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Covariant double-null dynamics

By W. Israel

Canadian Institute for Advanced Research Cosmology Program, Avadh Bhatia Physics
Laboratory, Edmonton, Canada T6G 2J1

Abstract This is an introduction to the basics of a (2 + 2)-imbedding formalism, adapted to a
double foliation of spacetime by a net of two intersecting families of lightlike hypersurfaces. It
yields a simple and geometrically transparent decomposition of the Einstein equations, and has a
variety of applications, e.g., to the characteristic initial-value problem (analytical and numerical),
the singularity structure of Cauchy horizons and definitions of “quasi-local mass.”

1 Introduction

I should like to present a brief advertisement on behalf of a (2 + 2) lightlike decom-
position of the Einstein equations recently developed by our group [1]. Formalisms of this
kind becomes useful when the physics singles out particular lightlike hypersurfaces or direc-
tions, as in the characteristic initial-value problem, the dynamics of horizons, gravitational
radiation, Planck-energy collisions and light-cone quantization.

A number of such formalisms have emerged over the years [2], beginning with the fa-
mous 1973 paper of Geroch, Held and Penrose [3]. Basically, all have the same content, but
they look very different. The distinctive feature of our version is hat it is two-dimensionally
covariant and thus very compact, geometrically transparent and relatively easy to use—at
least, we find it so. We hope it will play a role in promoting this versatile technique (which
has never really caught on with relativists) into an everyday working tool.



310 Israel

2 ADM (3 + 1)-decomposition: a brief recap

To set the stage and ease us into the notation, I shall briefly remind you of the elements
of the familiar (3 + 1)-decomposition of Arnowitt, Deser and Misner [4].

This is based on a foliation by spacelike hypersurfaces ¢ = const, with parametric
equations

% = g% (&%, 1),
Greek indices run from 1 to 4, and latin indices (in this section only) from 1 to 3.

The tangential base vectors e(,) associated with the intrinsic co-ordinates £* are de-
fined by e‘(“;) = Jx®/0€*. The intrinsic metric and extrinsic curvature of a hypersurface
t = const. are then given by

gab = e@) ey Kap = (Vanp)ely ey,
where n® is the unit timelike normal:

n-n= gaﬂno’nﬁ = -1.

The 4-vector dz/dt can be decomposed into tangential and normal parts;
Oz [0t = s%e(y) + Nn®
thus defining the lapse function N and the shift vectors s* (more conventionally written
as N%).

It follows that an arbitrary four-dimensional displacement dz® decomposes as
dz® = e,y (d€* + s* dt) + Nn* dt
and the 4-metric as

ds? = gopdz® dzP = gop(dE® + 5@ dt)(de® + sP dt) — N2 dt2.

The standard ADM formulae [4] now express the four-dimensional Einstein tensor
components G,g in terms of the intrinsic geometry (gqs, (G)Rgp) of the hypersurfaces, the
extrinsic curvature K,; and its normal derivative, and the lapse and shift.

However, this formalism folds in the limit where the hypersurfaces become lightlike.
Because n® is now a tangential vector, K,; no longer provides extrinsic information, and
the intrinsic metric g,5 becomes degenerate.

To deal with the lightlike case, one must fall back to a foliation of co-dimension two.
I shall next sketch briefly how this works.
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3 (2 + 2) lightlike decomposition: basic metric notions

We consider a double foliation of spacetime by a net of two intersecting families of
lightlike hypersurfaces £° (with equations u® = const.) and ! (given by u! = const.),
where u4(z®) (A,B,...,=0,1; a,3,...,= 1,...,4) are a given pair of scalar fields over
spacetime, with lightlike gradients:

V‘UA . qu — E—A’I']AB,

AB _ . 0 -1

will be used to raise and lower upper-case Latin indices, and A(z®) is a scalar function.
The generators ¢ of 4 are conveniently defined as

and where the matrix

(A = Avyt,

Two hypersurfaces £° and X! intersect in a 2-surface S, with parametric equations
* = z%(u?, 0%) (o Bjs . = 2,:3)

where (62, 6%) are intrinsic co-ordinates of S. Both generators £(4) are orthogonal to S.

Holonomic basis vectors e(,) and the intrinsic metric of § may now be defined:

o oz®
€a) = Hpga’ Gab = €(a) " €(b)-

The matrix g, and its inverse g% are used to lower and raise lower-case Latin indices, so
that e(® = g“be(b) are the dual basis vectors tangent to S.

Two-dimensional shift vectors s% are defined by

oz

ouh e(a) = £ o0

o (A) ore :

% =

As in the Arnowitt-Deser-Misner formalism, the shift vector s% measures how much one
has to deviate from the normal direction £(4) to connect points on different 2-surfaces
having the same intrinsic co-ordinates 8%. An infinitesimal four-dimensional displacement
dz® can be decomposed as

dz® = £y du™ + ey (d6* + sy du).
Together with the completeness relation

sos = € 1antOUD + gupel? )
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for the basis (E(A), €(a)), this implies that the spacetime metric is decomposable as

gapdr® dzP = e*apdut duP + g,5(d0” + s%4du?)(d8® + s% du®).

4 Covariant geometrical objects embodying first
derivatives of metric

Associated with its two normals £ 4), a 2-surface S has two extrinsic curvatures defined
by
KAu.b = (Vﬂﬁ(A)a)e‘(’a) C(ﬁb)

and easily shown to be symmetric in a, b. (Since we are free to rescale the null vectors
£(a), a certain scale-arbitrariness is inherent in this definition.)

A further basic geometrical property of the double foliation is given by the Lie bracket
of ﬂ(g) and f(l). One finds

(), £(4)] = €aBw®e(q) (4.1)

where

b

w® = eAB(dpsY — SpSA.b)-

The semi-colon indicates two-dimensional covariant differentiation associated with metric
9ab, and € 4p is the two-dimensional permutation symbol.

The geometrical significance of the “twist” w® can be read off from (4.1): the curves
tangent to the generators £(g), £(1) mesh together to form 2-surfaces (orthogonal to the
surfaces S) if and only if w® = 0. In this case, it would be consistent to allow the co-
ordinates #%* to be dragged along both sets of generators, and thus to gauge both shift
vectors to zero.

I shall denote by D4 the two-dimensionally invariant operator associated with dif-
ferentiation along the normal direction £ 4). Acting on any two-dimensional geometrical
object X%, Dy is formally defined by

DpX%: = (04— L) X%

Here, 04 is the partial derivative with respect to u4 and EsdA the Lie derivative with respect
to the 2-vector s4. As an example:

Dagab = 049ab — 25 a(a;p) = 2K Aab-

Geometrically, D4 X% is the projection onto S of the Lie derivative with respect to
£(a) of the equivalent tangential 4-tensor X% .
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The objects K 44p, w® and D4 are all simple projections onto S of four-dimensional
geometrical objects. Consequently, they transform very simply under two-dimensional
co-ordinate transformations. Under the arbitrary reparametrization

9® — 6% = £2(6°, ut) (4.2)

(which leaves u“ and hence the surfaces £4 and § unchanged), w, and K 444 transform
cogrediently with ’
€(a) — €(a) = €(0)00°/00% .

By contrast, the shift vectors s§ undergo a more complicated gauge-like transformation,
arising from the u-dependence in (4.2).

5 Ricci tensor

This geometrical groundwork is already sufficient to allow me to display the simple
form that the Ricci components take in this formalism. (Notation for the tetrad compo-
nents is typified by Ro4 = Rage?a)ﬂ'? A).)

The results are

DR = % R — e (Da + Ka)KA

1 1
+ Qe_AKAd(aKlﬁd - 56_2’\wawb = Ko = = gA

,a’vb

ki

Rap = —D(AKB) — KAabKBab +K(ADB)/\

1 "
~ 5748 [(DF + K®)DgX — e ww, + ()% 4]

Ra,= K?ﬁla;b — 0, K4 — %QZDAA + %KAG,,/\

1
+ EEABG—'\ [(DB + KB)wa - u)aDB/\],

where (PR is the curvature scalar associated with the 2-metric gab, and Kq =K 2, .

The economy and geometrical transparency of these formulae are self-evident. In
particular, the shift vectors, which are largely an artefact of the choice of co-ordinates 0%,
make no explicit appearance.
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6 Concluding remarks. Heuristics

This formalism has so far been applied to the analysis of the characteristic initial-value
problem [1] and the nature of the infinite-blueshift singularity along the Cauchy horizon
of a spinning black hole [5]. I expect other applications, both analytic and numerical, to
follow.

I should like to conclude with some heuristic remarks. Spherically symmetric space-
times are naturally and very simply described by a (2 + 2) formalism [6]. It is remarkable
that the generic formulae can often be cast in a form that resemble the spherical ones,

with simple and physically intuitive modifications to allow for the presence of gravitational
radiation [7].

As a sample, let me recall that any spherisymmetric metric can be expressed as [6)
ds® = gapdz? dz® + r2(z?) dQ?

where £# (A = 0,1) are arbitrary co-ordinates for the quotient space M*/S5?. The usual
Schwarzschild mass function M (z4) is defined by [6]

1-— 2M(:c‘4)/r = gAB(BAr)(agr).

Then it follows from the Einstein equations with stress-energy tensor T*? that M satisfies
a (1 + 1)-dimensional wave equation [6]

OM = g4BY VM = —1672r3T4gTAB + - --

where the dots represent terms linear in Ty, g, which are relatively small in regions of large
blueshift, e.g., near a Cauchy horizon. This remarkable formula brings out explicitly the
effects of the nonlinearity of the Einstein equations.

There is a generic counterpast of this equation in double-null dynamics [7]. Let us
define a generic “Schwarzschild mass function” M (z*) by

1—2M/r = e *n*B(Dar)(Dpr)
where the area-function r(z®) is defined by
(%)% = C(6°)r*
(C is arbitrary and can be fixed by an initial condition). Then
DADAM = —16x%r3(Tap + 7aB)(TAE + 74B) 4 ...

where the gravitational-wave stress-energy is defined by

1 1
b Dab
TAB = g (GAabcr% ~ 37ABODab0 N )
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in terms of the shear 0 ,° = K,? — 162K 4.

Of course, these are merely words. No operational prescription exists for defining
notions like “quasi-local mass” and stress-energy of gravitational waves, except in cer-
tain limiting cases (very high frequencies). Words can nevertheless be quite useful as a
heuristic guide to complex formal calculations, especially so in situations where the “fluff”
represented by the dots is relatively small.
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