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Relativistically rotating dust

By Gernot Neugebauer, Andreas Kleinwachter and Reinhard Meinel

Max- Planck-Gesellschaft, Arbeitsgruppe Gravitationstheorie an der Universitat Jena,
Max-Wien-Platz 1, D-07743 Jena, Germany

Abstract. Dust configurations play an important role in astrophysics and are the simplest models
for rotating bodies. The physical properties of the general-relativistic global solution for the rigidly
rotating disk of dust, which has been found recently as the solution of a boundary value problem,
are discussed.

1 Introduction

Dust, as the simplest phenomenological material, is a good model for astrophysical and
cosmological studies. As a source of gravitational fields, dust may be interpreted, in a hy-
drodynamical language, as a many-particle system, whose particles (mass-elements) interact
via gravitational forces alone. While the cosmological relevance of that model has been de-
monstrated very early [1], investigations of isolated dust configurations are rather rare [2].

This paper 1s meant to discuss dust as a model for rotating bodies and to focus attention
on the relativistic and ultrarelativistic behaviour of a rotating dust cloud. For this reason,
we consider the relativistic generalization of the classical Maclaurin disk, which is the flat-
tened (two-dimensional) limit of the famous Maclaurin spheroids. The corresponding global
solution to the Einstein equations has recently been found as the solution of a boundary
value problem [5], first formulated and approximately solved by Bardeen and Wagoner [3],
[4]. In this connection, the appearance of a boundary value problem requires a comment:
The reason for the complete absence of global solutions describing any uniformly rotating
perfect fluid ball is that there is no systematic procedure for constructing solutions of the
non-linear Einstein equations inside the source and matching them to exterior solutions
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along an unknown (‘free’) surface such that those global solutions are regular everywhere.
However, in the disk limit, in which the perfect fluid becomes dust!, the body has no longer
an interior region; it just consists of surface, so to say. Now, the surface conditions (vanishing
pressure along the surface etc.) can be considered as the boundary conditions on a regular
stationary and axisymmetric gravitational vacuum field (only the radius remains ‘free’) and
this fact makes disk problems accessible to a systematic treatment. Namely, it has been
shown that ‘inverse’ methods leading to linear structures (Riemann-Hilbert problems, lin-
ear integral equations) apply in this case. Following this idea, it was possible to describe
the gravitational field of the rigidly rotating disk of dust mentioned above in terms of two
integral equations [5]. One of them, the ‘small’ one, describes the behaviour of the gravi-
tational field along the axis of symmetry and the physics on the disk (fields, mass-density,

..). It turned out that its solution can be represented in terms of elliptic functions [6].
The other one (the ‘big’ integral equation) makes use of the solution of the ‘small’ integral
equation and describes the gravitational field everywhere. Surprisingly, this equation and its
corresponding Riemann-Hilbert problem could be solved in terms of hyperelliptic functions

7).

In the next section we will briefly repeat the mathematical formulation of the boundary
value problem and its solution. The main intent of this paper, however, is the discussion of
the physical properties of the disk of dust solution in section 3. Finally, general conclusions
form the last section.

2 The boundary value problem and its solution

To describe a rigidly rotating disk of dust we use cylindrical Weyl-Lewis-Papapetrou coor-
dinates

ds® = e7 [ (dp® + dC?) + p2dp?] — *V(dt + ady)?, (2.1)

which are adapted to stationary axisymmetric problems (U = U(p,(), a = a(p,(), k =
k(p,()). In these coordinates, the vacuum Einstein equations are equivalent to the Ernst
equation

1
(RS W oo Tt +;fap) =T 4o (2.2)
for the complex function
F(p,C) = & +ib (23)
with
ayp = pe_4U67C sy Gy = _p6_4Ub=P (24)
and y ]
k.= p[U’z _U’g +16_4U(b’;2> _b’g ), k= 2p(U,, Uy —}—16_4[][),0 by ). (2.5)

1Strictly speaking, the pressure — to — mass—density ratio tends to zero everywhere. (The maximum
pressure — at the center — remains finite while the volume mass—density becomes infinite.) The radial
distribution of the surface mass-density as well as the exterior gravitational field of this object become
identical with those of a ‘genuine’ dust disk.



474 Neugebauer, Kleinwichter and Meinel

As a consequence of the Ernst equation (2.2), the integrability conditions a,,; = @.¢,, kypc =
k., are automatically satisfied and the metric functions a and k may be calculated from the
Ernst potential f. Thus, it is sufficient to consider the Ernst equation alone.

The metric (2.1) allows an Abelian group of motions G; with the generators (Killing
vectors)

£ =6, €& <0 (stationarity),
nt = 5:;, n'm; > 0 (axisymmetry), (2.6)
where the Kronecker symbols ! and 6; indicate that ¢ has only a t-component (£ = 1)

whereas 7' points into the azimuthal p—direction (its trajectories have to form closed circles!).
By applying (2.6) we get from (2.1) the invariant representations

eV = £, a=—Wyt (2.7)
for the “Newtonian” gravitational potential U and the “gravitomagnetic” potential a.

To formulate the boundary value problem for an infinitesimally thin rigidly rotating disk
of dust with a coordinate radius po let us start from a spheroid-like rotating perfect fluid
configuration (Fig. 1, left) and interpret the rigidly rotating disk of dust as an extremely
flattened limiting case of that configuration (Fig. 1, right).

|, S § ey,
QE) | ki ~ ; | e ~
E i ke 2 | AN
5 \ % E \
w |l \ 2 g | N2
P (2}
°h \ & = |l \ &
< | \ 2 | \
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B 1 L Surface: 1
\© 5 - >
N Equatorial plane

FiG. 1 — The rigidly rotating disk of dust (right-hand side) as the extremely flattened limit of a
rotating perfect fluid body (left-hand side).

The hydrodynamics of a perfect fluid with the energy-momentum tensor

Tir = (e + p)usur + pgik, (2.8)
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€, P, Wi, gir being energy density, pressure, four-velocity, and metric, respectively, follows
from the balance equation

Tik;k =0, (29)
where the semicolon denotes the covariant derivative. Rotational motion of the fluid means
vt =e V(€ + ), uu=-—1, (2.10)

i.e., the four-velocity is a linear combination of the time-like Killing vector & and the
azimuthal Killing vector n*. Obviously,

e?V = — (€ + Qn')(& + Q). (2.11)

For rigidly rotating bodies, the angular velocity {2 is a constant,

) = constant. (2.12)
Then, for an equation of state
e = ¢(p), (2.13)
the pressure p must be a function of V' alone,
p=pV). (2.14)

This follows from Eqgs. (2.8), (2.9). If Eq. (2.13) is surface—forming, the matching condition
at the surface (fluid-vacuum interface) requires

p(Vo) =0, (2.15)
i.e. we have
V=V (2.16)

along the surface of the body. Eq. (2.11) inspires us to introduce a corotating frame of
reference by the transformations

t'=t, ¢ =p-Q; (2.17)
=400, 7 =7 (2.18)

As a consequence of Eq. (2.18), the corotating potential f’ constructed from the primed

Killing vectors with the aid of the Egs. (2.7) and (2.4) is again a solution of the Ernst
equation,

(RIS soo + e +%f’,p) N EEEY (2.19)

Hence, Eq. (2.16) tells us that the real part of the corotating Ernst potential is a constant
along the surface of the body, Rf’ = exp(2V5). We may assume the validity of this result
for the disk limit, too,

Rf'looe = €2 (0< p < po), (2.20)
where ¢ = 0% means top and bottom, respectively. Thus we have found our first boundary
condition along the disk (above and below). As a consequence of the Einstein equations with
the perfect fluid source (2.8) we may conclude in the disk limit that

(P_IG4U,a,vp )ap +(P—164U’arvc )vc =0 (2'21)
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holds everywhere including the disk. Applying the procedure known from the transition
conditions in electrodynamics, one obtains

da’

dd’ _ da’
o¢

=5 (2.22)

¢=0t ¢=0~—

at all points of the surface. On the other hand, the reflectional symmetry of the gravitomag-
netic potential a’,

a’,(pa C) = a'(p, _C) (223)
leads to o -
a a
— = — — (2.24)
84 ¢=0+* aC (=0~
on the disk, so that da’/d¢ has to vanish on the disk,
oa’
— =0 (0<p<po). (2.25)
aC ¢=0%

Combining this relation with Eq. (2.4), one has ¥ = constant on the disk and, after a
normalization,

%f’|C=Oi = bl!(:oi = 0 (0 S p S po) (2'26)

as the other boundary condition along the disk (above and below). Since at infinity (p?+(% —
oc) the space-time of any isolated source is Minkowskian, we have to take care of the relation

fliayere =1 (2.27)

infinity:
f—+1

disk:
ff o 62V°

Po

F1G. 2 — Boundary value problem [5]. f’is the Ernst potential in the corotating frame of reference
defined by p' = p, (' =, @' = p— U, t' =1t (v* = e‘Voéfl,). The solution f(p,() has to be regular
everywhere outside the disk.
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The conditions (2.20), (2.26) and (2.27) form our system of boundary conditions for an
extremely flattened (infinitesimally thin) rigidly rotating disk consisting of a perfect fluid. It
can be shown that the 2-dimensional mass elements of this disk move on the geodesics of their
own field. This justifies the designation “disk of dust”, cf. the footnote 1. Fig. 2 illustrates the
boundary conditions on f. Moreover, the wanted Ernst potential satisfying those conditions
has to be regular everywhere outside the disk. The axis of symmetry requires particular
care, especially the elementary flatness condition along the axis (f,, (¢,p =0) =0).

The boundary values depend on the two parameters exp(2Vp), cf. (2.20), and 2, cf. (2.18),
so that a 2-parameter solution can be expected from the very beginning. €t and exp(2Vp)
are “source” parameters with a clear physical meaning: £ is the constant angular velocity of

the mass elements (as measured by an observer at infinity), and exp(2V4) defines the relative
- redshift

o=e " —1 (2.28)

of a photon emitted from the center of the disk. Obviously, other parameter pairs can be
chosen. It will turn out that the ‘centrifugal’ parameter

p=20%pke % (2.29)

is a good measure for the relativistic behaviour of the disk (p varies between px = 0:
Minkowski space and g = po = 4.62966...: ultrarelativistic case). We shall present the
Ernst potential f in terms of g and Q or y and pg. On the other hand, the solution may also
be characterized by the total mass M and the {(—component of the angular momentum .J,
which far field quantities can be read off from a multipole expansion. Hence, a connection

Q=Q(M,J), Vo=WM,J) (2.30)
comparable with the parameter relations of “black hole thermodynamics” must hold.

Let us now briefly outline the solution procedure. We have made use of the so—called
inverse scattering method of soliton physics, which was first utilized for the axisymmetric
stationary vacuum Einstein equations by Maison [8], Belinski & Zakharov [9], Harrison [10],
Neugebauer [11], Hauser & Ernst [12], Hoenselaers, Kinnersley & Xanthopoulos [13], and
Aleksejew [14]. Some of these authors followed the line of Geroch [15], Kinnersley [16],
Kinnersley & Chitre [17], and Herlt [18]. We have applied a local version [19] in which the
Ernst equation (2.2) is the integrability condition of the “linear problem”

@,z:{(g g)+/\(g g)}@ (2.31)
(EDE e

where ®(z, 2, 1) is a 2 x 2 matrix depending on the spectral parameter

K —iz
K4z

Ay == (K a complex constant) (233



478 Neugebauer, Kleinwichter and Meinel

as well as on the coordinates z = p+i(, z = p—i(, whereas C, D and the complex conjugate
quantities C', D are functions of z, z (p, () alone. Indeed, from ®,.; = ®,;, and the formulae

A 1
Lt b= (A1 2.34
o= =D A= (P 1) (2:34)

it follows that a certain matrix polynomial in A has to vanish. This yields the set of first
order differential equations

1 1
4p 1p
plus the complex conjugate equations. The system (2.35) has the “first integrals”

C;=C(D-C)-—(C+D), D;=DC—-D)——(D+0C) (2.35)

_ _fs _f
PER P TR

Eliminating C' and D in (2.35) one arrives at the Ernst equation (2.2). Vice versa, if f is a
solution to the Ernst equation, the matrix ® calculated from (2.31), (2.32) does not depend
on the path of integration. The idea of the “inverse methods” is to discuss ®, for fixed values
of z, z, as a holomorphic function of A and to calculate C and D from ¢ afterwards. This
is an ‘inverse’ procedure compared with the ‘normal’ way which consists of the solution of
differential equations with given coefficients. The term ‘scattering’ comes from the solution
technique of the Korteweg—de Vries equation developed by Gardner, Greene, Kruskal &
Miura [20] whose linear problem has partially the form of the (time-independent) Schrédinger
equation. In this case, the calculation of the coeflicients consists of the construction of the
Schrodinger potential from the scattering data.

(2.36)

To construct ® as a function of A we have integrated the linear problem (2.31), (2.32)
along the dashed line in Fig. 1 (right-hand side) and exploited the information of C, D
and A along the axis of symmetry (f,,= 0, A = £1), the boundary conditions on the disk
which simplify C” and D’ (i.e. we had here to switch to the corotating system) and the simple
structure of the linear problem at infinity (C = D = 0). In this way, we could pick up enough
information to construct ®(z,z, A) completely. (The crucial steps were the formulation and
solution of a matrix Riemann-Hilbert problem in the complex A-plane.) The linear problem
(2.31), (2.32) tells us that ® at A = 1 may be normalized in a very simple way,

(2,7, 1) = ( ; _} ) | (2.37)

Hence, once @ is known, the Ernst potential f can be read off from ¢ (f = ®41(z,2,1)).

The result for our problem is [7]

; e xzdx N 7%(2 dX [ hX?dX (238
= pog - :
By W wo )W | [
X1 Xz i
where the lower integration limits X;, X, are given by
x2=2"E x2_ _'TE (gx <0, RX,>0). (2.39)

u p
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whereas the upper limits X,, X, must be calculated from the integral equations

/ f fhaX  PXdX | PXdX [ hXdX 2.40)
wolwe W W T |

1 X2 et

Here we have introduced the abbreviations

W=WiWa,  Wi=(X—C/po)+(p/po)ts  Wo= /1421 +X27  (241)

and

n (/1 +p2(1+ X2)2 + (1 + X?))
B ﬂ'i\/l+,u2(l+X2)2 '
The third integral in (2.38) as well as the integrals on the right-hand sides in (2.40) have to
be taken along the imaginary axis in the complex X-plane with h and and W, fixed according

to ®W,; < 0 (for p,( outside the disk) and Rh = 0. The task of calculating the upper limits
Xo, X in (2.39) from

(2.42)

' h dX thX

k]

(2.43)

is known as Jacobi’s famous inversion problem. Gopel [21] and Rosenhain [22] were able
to express the hyperelliptic functions X, (u,v) and Xp(u,v) in terms of (hyperelliptic) theta
functions. Later on it turned out that even the first two integrals in (2.38) can be expressed
by theta functions in u and v! A detailed introduction into the related mathematical theory
which was founded by Riemann and Weierstrafl may be found in [23], [24], [25]. The repre-
sentation of the Ernst potential (2.38) in terms of theta functions can be found in Stahl’s
book, see [23], page 311, Eq. (5). Here is the result: Defining a theta function ¥(z,y; p, g, @)
by?

oo o0

Hompna)= Y, Y, (—1)rtogh ¢ p2netingtsmns (2.44)

m=—0o0 n=—00

one can reformulate the expressions (2.38), (2.40) to give
ﬁ(agu + aiv — 017 ﬁg‘u. + 131'0 - 027 p.q, Of)
19(010'11, + v + 017 IBUU' < ﬁlv s C2§ p.q, Ct)
with v and v as in (2.43) and

f - ew('voqu’n vt pw) (2_45)

P hX2dX
W,

w =

(2.46)
The normalization parameters ag, ai; Bo, 51; Yo, 71, the moduli p, g, @ of the theta function

and the quantities Cy, Cy are defined on the two sheets of the hyperelliptic Riemann surface
related to

= /(X = X2)(X — X0)(X — Xo)(X — Xa)(X — i2/po)(X + iz/po), (2.47)

see Figure 3.

2Weuse19=19[

—_— O

(l] } where the bracket indicates the characteristic, see [24].
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FX

ay ~ |~ as

Y
b=+
e

FiG. 3 — Riemann surface with cuts between the branch points X; and X;, X, and X', —iz/po
and iZ/pg. Also shown are the four periods a; and b; (i = 1,2). (Continuous/dashed lines belong
to the upper/lower sheet defined by W — +uX? as X - oc.)

There are two normalized Abelian differentials of the first kind

dX XdX
df.d] = QOW + a1 W (248)
dX XdX
= e 24
dw, Bo W + b W (2.49)
defined by
fdwn Wb (=12 m=1,9). (2.50)

Eq. (2.50) consists of four linear algebraic equations and yields the four parameters ag, aq,
Bo, B1 in terms of integrals extending over the closed (deformable) curves @y, a;. It can be
shown that there is one normalized Abelian differential of the third kind

XdX | X2dX
w T HFTw

dX
dw =y%o—+m (2.51)

%%
with vanishing a—periods,

fm:o (G=1,2). (2.52)
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This equation defines 79, 71 (again via a linear algebraic system). The Riemann matrix

Inp 2« ) :
(Bij) = ( 20’; lnq) (1=1,27=1,2) (2.53)

(with negative definite real part) is given by

Bi; = j{ dw; (2.54)
b;

and defines the moduli p, ¢, a of the theta function (2.44). Finally, the quantities Cy, C3
can be calculated by

oot
Ci=— f dw; (i=1,2), (2.55)

—iz/po
where + denotes the upper sheet. Obviously, all the quantities entering the theta functions
and the exponential function in (2.45) can be expressed in terms of well-defined integrals
and depend on the three parameters p/pg, (/po, p. The corresponding “tables” for «;, £,
v, Ci, Bij, u, v, w can easily be calculated by numerical integrations. Fortunately, theta

series like (2.44) converge rapidly. For 0 < u < po, the solution (2.45) is analytic everywhere
outside the disk — even at the rings —iz/py = X;, Xs.

Figures 4 and 5 give an impression of the Ernst potential for g = 3, as an example.

Fi1G. 4 — The real part (e2V) of the Ernst potential for u = 3.
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FiG. 5 — The imaginary part (b) of the Ernst potential for u = 3.

3 Physical properties

In dimensionless coordinates, p/po, (/po, the solution depends on the single parameter p.
The original parameter V; entering our boundary value problem can be calculated from i

via Rf(p = 0,{ = 0%) (on the axis p = 0 we have Rf' = Rf) leading to 6]

L 1+ pu?
Vo= —=sinh™' { u + }, (3.1)
2 { o[I(p); 50% — 4, 8p(1 + £)] — 2y

1) 1/# In(z + V1 + z%)dz (3.2)

B)=— ) .

Tl 1+ a)(u -2
where g is the Weierstrafl function defined by
o0 dt

= T, 3.3
/p(a:;gz.ga) VAt — gat — g3 (33)

Fig. 6 shows exp[2Vp(x)] in the range 0 < p < po = 4.62966184 ... with ug being the first
zero of the denominator in (3.1). This corresponds to 0 > V4 > —o0, where |Vo| < 1 is the
Newtonian limit. Note that, according to (2.29) and (3.1), Qpo is a given function of i, and
we can use either py or Q as the second parameter.
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FiG. 6 — The corotating Ernst potential f’ = 2% in the disk as a function of the parameter u.

In Fig. 7 the invariant baryonic (proper) surface mass—density o, can be found as a function
of p/po for several values of u. Note that the volume mass—density ¢ entering the energy-
momentum tensor (T;x = eu;uy) may be expressed formally by

e = 7,(p)e"48(0), (3.4)
where 6(() is the usual Dirac delta-distribution.

0.20

0.06

I T T W U W O N A U T N T R 0 A 0 O O

Fi1G. 7 — The surface mass—density o,. The normalized quantity ¢,/ is shown as a function of
P/ po-
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o, can be calculated from
1 vV

Op = €

= 5 . (3.5)

(:O+

A more explicit expression has been given in [6]. From o, we can calculate the total baryonic
mass My, the gravitational mass M, and the total angular momentum J:

Po

M, = je —gulddz =2 eV /apek'updp, (3.6)

£ 0

1 PO Po
M = 2/(Tab - §Tgab)n°£de = 2w/dpek_updp + 47Qe~" / apek'Uu’mp dp, (3.7)
= 0 0
PO
J= —]Tabn“nbdv =2re V0 /Jpek'Uu’mpdp, (3.8)
x 0

where ¥ is the spacelike hypersurface ¢ = constant with the unit future-pointing normal
vector n®. Note that M = exp(Vo)Mo + 2QJ, cf. [26]. Alternatively, M and J — as the first
gravitational multipole moments — may be obtained from the asymptotic expansion of the
Ernst potential, e.g. on the symmetry axis. The dependence of My, M and J on p can be
seen in [ig. 8.

1.0 -
0.8 3 (M,
0.6
] M
0.4
: 0%
0.2 3
D.O B o TrrrrrrrrT Trrrrrrrrr Trrrrrrorrr TTTrrrT
0.0 1.0 2.0 3.0 40 Mo

Fic. 8 — Baryonic mass My, gravitational mass M and angular momentum J. The normalized
quantities Q My, QM and Q2J are shown in dependence on p.

The relative binding energy (My — M)/M, as well as the characteristic quantity M?/.J are
shown in Fig. 9.
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1.0 7
] M2/J

0.8
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L
Fic. 9 — Relative binding energy and M?2/J.

For y — po, M and J together with all the other multipole moments approach exactly the
values of the extreme Kerr solution (2 = 1/2M may be identified with the angular velocity
of the horizon) [30]. In fact, the solution becomes identical with the extreme Kerr solution
for all values of p and ( except p = ( = 0, which represents the horizon of the extreme Kerr
black hole. Note that, for non-vanishing Q (finite M), po — 0 as p — po.

I

1.4 3 ,'
E Newtonian disk /

20M

Fic. 10 — Relation between QM and M?/J for the classical Maclaurin disk (dashed line), the
general-relativistic dust disk and the Kerr black-hole [5].
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Fig. 10 combines the parameter relations between QM and M?/J for the dust disk as well
as for the Kerr black-hole. Both branches are connected at the point M?/J = 1.

Another limit of the space-time for u — ug is obtained for finite values of p/py and
(/po, see also [4]. The interpretation of the solution for g > po is beyond the scope of
this paper. We only want to mention here, that there are further zeros p, (n = 1,2,...)

of the denominator in (3.1) leading always to the extreme Kerr metric (y; = 38.70908. ..,
fp = 176.92845 ..., ...).

A characteristic feature of relativistically rotating bodies are dragging effects due to
the gravitomagnetic potential. Dragging effects near the rigidly rotating disk of dust have
been discussed in [31]. In particular, the dust disk generates an ergoregion for p > p. =
1.68849 ..., see Fig. 11. In this region the Killing vector ' becomes spacelike. As a con-
sequence, de/dt > 0 must hold for any timelike worldline there. Thus, seen from infinity,
any observer inside the ergoregion is forced to rotate in the same direction as the disk. For
u — po the well-known ergosphere of the extreme Kerr black hole appears.
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Fi1G. 11 — The ergoregion [31].

Note that the shape of the ergoregion for ¢ = 3 may be rediscovered in Iig. 4.
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4 Conclusions

In this article, we have considered the rigidly rotating disk of dust as an extremely flattened
rotating perfect fluid body. Such controllable limiting procedures reducing the dimension of a
body (here the thickness) are important for the derivation of equations of motion of particles
from the dynamics of extended bodies. In our case, the motion of the two—dimensional mass
elements is generally geodesic and independent of the underlying perfect fluid model. In
that sense, our disk of dust, like the classical Maclaurin disk, represents a “universal” limit
for any rigidly rotating perfect fluid ball. There is faint hope of an explicit global solution
for three-dimensional rotating perfect fluid sources with the limit (2.45)!

Another aspect of our solution is its derivation from a boundary value problem by means
of the inverse scattering method. It may be expected that this method will prove to be a
powerful tool for the solution of other boundary value problems for axisymmetric stationary
gravitational vacuum fields in Einstein’s theory. It could also improve the insight into the
structure of the exterior fields of rotating bodies. A first step in this direction consisted in

the treatment of the reflectional symmetry of the gravitational field with the aid of the linear
problem (2.31), (2.32) in [27].

Finally, as a ‘practical’ application, the solution could be used as a testbed for numerical
codes describing rotating star models in general relativity, as, e.g., neutron stars.

There is also a formal aspect to be mentioned. Generalizing the expressions (2.38),
(2.40) it was possible to construct a solution class in terms of hyperelliptic theta functions
containing an arbitrary potential function and — depending on the genus — an arbitrary
number of constants [28]. The relation of this class to the finite-gap class of solutions [29]
requires a subtil discussion of certain limiting procedures. We want to emphasize that it is
not possible to know a priori into which class of (known or unknown) solutions of the Ernst
equation a boundary value problem might fall.
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