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Diffeomorphism Invariant Integrable Field Theories

By Jens Hoppe !

Institut fiir Theoretische Physik, ETH-Honggerberg, CH-8093 Ziirich

Abstract. In a Hamiltonian formulation of hypersurface motions in Riemannian manifolds, diffeo-
morphism invariant field theories of arbitrary dimension are presented, for which infinitely many’
Poisson-commuting, diffeomorphism invariant, conserved charges exist.

In this talk 2, T would like to consider field theories described by a Hamiltonian of the

form
Hlz,p) = | d"o\/Gh (/) ®)

with ¥ being some M-dimensional Riemannian manifold, fields z : ¥ — N (with com-
ponents z*, i = 1,2,..., N = M + 1) describing an embedding of ¥ into a M + 1 dimen-
sional Riemannian manifold A" (with metric ¢;;(z)), g being the determinant of the metric
e b= g;: g%(ij(:c) induced on z(X), p := /pip;j¢¥(x) (with p; being the momentum canon-

ically conjugated to z*), and h a real function of one variable (p/,/g =: u) [1].

The classical equations of motion derived from (1),

i = o R (u)%
: oH ! rs j
Pi=—5= GijOr ((h - h'u) /g9 835.93') + (2)

(terms containing derivatives of
the embedding metric (;;)
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by construction (cp. H; both p and /g transform as densities under diffeomorphisms) imply
that the generators of diffeomorphisms,

or!

Cr = pia—(pra r

=1,.. M (3)

are constants of motion: C'T =L
In the following let us restrict to solutions of (2) for which
C.=0,r=1,..,M. (4)

Using (2) and(4), one may easily show, that for such motions the Hamiltonian density, H :=
/9 h, will also be time-independent:

2 (Vah (p/3) =0 ®

This allows one to express u (hence also h'(u)) as a function, a, of ,/g/p - implying that the
first equation in (2) can be written in the form

& = pelglp)nl; § =1;un N, (6)

as (4) implies that the unit vector 2 must be normal to the hypersurface T, = z(X).
Thus, if one is only interested in motions through the Riemannian manifold A, for which
(4) is satisfied, one may forget about the (complicated) second equation in (2), and merely
consider (6). Unlike usual geometric first order equations (6) is 'secretly second order’ (for
non-constant «): its solution requires either a parametrized initial hypersurface £, (with
parametrisations that differ by more than an area preserving one leading to geometrically
inequivalent motions) or: an initial hypersurface ¥, and an initial velocity distribution (for
which a parametrisation must be found such that (6) is satisfied at ¢t = 0).

Before solving (6) for one particular, nontrivial, choice of @, let me mention that constant
a (resp. h(u) = u, H = [ \/pip;¢¥(x)) yields 'free’ motion, Z* + '}, 272" = 0, while solutions

for a(v) = vVFv? £ €2, resp.

h(u) = ;12- 1 (u — ug)? (7)

(Gij = di5), lead to extremal hypersurface motions in RVM+1(RM+2) [1) 2].

By choosing the constant ug equal to E%

H= f dMp(4p%g)"*, (8)
3
corresponding to a(v) = v, i.e.

it = /g/pn’,i=1,..,N, (9)
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can be obtained as a (¢ — 0) limit of the 'maximal hypersurface motion’ also in the Hamilto-
nian formulation (The following geometric property may be noted at this point: Consider,
M =1 for visual simplicity, the motion of a closed curve in the plane, from ¥y at ¢t = ¢,
to X; at t = t;; calculate the area covered in the plane, as well as the surface area obtained
by drawing the motion in R3, with the vertical axis being €? times ¢ (the time); the ¢ — 0
limit of}2 times the difference of the two surface areas is minimal if the closed curve moves
according to (9)).

In any case, one can easily show (cp. [1]) that

Q:= [ d¥p(1p'9)*Q (z(t, ) (10)

will Poisson-commute (weakly; i.e. modulo terms containing C,) with (8), and with each
other, provided @, as a function of the z* (i = 1, ..., N) satisfies

V'V:Q = 0; (11)

this is related to the fact [1, 3] that the time at which the hypersurface X, reaches a point =
in the Riemannian manifold A is a harmonic function of z: V*V;t = 0 (for non-linear «, ¢
will satisfy a non-linear second-order equation [1]). As (10) may be viewed as a Hamiltonian
H = [y dMpH of the form (8), corresponding to an embedding metric

i = Q7g,, (12)

the hierarchy of integrable systems related by (12) (with @ harmonic), or rather: the hy-
persurface motions in the corresponding manifolds, resp. the corresponding time-harmonic
functions, should be related by Bécklund-transformations.

In [4], a multilinear form for (9), which automatically implies the conservation of (10), was
presented (for ' = R"); these results were extended to certain conformally flat manifolds
in [5], and (for N = 3) to ’quantized’ time-harmonic flows in [6].
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