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Sphaleron on S°

By Mikhail S. Volkov

Institut for Theoretical Physics, University of Ziirich—Irchel,
Winterthurerstrasse 190, CH-8057 Ziirich, Switzerland

Abstract. An exactly solvable sphaleron model in 3 + 1 spacetime dimensions is described

1 Introduction

The notion of sphaleron refers to the special type of static classical solution in a gauge
field theory with periodic vacuum structure and broken scale invariance [1]. Specifically,
sphaleron relates to the top of the potential barrier between distinct topological vacua, such
that its energy determines the barrier height. Sphaleron can play the important role in
the transition processes when the system interpolates between distinct topological sectors.
Consider a thermal ensemble over one of the perturbative topological vacua. Such a system
is metastable since the field modes are able to reach the neighboring topological sectors both
via the quantum tunneling and due to the thermal overbarrier fluctuations. If temperature
is high enough, the latter effect is dominant, in which case the sphaleron, ‘sitting’ on the top
of the barrier, controls the transition rate. To evaluate the rate of such sphaleron-mediated
thermal transitions, the Langer-Affleck formula is often used [2]:

_|ImZ
o le-lmZ (1.1)
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which relates the probability of the decay of the unstable phase with the imaginary part of
the free energy. Here Z; and Z; are the partition functions for the small fluctuations around
the vacuum and the sphaleron, respectively. Since the sphaleron has one unstable mode
whose eigenvalue w? < 0, the quantity Z; is purely imaginary. To compute ' at the one-
loop level is usually rather difficult. The problem becomes especially hard in the standard
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model case, where the sphaleron solution itself is known only numerically. That is why the
other sphaleron models for which I' can be evaluated exactly have been investigated [3], [4],
however these models exist only in 1 + 1 spacetime dimensions.

2 The sphaleron on S°

To find an exactly solvable sphaleron model in 3 + 1 dimensions [5], we consider the theory
of a pure non-Abelian SU(2) gauge field in the static Einstein universe (M, g), where M =
R! x S% and the metric is

ds® = a?{—dn® + d¢? + sin’€(d9? + sin®9dyp?)}; (2.1)
here a is a constant scale factor. Consider the following SU(2)-valued function on the S3:
U =U(£,9,¢) = exp{—i€ n°r°}, (2.2)

where n® = (sin 9 cos @, sin ¥ sin ¢, cos ) and 7* are the Pauli matrices. This function defines
the mapping S* — SU(2) with the unit winding number. Using U, we construct the following
sequence of the static gauge field potentials:

A =D

Udut, (2.3)

where the parameter h € [—1,1]. When h = —1 this field vanishes, whereas for h = 1 it is
a pure gauge whose winding number is one, by construction. Thus fields (2.3) interpolate
between the two distinct topological vacua, and the energy

E[h] = [ 0\ f3gd’s = ‘;’—j;(h? —1)? (2.4)

has the typical barrier shape — it vanishes at the vacuum values of h, h = +1, and reaches
its maximum in between, at h = 0; (g in (2.4) stands for the gauge coupling constant). The
top of the barrier relates to the field configuration

AlP) = % Udu~, (2.5)

which obeys the Yang-Mills equations and therefore can be naturally called sphaleron. It
is worth noting that the sphaleron configuration consists of the gauge field alone. The
violation of the scale invariance in this case is provided by the background curvature. Since
the spacetime geometry is SO(4)-symmetric, the sphaleron inherits the same symmetries,
such that, for instance, the energy-momentum tensor for the field (2.5) has the manifest
SO(4)-symmetric structure.
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3 The sphaleron transition rate

Our main task is to compute the transition rate (1.1) for the sphaleron solution (2.5). We pass
to the imaginary time 7 in the metric (2.1) and impose the periodicity condition, 7 € [0, j].
Let us introduce Aij} = jAffp), which corresponds to the vacuum of the gauge field for
J = 0 and to the sphaleron field for j = 1. Next we consider small fluctuations around the
background gauge field: A,{f AI{}' } +¢,,. Notice that we assume the spacetime metric (2.1)
to be fixed and therefore do not take into account the gravitational degrees of freedom. The
partition functions Z; are then given by the Euclidean path integral over ¢,,. To compute the
integral, we impose the background gauge condition and use the Faddeev-Popov procedure.
The result is [5]:

Det! (NI /u})

V/Det' (31, /)

where S is the Euclidean action, the factor A is due to the zero and negative modes whereas

Det' has all such modes omitted, g is an arbitrary normalization scale, and the fluctuation
operators are

Z; = exp(-=S[AV) (3.1)

M,¢" = —~D,D°¢" + R*¢° + 2[F".,¢°], M, a=-D,D%. (3.2)
Here D, = V,—i[A}}, ]is the covariant derivative, RY is the Ricci tensor for the geometry
(2.1), F*_is the gauge field tensor for A‘{Lj}, and « is a Lie algebra valued scalar field.

To find spectra of these operators, we introduce the 1-form basis {w°, w®} on the spacetime
manifold, where w® = dr, and w® are the left invariant 1-forms on S3. It is convenient to
expand the fluctuations as ¢ = (¢Jw® + ¢2w™)77/2. Let e, be the left-invariant vector fields
dual to w?, such that L, = %ea are the SO(4) angular momentum operators. We introduce
also spin and isospin operators as follows: Saqbf, = %sabcqﬁg and Tpos = %ep”gbg. As a result,
the fluctuation operators (3.2) can be expressed entirely in terms of the operators L,, S,
and T, such that the spectra can be explicitly obtained by the purely algebraic methods [5].
All of the eigenvalues are positive except for the following ones: the sphaleron fluctuation

operator M; has one negative mode, whereas the vacuum operators 1\/10 and M}?P have three
zero modes each. It is worth noting that, since the sphaleron field configuration is SO(4)
invariant, the sphaleron itself does not have zero modes at all (in the background gauge
imposed).

The next step is to compute the products of the eigenvalues to evaluate the determinants
in (3.1). For this, zeta function regularization scheme has been used. Omitting all technical
details given in [5], the resulting expression for the transition rate can be represented in the
following form:

_ 1 wl 3" s s aF -
" G| 0 AR - R &9

In this expression, the prefactor in the right hand side is the overall contribution of zero and
negative modes. 3n%3/g?(a) is the Euclidean action of the sphaleron, where the gauge cou-
pling constant receives the quantum correction due to the scaling behavior of the functional
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determinants:

! ! 1 s (—‘3) . (3.4)

(@) ~ ¢lar) 1207 \a
Here we have replaced g by g(ap), where ag = 1/ug. This expression agrees with the
renormalization group flow, such that it does not depend on the scale a if g(ay) is chosen
to obey the Gell-Mann-Low equation. To fix the scale, we assume that the value of g(ag) is
determined by the physical temperature, T'(ay) = 1/8ay, and use the QCD data:

2
T(ao) = 100 GeV, 3% =0.12. (3.5)

One can assume that the weak coupling region extends up to some a,,4; ~ 10 <+ 100ay. The
next term in (3.3), &, is the contribution of the zero field oscillations, that is, the Casimir
energy. This quantity can be computed exactly [5], the numerical value is & = —1.084. The
contribution of the thermal degrees of freedom in (3.3) is

(o 0)

B(F - Fp)=4ln(l—e?)+2 3 Y (0’ —0’)In(l —ePV"+"9)—
—6 i(nz —1)In(1 — ™). (3.6)

n=2
Altogether Egs.(3.3)-(3.6) provide the desired solution of the one-loop sphaleron transition
problem. The numerical curves of I'(3) evaluated according to these formulas for several
values of a are presented in [5]. This solution makes sense under the following assumptions:
1 1 32

Jor < 3 < @) (3.7)
The first condition is the the weak coupling requirement. When the scale factor a is too
large, the running coupling constant (3.4) becomes big (confinement phase), and the effects
of the strong coupling can completely change the semiclassical picture. That is why our
solution can be trusted only for the small values of the size of a. The other condition in (3.7)
requires that the thermal fluctuations are small compared to the classical sphaleron energy,
such that the perturbation theory is valid.
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