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No-Hair Theorems and Black Holes with Hair

By Markus Heusler

Institute for Theoretical Physics
The University of Zurich
CH-8057 Zurich, Switzerland

Abstract. The critical steps leading to the uniqueness theorem for the Kerr-Newman metric are

examined in the light of the new black hole solutions with Yang-Mills and scalar hair. Various
methods - including scaling techniques, arguments based on energy conditions, conformai transformations

and divergence identities - are reviewed, and their range of application to selfgravitating
scalar and non-Abelian gauge fields is discussed. In particular, the no-hair theorem is extended to
harmonic mappings with arbitrary Riemannian target manifolds.

1 Introduction

The uniqueness theorem for the asymptotically flat, stationary black hole solutions of the
Einstein-Maxwell equations is, by now, established quite rigorously (see, e.g. [1] and [2]).
Some open gaps, notably the electrovac staticity theorem [3] and the topology theorem
(see [4] and the following lecture by P. Chrusciel) have been closed recently. The theorem,
conjectured by Israel, Penrose and Wheeler in the late sixties (see [5] for a historical account),
implies that all stationary electrovac black hole spacetimes are characterized by their mass,
angular momentum and electric charge. This beautiful result - together with the striking
analogy between the laws of black hole physics and the laws of equilibrium thermodynamics -
provided support for the expectation that all stationary black hole solutions can be described
in terms of a small set of asymptotically measurable quantities.

Tempting as it was, the hypothesis was disproved in 1989, when several authors presented
a counterexample within the framework of SU (2) Einstein-Yang-Mills (EYM) theory [6]:
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Although the new solution was static and had vanishing Yang-Mills charges, it was different
from the Schwarzschild black hole and, therefore, not characterized by its total mass. In fact,
a whole variety of new black hole configurations violating the generalized no-hair conjecture
were found during the last few years. These include, for instance, black holes with Skyrme
[7], dilaton [8] or Yang-Mills-Higgs hair [9], The diversity of new solutions gives rise to a

reexamination of the logic to the proof of the uniqueness theorem. In particular, one needs

to investigate whether there are steps in the uniqueness proof which are not sensitive to the
details of the matter contents. In order to do so, we shall now briefly recall some of the main
issues which are involved in the uniqueness program.

2 The Uniqueness Program

At the basis of the reasoning lies Hawking's strong rigidity theorem [10], [11]. It relates
the concept of the event horizon to the independently defined - and logically distinct -
local notion of the Killing horizon: Requiring that the fundamental matter fields obey well
behaved hyperbolic equations and that the stress-energy tensor satisfies the weak energy
condition, the theorem asserts that the event horizon of a stationary black hole spacetime is

a Killing horizon. This also implies that either the null-generator Killing field of the horizon
coincides with the stationary Killing field or spacetime admits at least one axial Killing field.

(The original proof of the rigidity theorem was based on an analyticity assumption which has,
for instance, no justification if the domain of outer communications admits regions where
the stationary Killing field becomes null or spacelike; see the lecture by P. Chrusciel.) The

strong rigidity theorem implies that stationary black hole spacetimes are either axisymmetric
or have a nonrotating horizon. The classical uniqueness theorems were, however, established
for spacetimes which are either circular or static. Hence, in both cases, one has to prove
in advance that the Frobenius integrability conditions for the Killing fields are satisfied as a

consequence of the symmetry properties and the matter equations.

The circularity theorem, due to Kundt and Triimper [12] and Carter [13], [14], implies
that the metric of a vacuum or electrovac spacetime can, without loss of generality, be written
in the well-known Papapetrou (2+2)-split. As we shall show in section 5, the generalization
of the theorem is straightforward for selfgravitating scalar mappings [15] (i.e., Higgs fields,
harmonic mappings, Skyrme fields, etc.). The circularity theorem does, however, not hold
for the EYM system (without imposing additional constraints on the gauge fields by hand).

The staticity theorem, establishing the hypersurface orthogonality of the stationary
Killing field for electrovac black hole spacetimes with nonrotating horizons, is more involved
than the circularity problem. First, one has to establish strict stationarity, that is, one needs

to exclude ergoregions. This problem, first discussed by Hajicek [16] and Hawking and Ellis
[11], was solved only recently by Sudarsky and Wald [3], assuming a foliation by maximal
slices [17]. Once ergoregions are excluded, it remains to prove that the stationary Killing
field satisfies the Frobenius integrability conditions. This was achieved by Hawking [10],

extending a theorem due to Lichnerowicz [18] to the vacuum black hole case. As already
mentioned, Sudarsky and Wald were eventually able to solve the staticity problem for elee-
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trovac black holes by using the generalized version of the first law of black hole physics [3].

Like the circularity theorem, the staticity theorem is easily extended to scalar fields [15],
whereas the problem is again open for selfgravitating non-Abelian gauge fields.

The main task of the uniqueness problem is to show that the static electrovac black hole

spacetimes (with nondegenerate horizon) are described by the Reissner-Nordström metric,
whereas the circular ones (i.e., the stationary and axisymmetric ones with integrable Killing
fields) are given by the Kerr-Newman metric.

In the static case it was Israel who, in his pioneering work [19], [20], was able to establish
that both static vacuum and electrovac black hole spacetimes are spherically symmetric.
Israel's ingenious method, based on integral identities and Stokes' theorem, triggered a series
of papers devoted to the uniqueness problem (see, e.g. [21], [22]). More recently, Bunting
and Masood-ul-Alam [23] (see also [25]) found a new proof of the Israel theorem, taking
essential advantage of the positive mass theorem [26], [27],

The uniqueness theorem for stationary and axisymmetric black holes is mainly based on
the Ernst formulation of the Einstein (-Maxwell) equations [28]. The key result consists in
Carter's observation that the field equations can be reduced to a 2-dimensional boundary-
value problem [29]. A (most amazing) identity due to Robinson [30] then establishes that
all vacuum solutions with the same boundary and regularity conditions are identical. The
uniqueness problem for the electrovac case remained open until Mazur [31] and Bunting [32]

independently succeeded in deriving the desired divergence identities in a systematic way:
The Mazur identity is based on the observation that the Ernst equations describe a nonlinear
sigma-model on the coset space G/H, where G is a connected Lie group and H is & maximal
compact subgroup of G. In the electrovac case one finds G/H SU(1,2)/S(U(1) x 7(2)).
Within Mazur's approach, the Robinson identity turns out to be the explicit form of the
sigma-model identity for the vacuum case, G/H SU(1,1)/U(1).

3 Selfgravitating Soliton Solutions

One of the reasons why it was not until 1989 that black hole solutions with selfgravitating
gauge fields were discovered was the widespread belief that the EYM equations admit no
soliton solutions either. There were, at least, four good reasons in support of this hypothesis.
• First, there are no purely gravitational solitons, that is, the only globally regular,
asymptotically flat, static vacuum solution of Einstein's equations with finite energy is Minkowski
spacetime. Using Stokes' theorem for a spacelike hypersurface E, this result is obtained
from the positive mass theorem [26], [27] and the Komar expression for the total mass of an
asymptotically flat, stationary spacetime with Killing field (1-form) k, say:

M —-^— f *dk —-?- / *R(k) 0. (3.1)
8ttGJsi, 4-kG Jy. w v '

Here we have also used the vacuum Einstein equations and the Ricci identity d*dk 2*R(k)
(where the 1-form R(k) is defined by R(k)ß Rßvkv).
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• Second, both Deser's energy argument [33] and Coleman's scaling method [34] show that
there exist no flat spacetime solitons in pure YM theory.
• Third, the Einstein-Maxwell equations admit no soliton solutions. This follows immediately

from Stokes' theorem

/ *(k A a) - j (Sa) * k (3.2)
Jot, Jt.

for an arbitrary, invariant 1-form a (Lka 0), and from the static Maxwell equations

(V=-(k,k) -kßkß)

d) (|) 0, dt (|) 0, E dé, dB 0, (3.3)

for the electric (E —ikF) and the magnetic (B ik * F) component of the field strength
2-form F (see, e.g. [2]). (Here df *d* denotes the coderivative operator and *k ikrj
is the volume 3-form on £.) First choosing a -p gives -47rQ /aE *(k A ^) 0. Then

setting a — é^ yields 0 —4irQ(j)00 /E ' y and therefore E 0. A similar argument
shows that the magnetic field vanishes as well.
• Finally, Deser [35] has shown that the 3-dimensional EYM equations admit no soliton
solutions either. His argument relies on the fact that the magnetic 1-form, B ik * F, has

only one nonvanishing component in 2 + 1 dimensions.

All this shows that it was conceivable to conjecture a nonexistence theorem for selfgravitating

EYM solitons (in 3 + 1 dimensions). On the other hand, none of the above examples
takes care of the full nonlinear structure of both the gauge and the gravitational fields. It
is therefore, with hindsight, not too surprising that EYM solitons actually do exist -
although it came, of course, unexpected when Bartnik and McKinnon (BK) presented the first
particle-like solution in 1988 [36]. Since the BK solutions are spherically symmetric, it is
instructive to consider the implications of scaling methods for static, spherically symmetric
matter models coupled to gravity.

4 Scaling Techniques

Scaling arguments provide an efficient tool for proving nonexistence theorems in flat space-
time. Moreover, experience shows that they also give reliable hints concerning the possible
existence of such solutions. In relativity, scaling techniques are, of course, limited to highly
symmetric situations, since they are based on the existence of distinguished coordinates. In
this section we shall, therefore, restrict ourselves to spherically symmetric, selfgravitating
field theories. (Here we present a slightly improved version of the arguments given in [37].)

The effective action for static, spherically symmetric soliton configurations is

/•oo

A[m,S,ip}= (Lmat- Sm')dr, (4.1)
Jo
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where ip stands for the matter fields with effective matter Lagrangian Lrri&i[m,S,ip], and

m(r) and S(r) parametrize the static spacetime metric,

g -S2N dt2 + AT1 dr2 + r2 dû2, with N(r) s 1 - ^^ (4.2)
r

The complete set of static field equations is equivalent to the Euler-Lagrange equations for

rn, S and the matter fields.

Let us now assume that we are given a solution m(r), S(r), ip(r) with boundary conditions
m(0) m0, m(oo) moo etc. Then each member of the 1-parameter family

mx(r) m(Xr), Sx(r) S(Xr), ipx(r) ip(Xr) (4.3)

assumes the same boundary values at r 0 and r oo, and the action A\ A[m\, S\, ip\]
must therefore have a critical point at A 1, [dA/dX]x=1 0. Since the purely gravitational
part does not depend on A (since f0°° dr S\(r)[dmx(r)/dr] /0°° dpS(p)[dm(p)/dp], with
p Ar), we obtain the following necessary condition for the existence of soliton solutions:

d f°°
/ Lmat [m\(r), Sx(r), ipx(r)] dr

JodX Jo
0. (4.4)

A=l

(It is worth noticing that gravity does enter the argument, although the purely gravitational
part of the action does not appear in the above formula.)

As a first example, we consider the purely magnetic SU(2) configuration used by Bartnik
and McKinnon [36] (Witten ansatz) with gauge potential 1-form A,

A [w(r) - 1] [r^dti - Tusmtidtp] (4.5)

where t$ d$rr, r^sintf dvrr and tt (2i|f|)_1f • a. The effective matter Lagrangian
then becomes (see, e.g. [38])

W S [NTym A Vym] where TYM s -w'2, VYM
K

-
2

; (4.6)
1 a T/ (1-w2)2
-w'2, Vym ^-t-2-2 4r2

A short computation shows that the condition (4.4) now implies that every solution must
satisfy

roo /¦00 2t77

/ dr S [NTyM + Vym] dr — STYM- (4.7)
7o Jo r

In flat spacetime the same argument yields / dr [Tym A Vym] 0, which shows that no
solitons exist. If, however, gravity is taken into account, then the virial type relation (4.7)
does not exclude selfgravitating soliton solutions any more.

A second, even simpler example are scalar (Higgs) fields with non-negative potentials
P [</>]. In this case we find

^mat S [NTH + VH\ where TH l-r2é'2, VH r2P[é). (4.8)
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The scaling argument now yields the condition J dr S [TH + 3V#] 0, which is - up to the
positive function S(r) - the same relation as one obtains in flat spacetime. Hence, as is well
known, there are no spherically symmetric scalar solitons (with non-negative potentials),
independently of whether or not gravity is taken into account. In fact, the above technique
can be applied to spherically symmetric harmonic mappings with arbitrary Riemannian

target manifolds (see also the next section).

The above scaling argument can also be used to exclude - or indicate - the existence
of black hole solutions. To this end, one has to replace the lower boundary in the action
integral (4.1) by the horizon distance rn- In order to have fixed boundary conditions (at
r — rn and r oo) we consider the modified 1-parameter family

mx(r) m(rH + X ¦ (r - rH)), Sx(r) S(rH + X ¦ (r - rH)) (4.9)

(and similarly for the matter field amplitudes). The same argument as before shows that
every solution is subject to the condition (4.4), where now the functions m.\ etc. are given
by eq. (4.9) and the lower boundary in the integral is r rjj. Using the effective YM and
scalar field Lagrangians (4.6) and (4.8) we obtain the virial relations

and

fdrS {[1 + 22 (ff-l)\Tyu + [1 - ^]W„} 0 (4.10)

respectively. It is obvious that the factors in front of the (non-negative) YM quantities
Tym and VYm in eq. (4.10) are indefinite. Hence, in the EYM case, the scaling argument
does not exclude black hole solutions with hair. In contrast to this, both factors in front of
the (non-negative) quantities TH and Vh in eq. (4.11) do have a fixed, negative sign. (Use

[.. ](rH) 0 and [.. ]'(r) < 0 W > rH (since m! > 0 as a consequence of the dominant energy
condition) to show that the bracket in front of the kinetic term TH is nonpositive.) Hence, the
virial relation (4.11) is violated, unless Th — Vh 0, which excludes spherically symmetric
black holes with nontrivial scalar fields. In fact, (a slightly more complicated version of)
this argument provided the first proof of the no-hair theorem for spherically symmetric
scalar fields with arbitrary non-negative potentials [37]. In the meantime, Sudarsky [41] and
Bekenstein [42] have presented different proofs of the spherically symmetric scalar no-hair
theorem. There exists, yet, another proof which is exclusively based on a mass bound for
spherically symmetric black holes and the circumstance that scalar fields (with harmonic
action and non-negative potentials) violate the strong energy condition [43]. The following
section is devoted to a brief outline of this argument.

5 Uniqueness Theorems and Mass Bounds

The total mass of a stationary, asymptotically flat spacetime with Killing field k is given by
the Komar formula (3.1). Applying Stokes' theorem and the Ricci identity for Killing fields,
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one obtains the Smarr formula

M —kA kAir Air Jt,
}-f*R(k), (5.1)
17T Jt

where k and A denote the surface gravity and the area of the horizon, respectively, and
where we have assumed that the latter is nonrotating (i.e., generated by k). Now using the
identity du *(k A R(k)) for the derivative of the twist (w \ * [k A dk]), as well as the
general identity (6.7) below, it is not hard to derive the formula (see, e.g. [2] or [43])

M -—kA + —- f
4ir Air Jt

R(k,k) n(u,u)
v - v2

*k> (5-2)

where, as before, V — (k k) —kßkß. If the domain of outer communications is strictly
stationary, then k is nowhere spacelike and ui is nowhere timelike. The violation of the
strong energy condition (SEC) (by which we mean R(k,k) < 0 throughout the domain of
outer communications) then implies an upper bound for the total mass:

M < ^-kA, if T(k,k) - -g(k,k)txT < 0. (5.3)

If no horizons are present, this inequality reduces to M < 0, which is in contradiction to
the positive mass theorem [26], [27] - unless M 0. Since the latter is based on the dominant

energy condition (DEC), we conclude that there exist no soliton solutions in selfgravitating
field theories which are subject to the DEC, but violate the SEC at every point.

For static black hole solutions of matter models which violate the SEC we have M <
A^jkA. Hence, in order to extend the above soliton argument to the black hole case, a derivation

of the converse inequality, M > -A^kA, on the basis of the DEC is needed. However,

this was not achieved until now. In fact, the Penrose conjecture [44], M2 > .A/(167r), which
is closely related to the above inequality, was also proven only under additional geometrical
assumptions [45] or in the spherically symmetric case [46], [47] (see also [48], [49] and [43]).
In the general case, the strongest result consists in the extension of the positive mass
theorem by Gibbons et al. [50] to black hole spacetimes. It is, however, not hard to establish
the desired bound, M > t^-kA, for spherically symmetric configurations (see below). This
yields the conclusion that all static, spherically symmetric black hole solutions with matter
satisfying the DEC and violating the SEC coincide with the Schwarzschild metric.

Before we apply this result to scalar fields, we owe the derivation of M > -A^kA for static,
spherically symmetric black hole spacetimes with matter being subject to the DEC. First,
using the parametrization (4.2) of the metric, the DEC implies that both m(r) and S(r) are

monotonically increasing functions, since rn' \r2Goo > 0 and S'/S |r-/V_1[G0o + Gn] >
0. Second, the local mass function M(r), defined by

M(r) -— f *dk mS + NS'r2 - m'Sr, (5.4)
Ö7T Js?

assumes the values M and ^nA for r —> oo and r rn, respectively. Using m! > 0, S' > 0,

asymptotic flatness and N(rn) 0, we now find

M > Hm^oo (m S) and —-kA < m(rn) S(rn) ¦ (5.5)
47T
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Finally, taking again advantage of the monotonicity of m and S, eq. (5.5) yields the desired
result.

As an application of the above uniqueness results we consider scalar fields or, more
generally, harmonic mappings è from spacetime (M, g) into Riemannian target manifolds
(N,G). The action is

A j(-^RAl-(dé,dè)G + P[é])*l, (5.6)

where we have also allowed for a nonnegative potential P[é]. In local coordinates the
harmonic density becomes (dé,d(p)G — GAB(dèA,dèB) GAB[<t>(x)]gßv(x)eA,ßeB ,v. (If the

target manifold is a linear space, then this reduces to the ordinary kinetic term for dim(A^)
decoupled scalar fields.) The important observation is that the stress-energy tensor,

T GAB[è] d<pA ®d<pB - g Q(#, dJ>)G + P[ffj (5.7)

violates the SEC in the above sense, since

T(k, k) - ì g(k, k) tiT - V P[<p] < 0 (5.8)

where we have required that è is a stationary mapping, déA(k) Lkrj>A 0. We are now
able to conclude that selfgravitating harmonic mappings with non-negative potentials and
Riemannian target spaces admit
• no soliton solutions,
• no static, spherically symmetric black hole solutions other than Schwarzschild.

In order to get rid of the requirement of spherical symmetry in the black hole case, one
needs either a proof for M > -^kA or a different argument. A very powerful alternative
is provided by divergence identities, as Bekenstein originally used in this context [51]. This
method gives, however, only conclusive results for convex potentials and target spaces with
nonpositive sectional curvature (see, e.g. [52]). We shall return to this problem and its
partial resolution in sections 7 & 9.

6 Staticity and Circularity

The integrability theorems for the Killing fields provide the link between the strong rigidity
theorem and the assumptions on which the classical uniqueness theorems are based. In the
nonrotating case one has to show that a stationary domain of outer communications (with
Killing field k, say) is static,

*(kAdk) 0, (6.1)

whereas in the stationary and axisymmetric situation (with Killing fields k and m, say) one
must establish the circularity conditions:

* (m A k A dk) 0, * (k A m A dm) 0 (6.2)
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(The Hodge duals are taken for later convenience.) As mentioned in the introduction, the
vacuum staticity and circularity theorems were proven by Carter and Hawking, respectively.
Whilest Carter also succeeded in establishing the electrovac circularity theorem in the early
seventies (see, e.g. [14]), it took, however, some effort until the corresponding staticity issue

was settled as well [3],

In this section we shall first show that - under fairly mild assumptions - the Frobenius
integrability conditions (6.1) and (6.2) are equivalent to the (local) Ricci conditions,

*(kAR(k)) 0, (6.3)

and

* (m A k A R(k)) 0, * (k A m A R(m)) 0, (6.4)

respectively. This equivalence will then enable us

• to prove the vacuum staticity theorem for not necessarily connected horizons;
• to prove the staticity and circularity theorems for scalar mappings (e.g. Higgs fields);
• to understand why the electrovac circularity theorem does not generalize to YM fields.

We start by noting that the Ricci conditions (6.3) and (6.4) are the derivatives of the
Frobenius conditions (6.1) and (6.2), respectively: The staticity condition (6.1) is, of course,
equivalent to the vanishing of the twist uik assigned to the stationary Killing field (ujk

| * [k A dk]). Hence,

-d*(kAdk) dujk - * (k A d)dk) * (k A R(k)) (6.5)

where df *d*, and where we have used the Ricci identity for Killing fields in the last step
(see, e.g. [2] for details). As for the derivatives of the circularity conditions (6.2), we note
that *(m A k A dk) can be written as — 2imuik —2mßu>^). We therefore find

-d*(m Ak Adk) —d(imwk) imdu}k im * (k A R(k)) *[ra A k A R(k)]. (6.6)

Here we have also used the fact that the Killing fields commute [39]. (See [40] for a powerful
proof of [fc, m] 0 which does not require the existence of an axis.)

The above connection shows that the Frobenius conditions imply the Ricci conditions.
In the stationary and axisymmetric case, the converse statement is also easily established,
since the vanishing of the 1-form d(imujk) implies that the function imu>k is constant. Since,
in addition, imu)k vanishes on the rotation axis, the circularity condition (6.2) follows from
the Ricci condition (6.4) in every domain of spacetime intersecting the symmetry axis. In
the nonrotating case the situation is more difficult, since dwk 0 does not automatically
imply that the twist 1-form itself vanishes. However, using d(^) ^ * (i A u) (write
*(k Aüj) —ik * cu to obtain this), it is not hard to prove the useful identity

wA-\ =dwA- -2^-^*k, (6.7)
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where, as usual, V — (k k). Since asymptotic flatness and the general properties of Killing
horizons imply that u> A £ vanishes at infinity and at (each component of) the Killing horizon,
we can apply Stokes' theorem for a spacelike hypersurface to conclude that the integral over
the l.h.s. vanishes. Hence, du 0 implies JsV~2(u ,u) * k — 0 and therefore - provided
that the domain of outer communications is strictly stationary (V > 0) - also u 0. This
shows that u 0 follows from du 0 whenever the horizon is nonrotating and the domain is

strictly stationary. In particular, no restrictions concerning the connectedness of the horizon
enter the above argument. (The original proof of the vacuum staticity theorem was based

on the fact that du 0 implies the local existence of a potential, and was therefore subject
to stronger topological restrictions.) Hence, under the (weak) assumptions used above, it is

sufficient to establish the Ricci staticity and circularity conditions (6.3), (6.4) in order to
conclude that the Frobenius integrability conditions (6.1), (6.2) are satisfied.

We shall now demonstrate that the circularity property is a consequence of the field equations

for both scalar mappings and Abelian gauge fields, whereas the situation is completely
different for the EYM system.

6.1 Scalar Mappings

Consider a selfgravitating mapping (j> from spacetime (M, g) into a target manifold (N, G)
with matter Lagrangian C C(g,G,é,d(f)). If C does not depend on derivatives of the
spacetime metric, then the stress-energy tensor becomes

r\ p
T 2-—=- - Cg fABdèA®d(t>B -Cg, (6.8)

dg 1

where the }ab fAB(g,G,è,dé) depend on the explicit form of the Lagrangian. Let (f> be

invariant under the 1-parameter group of transformations generated by a Killing field £, say,

L^é 0. Then the stress-energy 1-form with respect to £, T(£), becomes proportional to £

itself, T(i) -£•£, and thus

T(i) Ai 0. (6.9)

Hence, a stationary mapping è fulfills the Ricci staticity condition (6.3), whereas the Ricci
circularity conditions (6.4) are satisfied for stationary and axisymmetric scalar mappings. By
virtue of the equivalence between these conditions and the Frobenius integrability conditions
(6.1) and (6.2), we are able to conclude that stationary black hole spacetimes coupled to
stationary scalar mappings are either static or circular.

6.2 Gauge Fields

As mentioned earlier, the staticity theorem for Maxwell fields has been established only
recently [3], In contrast to this, the corresponding circularity problem was solved by Carter
already in the early seventies. Here we restrict ourselves to the circularity issue, which we
will discuss for both electromagnetic and YM fields. Our main objective is to understand
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why - in contrast to the Maxwell case - circularity is not a consequence of the field equations
when gravity is coupled to non-Abelian gauge fields. In order to do so, we first derive an
expression for the 2-form Ç A T(f), where £ stands either for the stationary or the axial
Killing field.

We start by recalling that a gauge potential A is symmetric with respect to the action of
£ if there exists a Lie algebra valued function ip (for every Killing field £), such that

L(A Dip (6.10)

(see, e.g. [53]). Using L((dA + A A A) — dL^A + [A, L(A] DL^A D2ip, the symmetry
equation for the field strength (and every other gauge-covariant p-form) becomes

LiF=[F,iP], (6.11)

(which, as expected, reduces to L^F 0 in the Abelian case).

It is convenient to introduce the electric, E —içF, and the magnetic, B iç * F,
component of F with respect to the Killing field £. (If Ç denotes the timelike and hypersurface
orthogonal Killing field of a static spacetime then E and B aie the ordinary electric and

magnetic 1-forms.) Since the inner product, i^a, of Ç with an arbitrary p-form a is obtained
from içoi — * (£ A *a), we have (with *2a — (—l)pa)

E *(£ A *F) B * (Ç A F) (6.12)

An important consequence of the symmetry condition (6.10) is the fact that - for every
Killing field £ - there exists an electric potential W: Since E —i^(dA + AAA) —LçA +
diçA + [A, içA] -Dip + D(içA), one finds

E DW with W if. A - ip. (6.13)

Now using the definitions (6.12) and some basic identities for Killing fields (see, e.g. [2])
it is not difficult to verify that the source-free YM equations D * F 0, together with the
Bianchi identity DF 0, are equivalent to the following set of equations

*D*(f)=2^' E DW> (fU4)

*D*(f) =_2^V^' DB -*DE' (6-15)

where N and u are the norm and the twist, respectively, assigned to the Killing field £,

A=(Ç,0,w i*(£AdO.
We are now able to express the 2-form Ç A T(Ç) in terms of the electric potential W and

the magnetic 1-form B. In order to do so, we use the YM stress-energy tensor

J au — tr < r ,mr.L ßv 4ir
\gßAF,F)Y (6.16)
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and the above definitions for E and B to obtain

HAT(0 ]-*tr{EAB}. (6.17)

Now using the YM equations E DW, DB - * D2W - * [F, W] and the fact that
tr {W\F, W]} vanishes, we find tr {E A B} tr {DW A B} tr {D(WB)} - tr {WDB}
d(tr{WB}). We therefore obtain the result

* (£ A T(0) -— d (tr {W B\) -^-d (tr {IF A * F}) (6.18)
4ît 4ir

By virtue of the general identity (6.5) and Einstein's equations, the l.h.s. is (up to a factor of
^r) exactly the derivative of the twist assigned to Ç. Since the r.h.s. is an exact differential-
form as well, we can integrate the equation and introduce a "combined twist potential" 7,
such that

dU u + 2ti{WB} (6.19)

Hence, we have expressed the twist in terms of an integration function 7 and the gauge
fields. For the stationary Killing field k, the Frobenius staticity condition therefore becomes

uk dU - 2tr{Wkik*F} 0, (6.20)

where Wk is the electric potential with respect to k; see eq. (6.13).

In a similar way one can integrate the right hand sides of the Ricci circularity conditions
in order to obtain an expression for the Frobenius conditions (6.1), (6.2). Since the latter
can be written as imuk 0 and ikum 0, we can also use the above formula for the twist,
which yields the desired expressions

imuk -2tr{Wk(*F)(k,m)} 0, ikum 2tr {Wm (*F)(k,m)} 0, (6.21)

where (*F)(k,m) imik * F. (Here we have used the circumstance that the constants of
integration vanish.) Carter has derived the connection between the circularity conditions
and the gauge fields in the Abelian case. His formula involves magnetic potentials, which
locally exist as a consequence of the Maxwell equations dBk dBm 0. The above formulae
(6.20), (6.21) show that even in the non-Abelian case - where the magnetic potentials do not
exist any more - one can integrate the Ricci conditions and obtain an explicit expression for
the Frobenius conditions in terms of the gauge fields. (The same result can be established if
Higgs fields are taken into account as well.)

A very important peculiarity of the Abelian case is the fact that both F(k,m) and

(*F)(k,m) vanish as a consequence of the symmetry properties and Maxwell's equations.
This is seen as follows: Since k and m commute, the operator dimik can be cast into the
form

dimik ikLm - imLk + imikd. (6.22)

Applying this to F and *F, and using the fact that the Hodge dual and the Lie derivative
with respect to a Killing field commute, we immediately find (with LkF LmF 0)

d[F(k,m)] imikdF 0, d[(*F)(k,m)] - imikd*F 0. (6.23)
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Hence, the functions F(k,m) and (*F)(k,m) are constant and vanish on the rotation axis.
We therefore have F(k, m) 0 and (*F)(k, m) 0 where, by virtue of eq. (6.21), the latter
property implies that the Frobenius circularity conditions are fulfilled. This is Carter's
electrovac circularity theorem, establishing the integrability property for the Killing fields

on the basis of the Maxwell equations and the symmetry properties of the gauge fields.

In contrast to this, circularity does not follow from the field equations in the non-Abelian
case. That is, the quantities tr {Wk(*F)(k,m)} and ti{Wm(*F)(k,m)} do not vanish as a

consequence of DF 0, D * F 0 and the symmetry equations LkA Dipk, LmA Dipm.
In particular, the diagonal boxes of the fieldstrength tensor are no longer automatically zero.
Instead of eq. (6.23) we now have

D[F(k,m)] [Ek,Wm]-[Em,Wk],
D{(*F)(k,m)] [Bm,Wk]-[Bk,Wm]. (6.24)

(Use eq. (6.22) and LmWk [Wk ,ipm] to derive this. Also note that F(k,m) [Wk ,Wm],
since imikF -imEk - -imDWk -LmWk - [imA,Wk] -[Wk,ipm] + [Wk,imA]
[Wk,Wm].)

The above arguments also imply that the usual (2+2)-split of the metric of a stationary
and axisymmetric spacetime imposes additional constraints on the YM fields. Writing the
metric in the circular Papapetrou form and considering the corresponding ansatz for the

gauge potential,

g gttdt®dt + 2 gtip dt®dtp + gw dtp® dtp + g,

A Wkdt AWmdtp A Ä, (6.25)

the integrability conditions require that the scalar *F is orthogonal to Wk and Wm with
respect to the inner algebra product,

tr{w?*F} 0, toi( k,m. (6.26)

A detailed discussion of the circularity issue for non-Abelian gauge fields will be presented
elsewhere [54].

7 The No-Hair Theorem for Harmonic Mappings

Selfgravitating scalar mappings from spacetime (M/4' g) into Riemannian manifolds (N, G)
admit both soliton and black hole solutions with hair. A particular example is provided by
the Skyrme model [7], which can be described as a static mapping into S3 [55] with matter
action J(e2[0] -r-e4[i/i]) * 1, where e2[(f>] \GAB[<P](d(pA ,d(pB) is the harmonic part of the
action and e^rp] \GAcGBD{d(pA A d<pB ,drpc A d<pD). If, however, only the harmonic part
is taken into account, then the situation changes dramatically and one obtains the following
uniqueness theorem:



514 Heusler

The Kerr metric is the unique solution with nondegenerate Killing horizon (k ^ 0) amongst
all stationary black hole solutions of selfgravitating harmonic mappings into Riemannian

target manifolds (N, G), with action

A J(~ïkR+ \GAB[<t>](déA,d(f>B))*l. (7.1)

The proof of this theorem involves the following three main steps: First, one has to show

that all stationary black hole solutions to the above action are either static (k A dk 0) or
circular (m Ak A dk k Am A dm 0). In section 6 we have argued that this is indeed
the case, i.e., that the Killing fields fulfill the integrability conditions. It therefore remains
to prove that
• there are no static black hole solutions other than Schwarzschild,
• there are no circular black hole solutions other than Kerr.
Under the additional assumption of spherical symmetry we have already presented a proof
of the first assertion in section 5 - playing off the strong and the dominant energy conditions
against each other. Here we shall only give a brief outline of the rationale leading to the
above results, and refer to [2] for details.

7.1 The Static Case

With respect to the static metric

Wg _S2dt2 + g, (7.2)

the Einstein equations obtained from the action (7.1) become

A^S 0, BP KGABgijéA,iéB,j, (7.3)

R\f - S"1VfVÌ9)S « Gab 4>a,ì 4>B,3 (7.4)

where Latin indices refer to the spatial metric g. In addition, we have the matter equations
for the scalar fields (pA, A^4>A + S-^dS^) A TAc((p)(d(pB\d(pc) 0. Like in the new
proof of the static vacuum [23] and electrovac [56] [24] uniqueness theorems, the strategy
is to show that the 3-dimensional spacelike manifold (E, g) is conformally flat. In fact, the
conformai factor which yields the desired result is the same as in the vacuum case,

n± ^(l±S)2. (7.5)

More precisely, we consider the manifold E which is composed of the two copies E+ and E^
of E, pasted together along their boundaries H+ and W_. Furnishing E+ and E_ with the
metrics

g± n2±g, (7.6)

one can show that the metric and the second fundamental form match continuously on
H±. Moreover, (E+,g+) is asymptotically flat with vanishing mass and non-negative Ricci
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curvature, R > 0: Using the expansions g (l +^ë+O^-2) and ü+ l-^+e>(r-2) one

finds g+ — fi+g 1 + ö(r~2), which shows that (È+,g+) has vanishing mass. Computing
the conformai transformation of the Ricci scalar gives

^¦R ^R^ - 2fi±A(s)n± + (dfì±,dn±)(9)

^^(9) - n±(S±l)A(9)S -±K(dé,dé)G > 0, (7.7)

where we have used eqs. (7.3) and the fact that the target metric G is Riemannian.

Since (E,g) constructed in this way is an asymptotically flat, complete, orientable 3-

dimensional Riemannian manifold with non-negative Ricci curvature and vanishing mass,
it is - as a consequence of the positive mass theorem - isometric to (IR3,6). Hence, the
spatial geometry of the domain of outer communications is conformally flat, R 0, which
implies that the scalar fields assume constant values. The field equations (7.3), (7.4) therefore
reduce to the vacuum Einstein equations. Finally, the fact that the static vacuum solutions
with conformally flat 3-geometry are spherically symmetric concludes the proof of the static
no-hair theorem for harmonic mappings [15].

7.2 The Stationary and Axisymmetric Case

Like in the static situation, the uniqueness problem for stationary and axisymmetric black
hole solutions of selfgravitating harmonic mappings can be reduced to the corresponding
vacuum problem. This is due to the following observations:
• First, the twist is closed, since harmonic mappings have the special property that the Ricci
1-form (with respect to either of the Killing fields) vanishes,

R(k) R(m) 0. (7.8)

(Use LkéA Lm(pA 0 and eq. (5.7) with P[(p] 0 to obtain this.) One can therefore
introduce the same Ernst potential as in the vacuum case,

E - -X + ïY, where X (m,m), dY 2u *(mAdm). (7.9)

• Second, the general identity AAX — (dX dX) + 4(u, u) + 2XR(m, m) 0 reduces to the
following equation for E

-d^M(pdE) 4(dE,dE)W. (7.10)
p X

This is again a consequence of R(m) 0 and the fact that a circular spacetime admits
a foliation by 2-dimensional integrable surfaces orthogonal to the Killing fields k and m,
implying that the metric can be written in the Papapetrou (2 + 2) form

(4)9 o" + ^7 -Çdt2 + X(dip + Adt)2 + i7, (7.11)

where the function A is related to the twist potential Y by dA pX~2 AA dY.
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• Third, the determinant p J-det(a) is subject to the equation XpA^p (k k)R(m, m)

+ (m, m)R(k, k) — 2(k m)R(k, m) which, like in the vacuum case, reduces to

Awp 0. (7.12)

This shows that p is a harmonic function on the 2-dimensional Riemannian manifold (r, 7).
One can therefore introduce Weyl coordinates, that is, one can use p and its conjugate
harmonic function z, say, as coordinates on (r,7) (see [57] for an elegant and complete
proof).

The above observations imply that eq. (7.9) for the twist and the norm of the axial
Killing field decouples from the remaining field equations and is, in fact, identical to the
vacuum Ernst equation,

P X
where V (dp,dz). Since the latter describes a regular boundary-value problem on a
fixed 2-dimensional background space, one can apply the vacuum Mazur [31] (Robinson
[30]) identity to conclude that the Ernst potential is uniquely determined by the boundary
conditions. Also using -A,p X~2Y,Z and -A,z —X~2Y,P shows that the metric cr of the
orbit manifold is identical with the corresponding vacuum solution. It remains to discuss
the orthogonal set of equations for the scalar fields and the metric 7.

Like the Ernst equation, the field equations for the harmonic scalar field è,

-pV(pV(PA) + TABC (VèB\Vèc) 0, (7.14)

involve no unknown metric functions. The only remaining metric function h(p, z) - defined

by 7 e2h(dp2 + dz2) - is therefore obtained by quadrature from the Ernst potential E and
the solution f> to the above matter equation: Writing h h° + SnGh, it remains to integrate

-h°,p= -T7FÏ [E>pË,p-E,zË,2J -h°,z= j-^\E,pË,z+E,zË,p] (7.15)

and

h,p= 2i|M [èA,p^,p-<PA,z<pB,z] -K=?f [<PA,P<f>B„AéA,zéB,P) (7.16)

The last step in the uniqueness proof is to show that the matter equations (7.14) and (7.16)
admit only the trivial solution (pA (f>A, h 0. Using Stokes' theorem, this is established
as a consequence of asymptotic flatness, the fall-off conditions

cPA ÓÌAO(r-1), 4>A,r=0(r~2), eA,,= 0(r~l) (7.17)

and the requirement that Gab[P] and the derivatives of the scalar fields with respect to
the Boyer-Lindquist coordinates r and -d remain finite at the boundary of the domain of
outer communications (see [58] for details). This finally establishes the uniqueness of the
Kerr metric amongst the stationary and axisymmetric black hole solutions of selfgravitating
harmonic mappings.
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8 Integral Identities

Integral identities play an outstanding role in the derivation of various uniqueness results. In
fact, both Israel's uniqueness theorem for nonrotating vacuum black holes [19] and Robinson's

theorem for the corresponding rotating situation [30] were based on ingenious
applications of Stokes' law. Moreover, the fact that the electric potential depends only on the
gravitational potential - a result which opened the way for the static electrovac uniqueness
theorem - was also obtained by this technique [20]. Finally, it was a divergence identity
for sigma-models on symmetric spaces which provided the key to the uniqueness proof for
the Kerr-Newman metric [31], [32]. Moreover, many nonexistence results for soliton
configurations are also based on integral formulae. For instance, the integrated version of the
Ricci identity for a stationary Killing field, d * dk 2 * R(k), provides the link between
the total mass, M —8wG /^ *dk, and the volume integral over the stress-energy 1-form
T(k) — |tr(T)fc. In combination with the positive mass theorem, this excludes the existence
of purely gravitational solitons other than flat spacetime.

For spacetimes admitting a stationary - not necessarily static - isometry (with Killing
field k, say), it turns out to be convenient to use the following version of Stokes' theorem:
Consider a 1-form a which is invariant under the action of k, Lka 0. Then, using the fact
that the Lie derivative with respect to a Killing field commutes with the Hodge dual, one
finds 0 *Lka Lk*a — ikd*a+ dik*a. Since d^a is a 0-form, we have ikd*a —(dfoi)ikri
and ik * a — * (k A a). Hence, integrating over a spacelike hypersurface E with boundary
<9E, Stokes' formula becomes

/ *(kAa) - j' (d>a)ikri. (8.1)
JdT Jt

Using the field equations (matter or gravitational) for dfa one now obtains, for instance,
relations between asymptotic charges and quantities defined on the horizon. In the best
case one can combine the field equations such that the sum of the boundary terms on the
l.h.s. vanishes and the sum of the integrands on r.h.s. has a fixed sign. The method will be

explained in the last section for the Einstein-Maxwell equations. A well-known example of
this kind is Bekenstein's no-hair theorem for scalar fields.

9 The Bekenstein Argument

In 1972 Bekenstein showed that there are no black holes with nontrivial massive scalar fields
[51]. His strategy was to multiply the matter equation (A — m2)(p 0 by è, integrating by
parts and using Stokes' theorem for the resulting identity. More generally, one can consider
an arbitrary function f[é] of the scalar field and choose a fdf> in eq. (8.1). The scalar
field equation (with potential F[</>]),

Aè -d)dé P,^, (9.1)
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then yields

d)a d)(fdé) -(df,dé) + fdUcP -f,^(dè,dA) - fP„p

Now using Stokes' theorem (8.1) and the fact that the scalar field assumes a constant value

on the horizon and at spacelike infinity, we find

^ (Mao] «oc - f[én] sH) /e (/,0 (# ,d<P) + f P,* ikrj, (9.2)

where we have defined s^rn) ^ /s2 /H) *(& A d(p). Using general properties of Killing
horizons, it is not difficult to see that sh vanishes. Hence, provided that f[(pH\ is finite,
the horizon term on the l.h.s. does not contribute. Our aim is to choose f[é] such that the

asymptotic term vanishes as well. Since asymptotic flatness implies that the scalar charge s^
is finite, it is sufficient to require f\éoo] 0. Following Bekenstein [51], we set f[é] è — èx,-
The above formula then gives

Jj(dé,dé)A(é-éoo)P,4,]ikv 0, if \èH - <Aoo| < oo, (9.3)

where we recall that the horizon contribution was argued away only for |/[</>#] | < oo.

Considering a convex, non-negative potential with P,$ (éaf) 0, the integrand is non-negative
and the above relation shows that é must assume the constant value ex,- (Also note that dé
is nowhere timelike since (k, dé) Lké — 0 and since the domain is required to be strictly
stationary.) It is worth pointing out that the Bekenstein black hole solution for a free scalar
field [59] does not contradict the above argument, since the latter applies only to scalar fields
which remain finite on the horizon.

A slightly different version of the above result is obtained by setting f[é] P,$, i.e.,

a fdé dP [2]. Using again asymptotic flatness and the fact that the curvature invariant
RßvRßv must remain finite on the horizon enables one to conclude that

jf [P,„ (dé, dé) A (P,* )2} ikn 0. (9.4)

This shows that there are only trivial scalar field configurations for black hole solutions with
nondegenerate, nonrotating horizon and strictly stationary domain of outer communications.

I am not aware of a uniqueness theorem for the Schwarzschild metric for scalar fields with
arbitrary, non-negative potentials - unless spherical symmetry is imposed (see sections 4 k
5). In this connection, it is probably worth noticing that the Bekenstein argument makes

no essential use of Einstein's equations. In an attempt to include more information one can,
for instance, take the Roo equation into account as well,

dt (*p\ =-^R(k,k) 2KP[é]. (9.5)

Choosing a g(é, V) y- and a /(</>, V) de in Stokes' theorem (8.1) yields the two integral
equations

(dV,dV) (dé,dV)
g,v —y— + g,<p —y KgP«(9x,M-gH^) /s

47T (/oo Soo - fH sH) J [/,, (dé, dé) A f,v (dV dé) A f P* ] ikv, (9.6)
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where we have also used the Komar formula, the identity *(k A ^-) — * dk — 2^ Au and
the fact that the boundary integral of A Aw vanishes. One can now try to combine these
formulae in order to derive relations between the boundary terms. A proof of the scalar
uniqueness theorem for arbitrary non-negative potentials along these or other lines would
close a longstanding gap.

The technique presented in this section can also be applied to selfgravitating harmonic
mappings (generalized scalar fields). This yields uniqueness theorems for mappings into
target manifolds with nonpositive sectional curvature (see [52]). Since this restriction was
absent in the uniqueness proof presented in section 7.1., the conformai techniques are, in
this case, more powerful than the divergence identities.

10 The Israel Theorem

This celebrated theorem establishes that all static black hole solutions of Einstein's vacuum
equations are spherically symmetric [19]. Israel was able to obtain this result - and its
extension to electrovac spacetimes - by considering a particular foliation of the static 3-

dimensional hypersurface E: Requiring that S J— (k k) is an admissible coordinate (see

also [21]), the spacetime metric can be written in the (l + l + 2)-split

W, -S2 dt®dt + p2dS®dS + g, (10.1)

where both p and the metric g depend on S and the coordinates of the 2-dimensional surfaces
with constant S. With respect to the tetrad fields 9° Sdt and 91 pdS one finds

Gnn + Gi

Goo + 3 Gn

1 K dK p „2
dS

-Kl (Vp,Vp) o oaf,
+ KabK

\a _dK
6s ds

R - Alnp

2p2

(Vp,Vp) ab

A 2 KabK

(10.2)

(10.3)

where Kab — (2p) ldgab/dS is the extrinsic curvature of the embedded surface S const.
o

in E, and Kab= Kab — 2gabK is the tracefree part of Kab- Using the Poissson equation

g p2 (K - pSRoo) (10.4)

and the vacuum Einstein equations, one obtains the following inequalities from eqs. (10.2)
and (10.3):

l(!!)-^ JL ^ä[KS+^]) < -Sjg(&lup + R), (10.5)

where equality holds if and only if Kab— Vp 0. The strategy is now to integrate the above
estimates over a spacelike hypersurface extending from the horizon (S 0) to S^ (S 1).
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Using the Gauss-Bonnet theorem, JsRf] 8ir, one finds

/^1^°' f/JS y/pS \0 [JS

„-1KS + 4p
V

Js p

i
<-4tt. (10.6)

o

Finally, taking advantage of asymptotic flatness and the fact that on the horizon Kab 0

and K/S pR/2, one obtains 8tt\/M — Air^fpn for the first integrand, and — 4ApH2 for the
second one (where A denotes the area of the horizon). Since 1/ph equals the surface gravity
of the horizon, 1/ph k, the above inequalities eventually give the estimates

M<±, fi«>f, (10.7)
4k 47T 4k

o ~
where we recall that equality holds if and only if both Kab and Vp vanish. Since the Komar
expression for the total mass of a static vacuum black hole spacetime yields M -^kA (see

eq. (5.1)), we conclude that equality must hold in the above estimates. This is, however,
equivalent to

Kab-\gabK 0, Vp 0. (10.8)

Using this in eqs. (10.2) and (10.4) shows that both p and K depend only on S. Equation
(10.3) then implies that R is constant on the surfaces of constant S. Explicitly one finds

p 4c(l - S2)-2, K c~1S(l - S2) and R |c~2(l - S2)2, where c is a constant of

integration. Hence, defining r(S) by the relation R 2/r2, yields (with c M)

S2 1 - — p2dS2 (1 - —Yldr2, g r2dü2, (10.9)
r r

which is the familiar form of the Schwarzschild metric.

11 The Mazur Identity

Before we give an outline of Mazur's uniqueness proof for the Kerr-Newman metric, we

briefly recall some basic facts about the Einstein-Maxwell equations with a Killing field. We
consider the axial Killing field m with norm X (m,m) and twist um — | * (m A dm).
Together with the symmetry condition LmF 0 for the electromagnetic field tensor (2-form)
F, the Bianchi identity (dF 0) and the Maxwell equation (d * F 0) imply that there
exist two potentials é and ip, such that dé —imF and dip im * F. In addition, the

identity dum *[m A R(m)] implies dum — —2dé A dip and thus the existence of a twist
potential Y, such that |rfY um + édip — ipdé- The R(m,m) Einstein equation, df(~-)
— x^i^mji^m) jiddeide) + (dip,dip)), and the remaining Maxwell equations, df(^)
^2 (um dip) and dT(*) — -^(um de), are then equivalent to the Euler-Lagrange equations
for the Lagrangian

£M ft« + Ä (1L1)
X2 X



Heusler 521

where |dA|2 (dA,dA), and where the Ernst potentials E and A are given in terms of the
four potentials X, Y, é and ip:

E - (x + é2Aip2) A iY, A -éAiip. (11.2)

(It is worth noticing that there is no need to use Weyl coordinates and the (2 + 2)-split
of the spacetime metric at this point: The structure of the Ernst system and the sigma-
model identities associated with it concern the symmetries of the target manifold. The
formulation requires only the existence of the above potentials, which can be introduced
whenever spacetime admits at least one Killing field. The existence of a further Killing
field (together with the integrability properties) is then responsible for the reduction of the

equations to a boundary value problem on a fixed, 2-dimensional domain.)

The key to the uniqueness theorem for rotating electrovac black hole spacetimes is the
observation that the above Lagrangian (11.1) describes a nonlinear sigma-model on the coset

space S7(l,2)/S(7(l)x 7(2)) [31], [60]. (In the vacuum case one obtains, instead, a mapping
with target manifold 57(1,1)/7(1). If the dimensional reduction is performed with respect
to the stationary Killing field, then the target manifold becomes SU(1,2)/S(U(l) x 7(1,1)).)
In terms of the hermitian matrix $,

$ab Vab A 2vavb, with (vo^^Vi) —^=(E-1,E + 1,2A), (11.3)

(and r] diag(—1, +1, +1)), the Lagrangian (11.1) becomes

£[$] ^Tr(J,J), with J Q-1 d$. (11.4)

The Mazur identity relates the Laplacian of the relative difference ty of two hermitian
matrices $(i) and $(2) to a quadratic expression in AJ, where

tf $(2)$(-} - 1, AJ= J(2) - J(1). (11.5)

Using the general equation df(fa) —(df,a) + fdfa for the coderivative of a product
of a function / with a 1-form a, and the properties d$ Jt$, d$~x -$_1Jt and
dty — $(2)(AJ)$71j, it is not hard to derive the identity

- d^Tr * -Tr {$(2) J(AJ) *(~i} + Tr {$$ AJf ,$(2) AJ). (11.6)

If both $(!) and $(2) are solutions to the variational equations d)J 0 for the action

/ £[$] * 1, then df(AJ) vanishes and the first term on the r.h.s. of the Mazur identity (11.6)
does not contribute.

Finally taking advantage of the full symmetries of spacetime, that is, using the circular
metric (7.11), the coderivative of a stationary and axisymmetric 1-form a becomes dfa
p_1(f(pa:), where quantities furnished with a tilde refer to the 2-dimensional Riemannian
metric 7 (see eq. (7.11)). The Lagrangian (11.4) now describes a nonlinear sigma-model on
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the symmetric space S7(l,2)/S(7(l) x 7(2)) with Riemannian base manifold (r,7). The
Ernst equations for the positive, hermitian matrix $ become d)(pJ) 0. For two solutions

$(i) and $(2), the Mazur identity (11.6) therefore yields

pid(TrV) /pTr($^Ajt,$(2)AJ) f,, (11.7)

where S C Y. The uniqueness theorem for the Kerr-Newman metric is now obtained as

follows: First, on uses the boundary and regularity conditions to argue that rf(Tr^) vanishes

on all parts of the boundary dS, that is, on the horizon, the rotation axis and in the
asymptotic regime. The above formula then implies that the integral on the r.h.s must
vanish as well. Since the embedding of the symmetric space G/H in G can be represented
in the form $ ggf we may define Ai gTAAJ^g^, which yields

Tr^Ajt^jAJ) =TA(M,Mi) >0.

Here we have also used the facts that 7 is a Riemannian metric, AJ is spacelike and p > 0.

This shows that the r.h.s. of eq. (11.7) can only vanish for AJ 0, implying that two
solutions $(1) and $(2) with identical boundary and regularity conditions are equal.

This concludes the outline of the uniqueness proof for the Kerr-Newman metric amongst
the electrovac black hole solutions with nondegenerate event horizon and stationary and

axisymmetric, asymptotically flat domain of outer communications. The corresponding
result for the vacuum case was already established in 1975 by Robinson [30], using a rather
complicated and ingeniously constructed identity. As it turned out, the Robinson identity is

exactly the Mazur identity for the coset space G/H S7(l, 1)/7(1) which is, in fact, the
relevant symmetric space for the vacuum Ernst equations.

12 An Electrovac Bogomol'nyi Equation

The static electrovac equations imply that the electric potential é depends only on the
norm V (gravitational potential) of the Killing field. Israel was able to draw this conclusion
from Stokes' theorem, using a particular combination of the Einstein-Maxwell equations
[20]. Here we present a systematic approach to divergence identities for electrovac black hole
configurations with nonrotating horizon. We will not assume that the domain is static. Our
method yields a set of relations between the charges and the values of the potentials on the
horizon. Solving for the latter one can then derive the relation

M2 —kA
Air

2
2 D2AQ2 + P2, (12.1)

where M, Q and P denote the total mass, the electric and the magnetic charge, respectively.

We start by recalling the Einstein-Maxwell equations in the presence of a stationary
Killing field k, say, with norm V —(k,k) and twist u | * (k A dk). In terms of
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the electric potential, dé —ikF, and the magnetic potential, dtp ik * F, the Maxwell
equations become

^)=-2^> d)(^)=2^. (12.2)

In addition, we consider the identity d^(u/V2) 0, which gives an equation for the coderivative

of |f£, where 7 denotes the twist potential, defined by u dU A ipdé — édip- Finally,
the coderivative of —¦ (i.e., the R(k, k) equation) becomes

df (dV) 1 ^ ' ^ 2 W 'd® + W 'd^ (12 3)

(Note that d) *d* is the coderivative with respect to the spacetime metric.) Before we

apply Stokes' theorem, it is worthwhile noticing that each of the above equations can be

written in the (current conservation) form dfj 0. In fact, using for instance d^(é^)

-^ and df(ipf) -ÄÄ + 2iP^-, eqs. (12.2) and (12.3) are equivalent to

,(£_ *-)_„. ,(S + „»)_„ (I,4,

and

,(£+«,» .„ö-*«).,,. *(£)-., (1,5,

respectively. We can now integrate these equations over a (not necessarily static) hypersurface

extending from the horizon to S^. Using Stokes' theorem and the fact that all potentials
assume constant values on H and S^, one obtains linear combinations of the total mass M,
the charges Q and P and the corresponding horizon quantities Mh 4^K-4, Qh and Ph'-

"•(M»> -1k,m•('*£)¦ * «m - -hi,»,*('*£)• <126>

and similarly for P and Fh- (Here we have used the Komar expressions for the charges and
the identities *dk -§(k A u) - *(fc A Ç) and F k A f A *(k A *), as well as the
fact that the boundary integrals over the additional terms vanish; see [2] for details.) For
simplicity, we shall also assume that the NUT charge vanishes, i.e., that /s2 d(^) 0. This
implies that the 1-form ^ does not contribute to the boundary integrals, since *(k A ^)

|d(^). Every equation dfj 0 gives now rise to a relation of the form /^ *(k A j)
fH*(k A j), which is evaluated by making the following substitutions: (dV/V)^ —> 2M,
(dV/V)H -> 2MH, (#/V)oo - -Q, (dé/V)H - -Qh, (#/V). -> -P, (diP/V)H -» -PH
and (du/V2)ao (du/V2)H —> 0. Adopting a gauge where é<x> ^oo U^, 0 and using
Ko 1 and Vh 0, eqs. (12.4) and (12.5) now yield

Q Qh, P Ph, M MH + éuQAipHP, (12.7)

where the last expression is, of course, the Smarr formula.



524 Heusler

One may now ask whether there exist additional combinations of the 1-forms a*

(\t, #> y4, * which - by virtue of the field equations (12.2) and (12.3) - can be cast into
the form of local conservation laws. This is indeed the case. A relatively obvious possibility
is

(12.8)j(éf-ipd4 + (é>AiP2)v^=0,

which, after integration, gives rise to the formula

QiPH PéH- (12.9)

Together with the Smarr formula, this enables one to solve for the electromagnetic potentials
in terms of the charges, the total mass and the horizon quantity Mh — ~^KA,

en Q
M -MH
Q2 + P2

Ì>H P M-MH
Q2AP2

(12.10)

In order to find all remaining differential identities in a systematic way, we consider the
ansatz j YJfci f[V, U, é, ipj-a* and require that dfj 0, i.e., that YJ[/'dTa* - (df o/)] 0.

Writing df f,v dV + f,a (u — ipdé A édip) A f,$ dé + f,$ dip, one obtains a set of (simple)
partial differential equations for the four functions /' of the four potentials. Solving these

equations gives, in addition to eq. (12.8), three formulae of the desired form. The first one
is

*{[.:)%+Uf+[f+i?-V] kdjP_ .dé
V vv 27

v v v 0, (12.11)

(where [...] \(é2 A ip2)2 + 272 - \(V2 + 1)). This immediately yields -2UH(MH A éiiQ +
iPhP) A (éjj A ip2H)(éHP — Ì>hQ) 0. Using the Smarr formula (12.7) and the symmetry
property (12.9), this becomes UHM 0 and therefore

U„ 0, (12.12)

which reflects the fact that we consider configurations with vanishing NUT charge. The
second solution of the differential equations for the functions /' gives rise to the conservation
law

rft ([•¦¦]£ - * Kj + V2 - w2+v - a v + m -2t/] y) ° ' (12-13)

(where [...] 2ip(l + é2+ ip2)—4éU). (Replacing ip —> é and é ~* —"é in the above equation
gives the third solution which does, however, not contain new information.) Evaluating the
above current on the boundary and using again Qh Q and Ph P immediately yields
2éHMH A (é2H - 3ip2H - 1)Q + (4éHipH ~ 2UH)P 0. Using the expressions (12.10) and
(12.12) for the values of the potentials in terms of the charges gives the desired formula
(12.1) or, equivalently,

TH \ \Jm2 -Q2-P2 (12.14)
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for the Hawking temperature Th- The reason why there exist nontrivial combinations of the
Einstein-Maxwell equations (12.2), (12.3) which can be cast into the form dfj 0 lies in the
structure of the Ernst equations. We have already mentioned that - when formulated with
respect to the stationary Killing field - the latter are equivalent to a nonlinear sigma-model
with target manifold S7(l, 2)/S(U(l) x 7(1,1)). The field equations are therefore obtained
from an effective Lagrangian of the form (11.4) and assume the form dT Jf 0, where J£ is

the matrix valued current 1-form $_1d$. (The definitions of $ and of the Ernst potential
differ from the definitions given in eqs. (11.2), (11.3), since the latter were formed on the
basis of the axial Killing field: Here we use E (—V + é2 A ip2) A ÏY and $aj rjab — 2vavb,

where the Kinnersley vector is defined in terms of the Ernst potentials E and A as before.)
The additional components of the equations dfJ§ 0 are, in fact, exactly the combinations
(12.9), (12.11) and (12.13) of the Einstein-Maxwell equations constructed above.

I would like to thank the organizing committee of the Journées Relativistes 1996 for inviting
me to give this lecture. It is a pleasure to acknowledge interesting discussions with P.

Chrusciel, T. Damour, S. Deser, G. Gibbons, W. Israel and N. Straumann on various issues

of this talk.
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