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Quasi-Einstein metrics
and their renormalizability properties

By Thierry CHAVE, Galliano VALENT

Laboratoire de Physique Théorique et des Hautes Energies,
Unité associée au CNRS URA 280, Université Paris 7,
2 Place Jussieu, 75251 Paris Cedex 05

Abstract. We construct a family of kihlerian quasi-Einstein metrics with an isometry group U(n)
acting linearly on the holomorphic coordinates. Suitable restrictions on the parameters give rise to
complete non-compact as well as compact metrics whose geometrical structure is studied in detail.
And we discuss The two loop renormalizability properties of the bosonic o-models.

1 Introduction

Quasi-Einstein metrics are defined by the constraints

Ricy, = A g, + %(D’Lvy + Dyv,). (1.1)
In section 2, using Kahler geometry and an isometry group U(n), we reduce (1.1) to a
non-linear differential equation. Since this equation cannot be integrated to get the Kéhler
potential we switch to non-holomorphic coordinates which are useful to display explicitly the
distance.
In section 3 we give two classes of complete non-compact metrics and we describe the com-
pact metrics of the family.
In section 4 we discuss the two-loop renormalizability of the bosonic o-models built on
kdhlerian quasi-Einstein metrics. Our main result is that in the chosen isometry class the
requirement of two-loop renormalizability selects uniquely CP™, which is not only Einstein
but symmetric!
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2  Quasi-Einstein Kahler metrics

2.1 Isometry group U(n)

The idea to obtain explicit quasi-Einstein metrics is to use holomorphic coordinates {z;,% =
1,...,n} in C*\{0} and to choose for isometry group a U(n) for which {z;} transform ac-
cording to its fundamental representation. This implies that the Kahler potential K depends

n

solelyon s =Zz-2 = Zz-zi. It follows that the metric is
i=1

1

59 =095d2'd7 = Adz-dz + A'lZ-dzl’,  A(s) =

The Ricei tensor reads

dK(s)
ds

Ricz = —6% In D, D = det (g;5) = A" '(sA)".
The restrictions put on the metric by the quasi-Einstein requirement (1.1) imply ([1])
v; = ¢ 0;(sA), A" (sA) = e K (Rec)sA (2.1)

where c is an a priori complex integration constant.

2.2 The coordinates choice

In view of the complexity of (2.1), there is little hope to get the explicit Kéhler potential
K (s) and the distance if we insist on using holomorphic coordinates. We define

Z,;=\/§fi R I ;|

and ,
elT )
{zm(l,u), TE[O,Z?T], {Ui,Z=1,...,’n-‘1}.
This gives for the final form of our distance
1 (dt)? 2 h -1
—g= t— (CP"
59 1o + o(dr +6)* + 2(C’ )
with dt 1 w-du—u-du
w-du—u-du
=s5—, t=sK', f= - !
e=s ds s 1+u-u 2t

The differential equation (2.1) becomes

(e gft)) = e (1" — A, (2:2)

The vector v is given by the holomorphic 1-form v = ¢ dt for some real constant c.
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3 Complete and compact metrics

Integrating (2.2) gives

t"lo= — Be™©, n=12... (3.1)

3.1 Complete non-compact metrics

The first one appears for B=0,c > 0, A < 0.
At t = 0, setting ¢ = r? the distance becomes

% g ~dr?+ 1% |(dr +0)" + g (CP™™)| = dr® +12dE - dg

which shows that r =0 is a “ nut”, [4].
Al 2
c

For t — oo, setting t = — r* the distance becomes

lgzdfrz—i-rz {(l/\—l
2 c
showing that infinity is asymptotically flat (albeit not euclidean).

For A = 0 the infinity is taubian, [2, p. 252].

The second one appears for B > 0,c > 0, A < 0. But now t, define by o(t,) = 0 is a “ bolt”
of twist k=n+1,n+2,..., [4].

2
) @ - dul* + al (du - du — |E-du|2)}

(&

3.2 Compact metrics

Let us suppose ¢ < 0, A > |c| and n > 2. From (3.1) we can deduce there does exist a finite
interval [t$”, ££7] on which o(t) is positive. The constraints for ¢t = t5 and t = 2 to be
bolts of twist k are [5]

o)) =0, ) =k,
k=1,2,3,...
o(t) =0, ¢ty = —k.

t

which reduce, using the differential equation, o'+ (c+ ) @ = n—At, to the transcendental

equation

+k —£fu n—1 |C|
et u(n+u)" du=0, sz, k=1,2,...,n—1.
—k

And this equation has a unique solution ¢ €]0, 1].
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4 Bosonic c-models at two loops

For a given bosonic o-model with classical action
1 2, 1 i j
9—2 d°z 2 gij(‘P) Oup au‘P]

the one and two-loop on-shell divergences follow from Friedan [3] and are given by
h 1 : : : h\2 S 1 s,tu ] j
(4—) - / d*z Rici; 0,¢" 8,¢" + (—) g? f d’z 5 Risu R, 8,0 0,07 e=d—2.

7w/ € 47

Two-loop renormalizability requires
Xij = Rigtu st’tu = 0= Dyw; + Djw; = w; = ¢z 0;(sA)

and ~
Xig = Bgm R;k’m = X2 g7 + Diwy + Dyw; = 35(A2 K + (c2 + &) sA).

For the divergence Xz to be absorbable it is therefore necessary that X be Kéhler. In the
class of metrics considered in this article, the large isometry group enables one to compute
the curvature tensor and

Xi} = M(S) 5,'_7' + 1/(8) Zi 25

The Kéhler condition requires therefore ¥ = y' which is integrated to K(s) = a In(s + b).
Among all kahlerian metrics of dimension n > 2, with an isometry group U(n) acting linearly
on the holomorphic coordinates, only CP™ is one-loop and two-loop renormalizable.
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