, a non-charged and non-rotating hole is described by a stationary met-
ric with non-charged and non-rotating event horizon. There is only a one-parameter fam-
ily of solutions of Einstein equations with such properties: Schwarzschild with mass M,
and corresponding event-horizon area A = 167G?M?. Therefore in a thermal context the
Schwarzschild metric represents the coarse grained description of a microscopically fluctuat-
ing geometry. Microscopically the gravitational field is non-stationary (because it interacts
with non-stationary matter) and non-spherically symmetric (because matter distribution is
spherically symmetric on average only, and not on individual microstates). Its microstate,
therefore is not given by the Schwarzschild metric, but by some complicated time-dependent
non-symimetric metric.

I am convinced that taking such time-dependent non-symmetric microstates of the geo-
metry into account is essential for a statistical understanding of the thermal behavior of black
holes — as it is in understanding the thermal properties of any other system. Searching for a
derivation of black hole thermodynamics from properties of stationary or symmetric metrics
alone is like trying to derive the thermodynamics of an ideal gas in a spherical box just from
spherically symmetric motions of the molecules.

Thus, consider the microstate of our system. Let us foliate spacetime with a family
of spacelike surfaces ¥;, labeled by a time coordinate {. The intersection h; between the
surface 2y and the future boundary of the past of future null-infinity defines the instantaneous
(microscopic) configuration of the event horizon at time ¢. Thus, h; is a closed 2-d surface
immersed in ¥;. For most times, this microscopic configuration of the event horizon is not
spherically symmetric. Let us denote by ¢; the intrinsic and extrinsic geometry of the horizon
h.. Let M be the space of all possible (intrinsic and extrinsic) geometries of a 2-d surface.
As t changes, the (microscopic) geometry of the horizon changes. Thus, g; wanders in M as
t changes.

I now recall some standard techniques in statistical mechanics in a form that can be
applied to our system. Consider a thermodynamical system &, say an ideal gas in a isolated
box. Consider an equilibrium macrostate of S. Under suitable ergodicity conditions, the
microstate of the system changes freely subjected to global conservation laws only. If the
system is conservative and energy is the only conserved quantity, then the system will wander
in the entire region of its phase space defined by a given total energy. Next, we can ideally
split & into two subsystems S; and Ss, say two regions of the box, separated by a thin
film. We are interested in studying the thermal interactions between the two subsystems.
One approach is provided by the microcanonical point of view. Let us ideally isolate the
subsystem &;. Namely let us momentarily assume that it cannot exchange heat. Let E; be
its energy, and S;(E}) its entropy, defined as the number of microstates that have energy E.
We now relax the assumption that heat cannot be exchanged, and consider the full system S.
If a small amount of heat d() is transferred from S; to S, the number of states available to &;
decreases by an amount (dS;/dE)dQ and the number of microstates available to S, increases
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by an amount (dS,/dE;)dQ. The total number of microstates available to & changes by

dS,  dS,
= (222 _221) 40 4.17
oN (dE2 dEl) 4Q (4.17)

From the assumption that the equilibrium macroscopical configuration is the one to which
most microstates correspond, it follows that at equilibrium no small heat transfer d@) may
increase the total number of available microstates, and therefore

ds, _ ds;

e (4.18)
dE,  dE,

Namely, the temperatures of the two systems are equal.

Let us apply these ideas to our system. Consider our system as formed by two sub-
systems: the black hole and the rest. We want to associate an entropy S to the black hole,
where S counts the number of microstates over which the hole may fluctuate in an ideal
situation in which no heat (energy) is exchanged between the hole and its surroundings. The
precise specification of this ensemble of microstates is crucial, and I now discuss it in detail.

First of all, as already noticed microscopic configurations do not need to be individually
spherically symmetric. Second, only configurations of the hole itself, and not the configura-
tions of the surrounding geometry, should affect the hole’s entropy. Thus, we must focus on
the state of the hole alone. Next, we are considering the thermodynamic behavior of a system
containing the hole. This behavior cannot be affected by the hole’s interior. The black hole
interior may be in one of an infinite number of states indistinguishable from the outside. For
instance, the black hole interior may (in principle) be given by a Kruskal spacetime; so that
on the other side of the hole there is another “universe” (say spatially compact, if not for
the hole) possibly with billions of galaxies. This potentially infinite number of such internal
states does not affect the interaction of the hole with its surroundings and is irrelevant here,
because it cannot affect the energetic exchanges between the hole and the outside, which are
the ones that determine the entropy.

Therefore we are only interested in configurations of the hole that have (microscopically)
distinct effects on exterior of the hole. From the exterior, the hole is completely determined by
the geometrical properties of its surface. Thus, the entropy relevant for the thermodynamical
description of the thermal interaction of the hole with its surroundings is entirely determined
by the state of the gravitational field (of the geometry) on the black hole surface, namely by
gt-

Next, we have to determine the “ensemble” of the microstates g; over which the hole may
fluctuates under the ideal hypothesis of no heat exchange. In conventional statistical thermo-
dynamics, one assumes that the only conserved quantity is energy, and the microcanonical
ensemble is determined by fixing energy. Here, however, there is no obvious candidate for a
notion of a conserved energy that could be used.

A physical observation that leads us to the solution of this problem is that if energy flows
into the black hole then its area increases, while if the black hole radiates away energy (via



604 Rovelli

Hawking’s radiation), then its area decreases. Therefore we are lead to the idea that the
(ideal) situation of no heat (energy) exchange is the evolution at fixed horizon’s area. Thus,
following York, we take the Christodoulou-Ruffini quasi-local “irreducible mass” (4.16) as
the relevant energy in this context (here A is the area of h;); and we define the ensemble as
the set of ¢; in M with the same M¢cpg, namely with the same area A.

There is a number of reasons supporting the choice of this ensemble. First, M¢y is geo-
metrically well defined, governs the hole’s energy exchanges, and agrees with the macroscopic
black hole energy. Second, the ensemble must contain reversible paths only. In the classical
theory these conserve area (Hawking theorem [56]). Quantum theory allows classically for-
bidden energy exchanges with the exterior (Hawking radiance), but it is unlikely, we believe,
that it would allow a nonreversible evolution of the horizon to become reversible without en-
ergy exchange with the exterior. Third, we may reason backward and let the thermodynamics
indicate us the correct ensemble (which is how classical ensembles were first found). In this
context, 1t perhaps worthwhile recalling that difficulties to rigorously justifying a priori the
choice of the ensemble plague conventional thermodynamics anyway.

Summarizing, we are interested in counting the number N(A) of states of the geometry g,
of a surface h, of area A, where different regions of h; are distinguishable from each other. The
above discussion indicates then that S(A) = kln N(A) is the entropy we should associate to
the horizon in order to describe its thermal interactions with its surroundings. This “number”
N(A) meaningless in the classical theory. It is a this point only that we resort to the quantum
theory. As the entropy of the electromagnetic field in a cavity is well defined only if we take
quantum theory into account, similarly we may expect that the number of states N(A) will
be well defined in a quantum theory of gravity. The problem is thus to count the number of
(orthogonal) quantum states of the geometry of a two dimensional surface, having total area
A. The problem is now well defined, and can be translated into a direct computation.

If a surface ¥ is given, its geometry is determined by its intersections with the s-knot.
Intersections are of three types: (a) an edge crosses the surface; (b) a vertex lies on the
surface; (c) a finite part of the s-knot lies on the surface. Intuitively, type (a) is the only
“generic” case, and we should disregard states of type (b) and (c). Ashtekar has suggested a
argument for neglecting type (b) and (c) intersections [68]: we wish to describe the geometry
of a fluctuating surface ¥ as observed from the exterior, and we expect the state of its
geometry to be stable under infinitesimal deformations of ¥. We may thus consider the
surface as the limit of a sequence of surfaces ., and its state as the (Hilbert norm) limit of
the states of X.. Clearly, states of type (b) and (c) cannot appear in this way, and therefore
we have to restrict our computation to states having intersections of type (a) only [69]. The
quantum geometry on the surface is then determined by the ordered n-tuples of integers

—

P=(p1, -, Pn) (4.19)

that form the colors of the edges of type (a) intersections.

Notice that in the previous section we were interested in counting the density of the
eigenvalues of the area (because these determine the density of the lines in the emission
spectrum). While here we are interested in counting the density of the eigenstates. Thus,
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we must take the degeneracy of each eigenspace into account. n-tuples that differ from each
other in the ordering yield of course the same total area. Therefore they should be considered
indistinguishable in counting eigenvalues. On the other side they label distinct states.

One may be tempted to observe that such states can be transformed into each other
by diffeomorphisms, and therefore should not be considered distinguishable. However, this
observation is not correct. The point is that physical states are defined as equivalence classes
under diffeomorphism of the full space, not the surface alone. To understand this point, let
us consider a simplified analogy: Consider a set A, a set B, and a group G that acts (freely)
on A and on B. Then G acts on A x B. What is the space %? One may be tempted to
say that it is (isomorphic to) g X g, but a moment of reflection shows that this is not correct
and the correct answer is

AxB A
& 0
If G does not act freely over A, we have to divide B by the stability groups of the elements
of A. Now, imagine that A is the space of the states of the exterior of the black hole, B
the space of the states of the black hole, and G the diffeomorphism group of the horizon.
Then we see that we must not divide B by the diffeomorphisms of the surface, but only by
those diffeomorphisms that leave the rest of the spin network invariant. As far as the state
on the surface is concerned, this amounts to restrict to diffeomorphisms that do not mix
the intersections between the spin network and the surface. Therefore n-tuples with different
ordering must be considered as distinct. Physically, this correspond to the fact that different
locations in which the spin network punctures the surface can be distinguished from each
other in terms of the external state of the gravitational field. For a more precise version of
these remarks, see [70].

x B. (4.20)

Thus, our task is reduced to the task of counting the ordered n-tuples of integers p’ such
that (3.3). More precisely, we are interested in the number of microstates (n-tuples p) such
that the Lh.s of (3.3) is between A and A + dA, where A >> hG and dA is much smaller
than A, but still macroscopic.

Let M = A/87hG, and let N(M) be the number of ordered n-tuples p, with arbitrary n,
such that
pi(pi +2) =M. (4.21)
i=1l,n
First, we over-estimate M(/N) by approximating the Lh.s. of (4.21) dropping the +2 term

under the square root. Thus, we want to compute the number N, (M) of ordered n-tuples
such that

Yo p=M. (4.22)
i=1,n
The problem is an exercise in combinatorics. It can be solved, for instance, by noticing that if
(p1,...,Pn) is & partition of M (that is, it solves (4.22) ), then (p1, ..., p,, 1) and (py, ..., pp +1)
are partitions of M + 1. Since all partitions of M + 1 can be obtained in this manner, we
have

No(M + 1) = 2N, (M). (4.23)
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Therefore
N, (M) =C 2™, (4.24)

Where C is a constant. In the limit of large M we have
InN,(M)=(In2) M. (4.25)

Next, we under-estimate M (V) by approximating (4.21) as

Voilpi +2) = (g + )2 - 1= (i +1). (4.26)
Thus, we wish to compute the number N_(M) of ordered n-tuples such that
> (pi+1)=M. (4.27)

i=1,n

Namely, we have to count the partitions of M in parts with 2 or more elements. This problem
can be solved by noticing that if (py, ..., p,) is one such partition of M and (qi, ..., ¢) is one
such partition of M — 1, then (py,...,p, + 1) and (g1, ..., gm, 2) are partitions of M + 1. All
partitions of M +1 in parts with 2 or more elements can be obtained in this manner, therefore

N_(M +1) = N_(M) + N_(M - 1). (4.28)

It follows that
N_(M) = Da! + Ea¥ (4.29)

where D and FE are constants and a. (obtained by inserting (4.29) in (4.28)) are the two
roots of the equation

ad =as + 1. (4.30)
In the limit of large M the term with the highest root dominates, and we have
1
InN_(M)=(lnay) M=1In +2\/3 M. (4.31)

By combining the information from the two estimates, we conclude that

InN(M) =d M. (4.32)
where
1+45
I +2‘/— <d<In2 (4.33)
or
0.48 < d < 0.69. (4.34)

Since the integers M are equally spaced, our computation yields immediately the density of
microstates. The number N(A) of microstates with area A grows for large A as

A

lnN(A) =d g

(4.35)
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This gives immediately

S(4) = ¢ % A (4.36)

which is the Bekenstein-Hawking formula. For a different (and very elegant) derivation, see
[25]. The constant of proportionality that we have obtained is

_d
871’

which is roughly 47 times smaller than Hawking’s value cgowking = i.

c (4.37)

In summary: I have argued that the black hole entropy relevant for the hole’s thermody-
namical interaction with its surroundings is the number of the quantum microstates of the
hole which have microscopically distinct effects on the exterior of the hole. I have argued
that these states are given by the quantum state of the horizon with the same area. I have
counted such microstates using loop quantum gravity. I have obtained that the entropy is
proportional to the area, as in the Bekenstein-Hawking formula.

Several issues remain open. I have worked in the simplified setting of a hole interacting
with a given geometry, instead of working within a fully generally covariant statistical mech-
anics [71]. Also, it would be nice to have a direct characterization of the event horizon in the
quantum theory: this could perhaps be given along the following lines. Consider a weave [4]
state |w) which solves the hamiltonian constraint and represents a physical black hole. This
can be expanded in the s-knot basis

|w) = Z c'ilsi)- (438)
i
Consider the observables Oj representing measurement at future null infinity (for instance,

see [72]). For every s;, and all O;, define as “internal” the edges I, of s; such that the
expectation values

0; = (w|0;|w) (4.39)
satisfy B
dO;
—( 4.40

meaning that O; is not affected if we change the color of ;. A similar definition can be given
for “internal vertices”. Denote edges and vertices that are not internal as external. Now the
quantum event horizon can be defined as the set of external edges that are nor surrounded
by external edges or external vertices only. Clearly this captures the idea of the boundary
between the region that “affects future null infinity” and the regions that doesn’t. Notice
that under this definition the quantum event horizon is just a collection of edges (pictorially:
the edges cut by the horizon). This approach might clarify the issue of the type (b) and (c)
intersections, and, I believe, deserves to be investigated.

Finally, the numerical discrepancy with the Hawking’s value indicates that something is
still poorly understood. Jacobson [73] has suggested that finite renormalization effects of
the Newton constant might account for this discrepancy and has begun to explore how the
presence of matter might affect it.
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