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Cosmological Dark Matter as seen with
Gravitational Lensing

By Peter Schneider

Max-Planck-Institut fiir Astrophysik, Postfach 1523, D-85740 Garching, Germany

Abstract The distortion of images of faint high-redshift galaxies by the tidal gravitational field of
mass concentrations allows to investigate the mass distribution of individual galaxy clusters, the
investigation of the statistical properties of the mass distribution in galaxy halos, and the detection
of dark halos without any reference to their luminosity. In addition, the statistical properties of
the image distortion field on large scales can be used to infer directly the power spectrum of
cosmological density fluctuations. I will outline the basic methods of this new research field in
extragalactic astrophysics, and present several recent results; in particular, a high-resolution mass
map of a high-redshift cluster of galaxies is presented and compared to the light distribution.

1 Introduction

Gravitational light deflection has been one of the key tests of Einstein’s Theory of General
Relativity. Several authors in the 1920’s have pointed out that this effect may give rise to
spectacular effects, such as multiple images or ring-like images of distant sources, but no
one expressed his vision so clearly as Zwicky in 1937, when he claimed that the observation
of the gravitational lens effect will be ‘a certainty’; he also estimated the probability of a
distant source to be multiply imaged to be a few tenth of a percent, very close to modern
estimates, and he predicted that the lens effect will allow the determination of the mass
of distant cosmic objects and, due to the magnification effect, allow deeper looks into
the universe (for an account of the history of this field and for references, see Chap.1 of
Schneider, Ehlers & Falco 1992, hereafter SEF). These predictions were eventually verified
when Walsh, Carswell & Weymann (1979) discovered the first lensed QSO, where two QSO
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images with redshift z; = 1.41, separated by 6", have nearly identical spectra from radio
to X-ray frequencies, with a giant elliptical galaxy at redshift zg = 0.36, situated in a
cluster of galaxies, between the images. Today, the number of multiply-imaged QSOs is
about 15; in addition, 6 ring-shaped radio images have been found, in some cases with a
(lower-redshift) galaxy at the ring center (for a recent review of the observational situation,
see Refsdal & Surdej 1994, and the recent proceedings edited by Kochanek & Hewitt 1996).
The discovery of giant luminous arcs in 1986 by Lynds & Petrosian (1986) and Soucail et
al. (1987) has shown that clusters of galaxies can act as efficient lenses; cluster lensing
today is one of the most active fields of gravitational lensing (for a recent review, see Fort
& Mellier 1994). Finally, the impressive demonstration (Alcock et al. 1993, Aubourg et al.
1993, Udalski et al. 1993) of the feasibility of the suggestion by Paczyniski (1986) to search
for compact dark objects in the halo of our Galaxy, has led to an active and successful
search of Galactic microlensing events, both towards the LMC and the Galactic bulge (for
a recent review, see Paczynski 1996).

These discoveries have opened up a new road towards investigating massive structures
in the universe. Since gravitational light deflection is insensitive to the nature and physical
state of the deflecting mass, it is ideally suited to study dark matter in the universe. In
this review, I will concentrate on the detection and measurement of dark halos of galaxy
size or larger, using the techniques of weak lensing.

2 What is weak lensing?

Light rays from distant sources are deflected if they pass near an intervening matter
inhomogeneity. This gravitational lens effect is responsible for the well-established lens
systems like multiply-imaged QSOs, (radio) ‘Einstein’ rings, the giant luminous arcs in
clusters of galaxies, and the flux variations of stars in the LMC and the Galactic bulge
seen in the searches for compact objects in our Galaxy, as mentioned above. These types
of lensing events are nowadays called ‘strong lensing’, to distinguish it from the effects
discussed here: light bundles are not only deflected as a whole, but distorted by the tidal
gravitational field of the deflector. This image distortion can be quite weak and can then not
be detected in individual images. However, since we are lucky to live in a Universe where
the sky is full of faint distant galaxies, this distortion effect can be discovered statistically.
This immediately implies that weak lensing requires excellent and deep images so that
image shapes (and sizes) can be accurately measured and the number density be as high
as possible to reduce statistical uncertainties. Weak gravitational lensing can be defined as
using the faint galaxy population to measure the mass and/or mass distribution of individual
intervening cosmic structures, or the statistical properties of their mass distribution, or to
detect them in the first place, independent of the physical state or nature of the matter, or
the luminosity of these mass concentrations. In addition, weak lensing can be used to infer
the redshift distribution of the faintest galaxies.

In order to describe these concepts in somewhat more detail, the basic theory of grav-
itational lensing should briefly be recalled. The formal description of gravitational lensing
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Fig. 1. The geometry of a gravitational lens

is basically simple geometry. Consider a mass distribution (the deflector) at some distance
Dy from us, and some source at distance Dy (see Fig.1). Then, draw a reference line
(‘optical axis’) through lens and observer, define planes (‘lens plane’ and ‘source plane’)
perpendicular to this optical axis through lens and source, and measure the transverse sep-
arations of a light ray in the source and lens plane by 1 and &, respectively. Then from
simple geometry, the relation between these two vectors is

= -,’?ie _ Dyale) 1)

where &(€) is the deflection angle. Since all deflection angles one is interested in are
very small (even in clusters of galaxies, the deflection angles are well below 1 arcmin), and
thus the gravitational fields are weak, the linearized field equation of General Relativity
can be employed, which implies that the deflection angle is a linear functional of the mass
distribution. Since the deflection angle of a light ray passing a point mass M at separation
r is 4GM/(rc?), the deflection angle at position £ caused by a mass distribution descibed
by the surface mass density X'(§) becomes

e [ e 4G5E) E-€
ae)= [ e 5 e )

where the integral extends over the lens plane.

The simple description of a gravitational lens situation can be justified much more
thoroughly from Relativity; the reader is referred to SEF, Chap. 4, and Seitz, Schneider &
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Ehlers (1994) for a rigorous treatment. Here it suffices to note that for all situations encoun-
tered in this review, the gravitational lens equations provide excellent approximations; in
particular, the simple geometrical derivation of (1) remains valid in a Friedmann-Lemaitre
universe if the distances are interpreted as angular-diameter distances.

It is convenient to replace the physical lengths in (1) by angular variables, by defining
ﬁ:n/Dsa BZ&/Dda

Dys .. 1 j 5 . 0—@

0) = D48) = — d“0 k(@) ——— 3
a( ) Ds a( de) T ]R2 K'( )|6_ e,|2 b ( )

with the dimensionless surface mass density

2(Dq8) . ¢ D
)= ——= h Y,=— : 4
“(0) = =5, Wit 47G Das Dy (4)
then the lens equation simply reads

The critical surface mass density X, is a characteristic value which separates strong from
weak lenses; if Kk < 1 everywhere (i.e., ¥ < ¥;), then the deflector is weak, whereas if
k ~ 1 for some @, the lens may produce multiple images and is called strong. Multiple
images occur if the lens equation (5) has multiple solutions @ for the same source position

8.

Light bundles are not only deflected as a whole, but differential deflection occurs.
Hence, in a first approximation, a circular light bundle aquires an elliptical cross section
after passing a deflector. The differential deflection changes the solid angle subtended by
a source. Since the surface brightness (or the specific intensity) is unchanged by light
deflection — this follows from Liouville’s theorem, or the fact that light deflection neither
creates nor destroys photons — the change in solid angle leads to a change of observed flux
from a source: the flux of an infinitesimally small source with surface brightness I and
solid angle Aw is S = I Aw. If Awy is the solid angle subtended by an infinitesimally small
source in the absence of a deflector, then the observed flux of an image of this source at 8
is S = (@) So, where the magnification u of an image of an infinitesimally small source is

_ 3]
1(6) = |det A(8)]"" , where A(6) = 52- (6)
is the Jacobian matrix of the lens equation; in components, A;; = 08;/00; = f; ;. The
matrix A describes the locally linearized lens mapping. We can write the components of A

as
_(1-k-m —2 e B cos(2p)  sin(2¢)
4= ( —72 1-k+ ’Yz) =(1=r)I-hl (sin(2cp) — cos(2¢p) o (7)
where vy is called shear and describes the tidal gravitational forces (Z is the two-dimensional
identity matrix). The components of the shear can be calculated from (3) and (6); if we
write them in complex notation, v = <y + iy,, one finds

ol L /R @2 DO - 0)k(6) (8a)

™
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with the complex function

03 — 62 — 2i0,6
D) = 2 |19]4 = . (8b)

The eigenvalues of A are 1 — k =+ ||, where |y| = /7% +~3. The fact that the two
eigenvalues of A will be different in general implies that a circular source will be imaged,
to first approximation, into an ellipse, whose axis ratio is given by the ratio of these two
eigenvalues, and the orientation of the major axis is described by the angle ¢. We shall
later discuss the image distortion for a general source.

Note that det A can vanish, which formally implies a diverging magnification. Of
course, real magnifications remain finite. A real source is extended, and the magnification
averaged over an extended source is always finite. Even if we had a point source, the mag-
nification would remain finite: in this case, the geometrical optics approximation breaks
down and light propagation had to be described by wave optics, yielding finite magnifi-
cations (see Chap.7 of SEF). Astrophysically relevant situations involve sufficiently large
sources for the geometrical optics approximation to be valid. The closed curves on which
det A = 0 are called critical curves; the corresponding curves in the source plane, obtained
by inserting the critical points into the lens equation, are called caustics. An image close
to a critical curve can have a large magnification; also, the number of images of a source
changes by £2 if and only if the source position changes across a caustic. In this case,
two 1mages merge at the corresponding point of the critical curve, thereby brightening, and
disappear once the source has crossed the caustic. The caustic is not necessarily a smooth
curve, but it can develop cusps. A source close to, and inside a cusp has three bright images
close to the corresponding point of the critical curve, whereas it has one bright image if
situated just ouside the cusp.

3 Cluster mass reconstruction from weak lensing

The fact that the sky is densely covered by faint galaxy images allows the statistical
study of distortions of light bundles from these high-redshift sources. The basic idea here
is that the shape of a galaxy image is affected by the tidal gravitational field along its
corresponding light bundle. This tidal field causes a circular galaxy to form an elliptical
image. Since galaxies are not round intrinsically, this effect can not be detected in individual
galaxy images (except when the distortion is so strong as to lead to the formation of arcs),
but since the intrinsic orientation of galaxies can be assumed to be random, a coherent
alignment of images can be detected from an ensemble of galaxies. In this and the next
two subsections, we shall discuss several aspects of this general idea.

If one considers the line-of-sight towards a cluster of galaxies, one can assume that
the main contribution to the tidal gravitational field along light bundles corresponding to
galaxies behind the cluster comes from the cluster itself, unless there are other clusters
near this line-of-sight. The tidal field, or the shear, is given by (8). Since the relation (8a)
between shear and surface mass density is a convolution-type integral, it can be inverted,
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e.g., by Fourier methods, to yield (Kaiser & Squires 1993)

iy 2 ]}R a2 Re [D"(0 ) %(8)] + o (9)

™

where the asterisk denotes complex conjugation, and Re(x) is the real part of the complex
variable x. Hence, if the tidal field v can be measured, the surface mass density of the
cluster can be obtained from (9) up to an overall constant. The reason for this constant to
occur is that a homogeneous mass sheet does not cause any shear.

One can think of several methods to characterize the shape of a galaxy image. A
convenient method is provided by using the matrix of second brightness moments,

0, — L 420 1(8) (6: — 6:) (6, — ;)
7 [d20 1(6) :

(10)

where I(6) is the surface brightness distribution, and 0 is the center of light of the galaxy
image, defined such that [ d%6 1(8) (@ — 8) = 0. Defining in analogy the tensor of second

brightness moments QST) of the intrinsic brightness distribution of the galaxies, one finds
from the lens equation (5) and the conservation of surface brightness, 1(8) = I*)(3(8))
that Q) = AQ A, where A is given by (7).

In the following, we shall for simplicity restrict our attention to non-critical clusters
only, i.e., we shall assume that det A > 0 everywhere. The reader is referred to Schneider
& Seitz (1995) and Seitz & Schneider (1995) for the treatment of critical clusters. One
then defines the complex ellipticity of an image as

. Q11 — Q22 + 2iQ12
Q11+ Q22 + 2¢/Q11Q22 — @3,

) (11)

and correspondingly the ellipticity e(®) of the intrinsic brightness profile of the galaxy in
terms of Qg;). For example, if an image has elliptical contours of axis ratio r < 1, then

lel = (1 —7)/(1+r). From the relation Q) = AQ A one then derives the transformation
between intrinsic and observed ellipticity (Schneider 1995)

o o 2 12
==L (12)
where v
= 1
g=q_— (13)

is the (complex) reduced shear. Finally, averaging over a set of galaxy images, together
with the assumption that the intrinsic ellipticity distribution is isotropic, so that <e(s)> =0,
one finds that

g={(e . (14)

Several comments have to made at this point:
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(a) The definition (10) of the quadrupole moments cannot be applied to real images, as
the integration extends to infinity. In order not to be completely dominated by noise, a
weighting function has to be included in the integrals. However, with an angle-dependent
weight function, the relation between @ and Q) no longer has a simple form and is
only approximately given by Q) = AQ A; the deviations from this law depend on the
intrinsic brightness profile of the source and the weighting function. Even worse is the
effect of seeing and an anisotropic point-spread-function (PSF), in particular if the latter
is not known very precisely. Several methods to deal with these complications have been
discussed in the literature (e.g., Bonnet & Mellier 1995; Kaiser, Squires & Broadhurst
1995). In particular, a calibration of the relation between ¢ and ¢(®) is obtained from
numerical simulations and from applying these methods to degraded HST images. It is
clear that HST images with their unprecedented angular resolution are best suited for this
kind of work, and that ground-based images are much more difficult to analyse. Future
ground-based observations will make use of the calibration that can be obtained from HST
images, in particular if an HST field is centered on the ground-based image.

(b) The fact that the observable g has to be obtained from averaging over an ensemble of
galaxy images implies that this method has a finite resolution. L.e., the averaging process
is performed over the galaxy images within a certain smoothing length from the point of
interest. Several methods of smoothing have been discussed (Kaiser & Squires 1993, Seitz
& Schneider 1995); we prefer smoothing with Gaussian weights. Since the number of images
over which the average is performed is finite, the relation (e(s)> = 0 is not strictly valid
due to the finite width of the intrinsic ellipticity distribution; only the expectation value of
¢®®) vanishes. The smoothing length need not be kept constant, but can be adapted to the
local ‘strength of the signal’.

(c) It is clear from (14) that only the reduced shear is an observable, but not the shear
itself as needed in the inversion equation (9). If the lens is weak in the sense x < 1, then
g ~ v, and (9) can be applied directly. In general, one can replace v in (9) by (1 — &)g,
which then yields an integral equation for #£(8). As shown in Seitz & Schneider (1995), this
integral equation can be easily solved in a few iteration steps. If this nonlinear correction
is taken into account, then (@) is no longer determined up to an overall additive constant
as implied by (9), but there exists a global invariance transformation (Schneider & Seitz
1995)

K(6) = k() + (1 —X) (15)

which leaves all image shapes invariant. This invariance transformation is the mass sheet
degeneracy discussed in a different context by Gorenstein, Falco & Shapiro (1988). Of
course, the allowed values of A are restricted by the requirement that the resulting mass
distribution is non-negative. Hence, this constraint always allows to obtain a lower limit on
the mass. An alternative way to obtain a lower limit to the mass inside circular apertures
has been discussed by Kaiser (1995a) — the so-called aperture densitometry — which also
allows a rigorous estimate of the uncertainty of this lower limit. Also, if the data field is
sufficiently large, one might expect that x decreases to near zero at the boundary of the
field, which then yields a plausible range for A; this in fact is one of the arguments to
demand wide-angle fields.

(d) The integral in (9) extends over the whole sky; on the other hand, data are given only on
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a finite data field (CCD field) U. If the field U is not sufficiently large, and the contributions
of the integral (9) from outside the data field are neglected, the estimate of the surface mass
density is no longer unbiased, but boundary artefacts occur. Kaiser (1995a) noticed that
there exists a local relation between the gradient of x and certain combinations of first
derivatives of the shear components,

Vi = (71,1 +72,2) .
Y2.1 — V1,2 ’

performing averages over line integrations of this local relation allows the construction of
unbiased finite-field inversion formulae (Schneider 1995, Bartelmann 1995, Seitz & Schnei-
der 1996a, Squires & Kaiser 1996). In Seitz & Schneider (1996a), an inversion formula has
been derived which filters out a particular noise component in the data which is readily
identified as such, and a quantitative comparison with other inversion formulae has shown
it to be the most accurate currently known direct inversion method (see also the lowest
three panels in Fig. 6 of Squires & Kaiser 1996).
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Fig. 2. The WFPC2 image of the cluster C10939+4713 (A851); North is at the bottom, East to the right.
The coordinates are in arcseconds. The cluster center is located at about the upper left corner of the left
CCD, a secondary maximum of the bright (cluster) galaxies is seen close to the interface of the two lower
CCDs, and a minimum in the cluster light is at the interface between the two right CCDs. In the lensing
analysis, the data from the small CCD (the Planetary Camera) were not used

(e) The transformation (15) leaves all image shapes invariant, but affects the magnification,
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p — /A%, Hence, this invariance transformation can be broken if the magnification can
be measured. Two possibilities have been mentioned in the literature: Broadhurst, Taylor
& Peacock (1995) noticed that the magnification effect changes the local number density
of galaxy images, n(S) = no(S/u)/u, where n(S) are the cumulative number counts, and
no(S) are the counts in the absence of lensing. Assuming a local power law, ng(S) < S™%,
then n(S)/ne(S) = p*~!. The blue galaxy counts have o =~ 1, and so no magnification
bias effect is observable. However, counts in the red have a flatter slope, & =~ 0.75, and
a number density decrease should be seen in regions of high magnifications. The number
counts of galaxies with a red color has an even flatter slope, and the magnification effects
become stronger. Indeed, this effect has been seen in the clusters A1689 (Broadhurst
1995) and Cl 0024+16 (Fort, Mellier & Dantel-Fort 1996). The magnification effect also
changes the redshift distribution at fixed apparent magnitude. Bartelmann & Narayan
(1995) noticed that individual galaxy images become apparently brighter, at fixed surface
brightness. Assuming a sufficiently tight intrinsic magnitude - surface brightness relation,
the magnification can be obtained locally. The additional information coming from the
magnification effects cannot be incorporated easily in a direct inversion formula such as
(9), and there are two possibilities to make use of it: one could obtain the surface mass
distribution from a direct inversion, such as (9), and use the magnification information
afterwards to fix the transformation parameter A in (15). Or, one could use a reconstruction
method which takes into account the local magnification information. One possibility for
the latter is a maximum-likelihood approach (Bartelmann et al. 1996; Seitz et al. 1996, in
preparation) for the reconstruction of the deflection potential ¢b. For an alternative approach
see Squires & Kaiser (1996).

(f) We have implicitly assumed that all sources have the same redshift, i.e., that the critical
surface mass density Y., is the same for all sources. This assumption is not too bad if
the cluster is at a sufficiently low redshift, since then the ratio Dys/Ds can be assumed
constant for faint galaxies. In general, however, the redshift distribution of galaxies has
to be taken into account. In the weak lensing regime (k < 1, |y| < 1), only the mean
value of Dys/Dg enters the reconstruction. The non-linear case is more complicated (Seitz
& Schneider 1996b) and requires the functional form of the redshift distribution. On the
other hand, this dependence may also allow to obtain constraints on the redshift distribution
of the faintest galaxies. Alternatively, Bartelmann & Narayan (1995) pointed out that the
expected strong dependence of surface brightness on the redshift of galaxies, together with
the dependence of the lensing strength on source redshift, may allow to determine the
redshift distribution of galaxies by studying the variation of lensing strength (i.e., mean
ellipticity) as a function of surface brightness. Also, the comparison of lens reconstruction
of clusters at different redshifts allows conclusions about the redshift distribution as a
function of magnitude — see Smail, Ellis & Fitchett (1994) and in particular Luppino &
Kaiser (1996) who have discovered a strong shear signal in a cluster with redshift z = 0.83,
implying that a large fraction of the faint galaxies which show the shear effect must have a
redshift well in excess of one.

The cluster construction method described above has been applied to several clusters.
Fahlman et al. (1994) analyzed the shear field of the cluster MS1224 and obtained a mass-
to-light ratio of ~ 800h, where h is the Hubble constant in units of 100 km/s/Mpc; in
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particular, the mass derived is much larger than that obtained from a virial analysis. For
the cluster A1689, an M/L-ratio of about 450h was found by two independent groups
(Kaiser 1995b; Tyson & Fischer 1995). A similar value for the M/L-ratio was found for
two clusters by Smail et al. (1995).
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Fig. 3. The lower right panel shows the reconstructed mass distribution of A851, assuming a mean redshift
of the N = 295 galaxies with 24 < R < 25.5 of (2) = 1. The other three panels show reconstructions
obtained from the same data set via bootstrapping, i.e., selecting randomly (with replacement) N = 295
galaxies from the galaxy sample. The similarity of these mass distributions shows the robust features of the
reconstruction, i.e., a maximum, a secondary maximum, an overall gradient, and a pronounced minimum;
these features can be compared with the light distribution as shown in Fig. 2

We (Seitz et al. 1996a) have recently analyzed the ‘weak’ lensing effects in the cluster
Cl10939+4713 (A851), using WFPC2 data (Dressler et al. 1994). Since the WFPC2 field
is fairly small, we have data only in the center of the cluster, where the lensing is not
weak. Also, the small field requires the use of an unbiased finite-field inversion technique,
and we used the one derived in Seitz & Schneider (1996a). Fig.2 shows the WFPC2
image of the cluster, and the reconstructed mass distribution, together with results from
a bootstrapping analysis, is shown in Fig.3. From the latter figure, one infers that the
reconstruction yields basically four significant features in the mass map: a maximum close
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to the position where the cluster center is predicted from optical observations, a secondary
maximum roughly in the lower right CCD, an overall gradient in the lower two CCDs
increasing ‘to the left’, and a pronounced minimum at the interface between the two right
CCDs. Comparing these features with the image (Fig.2) one sees that the maximum is
clearly visible in the bright (cluster) galaxies, but also the secondary maximum and the
minimum in the light distribution. In addition, the two maxima may be traced by the
X-ray emission, as indicated by the ROSAT PSPC-map. Hence, in this cluster we have
strong evidence of significant substructure in the mass, and that the light distribution on
average follows this substructure; this has also been demonstrated quantitatively. It will be
interesting to compare the mass map with a detailed HRI map which will be obtained soon
(8. Schindler, private communication). The M/L-ratio of the cluster within the WFC field
depends on the assumed redshift distribution of the background galaxies. Assuming that
the mean redshift of galaxies with 24 < R < 25.5 is about unity, we find that M/L & 200k,
a value significantly lower than for, e.g., MS1224. However, this is not too surprising, since
A851 is the highest-redshift cluster in the Abell catalog which clearly biases towards high
optical luminosity. In this cluster, we also have detected the magnification effect discussed
above, which has allowed us to obtain not only a strict lower limit on the mass inside the
data field, but also to obtain an estimate of the mass, which led to the above value for the
M/ L-ratio. Note, however, that this mass calibration is uncertain due to the fact that an
(unknown) fraction of the faint galaxies are cluster members which renders the estimate of
the magnification effect uncertain.

4 Galaxy-galaxy lensing

The shear field around clusters is sufficiently strong to measure their mass distributions —

see Sect.3. One can easily show that, assuming an isothermal mass profile, the ‘detection
efficiency’ of a lens scales like o#, where ¢ is the velocity dispersion. This scaling then
implies that individual galaxies are too weak for their presence to be detected in their
shear field!, but one should be able to detect this effect from a large ensemble of galaxies,
if the signals from the individual galaxies are added statistically. The signal one would
expect is a slight tangential alignment of background galaxies relative to the direction
connecting this background galaxy with a near foreground galaxy.

Tyson et al. (1984) have investigated this effect using ~ 60000 galaxies; they obtained
a null result. More recently, Brainerd, Blandford & Smail (1996) have analyzed a deep
field; they have divided their galaxy sample into ‘foreground’ and ‘background’ galaxies,
according to the optical magnitudes, and then studied the angle between the major axis
of the background galaxy and the line connecting the background galaxy with the nearest
foreground galaxies. The distribution of this angle shows a deficit at small angles, and
an excess at large angles, indicating the expected tangential alignment. Since an accurate
measurement of image ellipticities from the ground is very difficult, only galaxies brighter

1 assuming a number density of 50 galaxies/arcmin?, the minimum velocity dispersion for which a 3-o

detection would be possible is about 350 km/s (Miralda-Escudé 1991, Schneider & Seitz 1995).
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than r = 24 were used; the effect disappears for fainter galaxies, which most likely shows the
effect of the PSF on small images. Brainerd et al. have then simulated data, treating galaxies
as truncated isothermal spheres, and distributing them in redshift, and they showed that the
effect they observe is in accordance with expectations from their modelling. Recalling that
this effect was detected (at a 3-o level) with ‘only’ 506 ‘background’ galaxies, it appears that
one can use galaxy-galaxy lensing as a tool to investigate statistically the mass distribution
in galaxies, since larger samples will become available soon (also, ground-based images
with a smaller and/or more stable PSF will allow the use of fainter galaxies). Schneider &
Rix (1996) have proposed a maximum likelihood method for the analysis of galaxy-galaxy
lensing, which is very sensitive to the characteristic velocity dispersion of the galaxies, and
which can also yield significant lower bounds on the halo size of galaxies. An application
of this method to the many thousands of galaxies in the HST Medium Deep Survey will
allow the determination of the characteristic velocity dispersion of galaxies to very high
accuracy; in fact, Griffiths et al. (1996) have discovered a galaxy-galaxy lensing signal in
the MDS. To determine the characteristic size of dark halos, one should use shallower, but
wide-angle field survey which will become available soon.

5 Detection of (dark) matter concentrations

On wide-field images, one can search for (dark) mass concentrations by looking for statis-
tically significant alignements of faint galaxy images. Let w(z) be a weight function; one
can then define an aperture mass

m(xg) := /d?‘:l: k(x)w (|x — x¢]) = /dzx k(x +xo)w(x]) (16)

which is the integral of £ in a circular aperture around xo, weighted by the function w.
One can show (Kaiser et al. 1994, Schneider 1996) that m can be expressed directly in
terms of the tangential shear v, (y;x¢) at position y relative to the point xg, vi(y;Xo) =
—Re [’y(y + xo)e“Zi""], where ¢ is the polar angle of y:

m(x) = / a2y 7(y; %0) Q) (17)

where we have defined

ool = %/jdx' ooy —wlal] (18)

provided [ dz z w(z) = 0; this last condition on w(x) guarantees that the additive constant
in (9) does not appear in (16). In the case of weak lensing, k < 1, the image ellipticity
¢ at each point is an unbiased estimate of the local shear. Hence, the integral in (17)
can be transformed into a sum over image ellipticities. The advantage of this approach is
that the resulting quantity m(x() has well-defined statistical properties, so that the signal-
to-noise ratio can be easily calculated for any chosen weight function w. The weight
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function w can be optimized for maximizing the signal-to-noise ratio for a given shape of
the mass profiles expected. As has been shown in Schneider (1996), this method yields the
possibility to reliably detect isothermal-like mass concentrations with velocity dispersion
in excess of 600 km/s, i.e., of very weak clusters of galaxies, without any reference to their
luminosity. A systematic search for such (dark) mass concentrations is feasible; one only
needs wide-field images of sufficient image quality. In fact, with a quite similar approach,
Fort et al. (1996) and Smail & Dickinson (1996) have detected a significant shear field
around several high-redshift QSOs and radio galaxies, indicating a (dark) mass in their
line-of-sight.

6 Lensing by the large-scale structure

The cosmological density fluctuations out of which the structure in the universe has formed
(at least in the conventional model of gravitational instability — which has received impres-
sive support from the detection of microwave background fluctuations by COBE) can also
distort the images of high-redshift galaxies. The corresponding distortions have been calcu-
lated by Blandford et al. (1991) and Kaiser (1992, and references therein), and are expected
to be small; nevertheless, depending on the cosmological model, these distortions are mea-
sureable in principle, either by averaging the ellipticity of galaxy images over large fields,
or by considering the two-point correlation function of galaxy ellipticities on large scales. If
such an effect can be measured, it will allow a direct measurement of the power spectrum
of the density fluctuations on the appropriate scales, very much like COBE has done. What
is important to note is that the power spectrum of the density fluctuations in cosmogonies
is normalized either by the amplitude of fluctuations in the microwave background, or by
rms variations of galaxy numbers in ‘big volumes’. Both of these normalizations are such
that relative density fluctuations dp/p are normalized. However, the lensing effect depends
of dp, and not on the ratio dp/p. This implies that the gravitational distortion of images
of background galaxies is proportional to the mean cosmic density {2 (Villumsen 1996a).

The same data from which galaxy-galaxy lensing was detected by Brainerd et al. (1996)
have been used to search for the ‘cosmic shear’; keeping in mind the difficulties to measure
accurate ellipticities of very faint images from the ground, it is not surprising that Mould
et al. (1994) did not find a statistically significant shear signal on a field of 4’8 radius.
Using the same data, but a different method for analyzing the image ellipticities (basically,
giving less weight to ‘small’ images, which are most contaminated by the PSF), Villumsen
(1996b) obtained a shear signal with a formal 5-c significance. Further observations are
needed to confirm this result; as mentioned before, the observations are very difficult to
carry out, and the expected effects are so small that even tiny systematical effects which
escape detection can mimic a significant detection.
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7 Conclusions

Weak gravitational lensing has been demonstrated in the last two years to be an extremely

powerful tool for extragalactic astronomy and cosmology. The fact that the theoretical
concepts are so simple and well understood, and its insensitivity to the state and nature
of the matter probed makes it a unique probe of (dark) mass in the universe on all scales
— from MACHOs to the large-scale structure itself. The progress that has been made is
intimately related to developments on the observational side. Realizing that we live in an
era where wide-angle field cameras, space telescopes, and 10-meter class telescopes make
their first appearance, it is clear that in weak lensing we have only scratched the surface:
these new instrumental possiblitites will dramatically increase the rate and quality of data,
allowing surveys for dark matter concentrations. The refurbishment of the HST has enabled
images of faint galaxies with unprecedented image quality and resolution. These images,
together with new theoretical developments, will allow us to understand better the relation
between observed image shapes and the true image shapes, before degradation with a PSF.
The combination of dark matter maps from weak lensing and X-ray and dynamical studies
of clusters will yield fresh insight into the structure, dynamics, and history of these systems.
If the systematic effects of ground-based imaging can be understood sufficiently well, we
might be able to obtain the cosmic density and the power spectrum of density fluctuations
directly from lensing.

I thank the organizers of this meeting for the invitation to an exciting and pleasant con-
ference. This work was supported by the “Sonderforschungsbereich 375-95 fiir Astro—Teil-
chenphysik” der Deutschen Forschungsgemeinschaft.
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