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The Quantum Theory of General Relativity
at Low Energies

By

John Donoghue

Department of Physics and Astronomy, University of Massachusetts
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Abstract. In quantum field theory there is now a well developed technique, effective field theory,
which allows one to obtain low energy quantum predictions in "non-renormalizable" theories, using

only the degrees of freedom and interactions appropriate for those energies. Whether or not general

relativity is truly fundamental, at low energies it is automatically described as a quantum effective

field theory and this allows a consistent framework for quantum gravity at ordinary energies. I
briefly describe the nature and limits of the technique.

Effective field theory is a calculational technique in quantum field theory which has

become fully developed within the past decadefl]. It is now in everyday use in a variety of
contexts. Anyone who cares about quantum field theory should be familiar with the methods
and insights of effective field theory.

The goal of this talk is to convince you that a consistent quantum theory of general
relativity exists at energies well below the Planck mass, and that it is necessarily of the form
that we call effective field theory. Given all the work that has gone into quantum gravity,
I feel that this is a significant result. Indeed, the gravitational effective field theory[2,3] is

likely the full quantum content of pure general relativity.

The gravitational effective field theory is a completion of the program started by Feynman
and DeWitt[4], 'tHooft and Veltman[5] and many others. The previous work focused on
the divergence structure and the problems at high energy. What the effective field theory
techniques do is to shift the focus to low energy, which is the reliable part of the theory.
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The low energy particles and interactions lead to quantum effects which are distinct from
whatever physics is going on at very high energies. For example, the long range quantum
correction to the gravitational potential is determined by the low energy interactions of the
massless particles in the theory (gravitons, photons, and neutrinos) and is reliably calculable.
For a particular definition of the potential, it has the form[3,6]

Gmxm2
Vipr(r)
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(1)

where Nv is the number of massless neutrinos. I will here focus on the general nature and
limits of the gravitational effective field theory.

First let's describe effective field theory in general. Once you understand the basic ideas

it is easy to see how it applies to gravity. The phrase "effective" carries the connotation of a
low energy approximation of a more complete high energy theory. However, the techniques to
be described don't rely at all on the high energy theory. (Moreover, even if you believe that
general relativity is exact and fundamental at all scales, these techniques are still appropriate
at low energy.) It is perhaps better to focus on a second meaning of "effective", "effective" ~
"useful", which implies that it is the most effective thing to do. This is because the particles
and interactions of the effective theory are the useful ones at that energy. An "effective

Lagrangian" is a local Lagrangian which describes the low energy interactions. There is an
old fallacy that effective Lagrangians can be used only at tree level. This sometimes still
surfaces despite general knowledge to the contrary. "Effective field theory" is more than
just the use of effective Lagangians. It implies a specific full field-theoretic treatment, with
loops, renormalization etc. The goal is to extract the full quantum effects of the particles
and interactions at low energies.

The key to the separation of high energy from low is the uncertainty principle. When
one is working with external particles at low energy, the effects of virtual heavy particles or
high energy intermediate states involve short distances, and hence can be represented by a

series of local Lagrangians. This is true even for the high energy portion of loop diagrams.
In contrast, effects that are non-local, where the particles propagate long distances, can

only come from the low energy part of the theory. From this distinction, we know that
we can represent the effects of the high energy theory by the most general local effective

Lagrangian. The second key is the energy expansion, which orders the infinite number of
terms within this most general Lagrangian in powers of the low energy scale divided by
the high energy scale. To any given order in this small parameter, one needs to deal with
only a finite number of terms (with coefficients which in general need to be determined from
experiment). The lowest order Lagrangian can be used to determine the propagators and low

energy vertices, and the rest can be treated as perturbations. When this theory is quantized
and used to calculate loops, the usual ultraviolet divergences will share the form of the most
general Lagrangian (since they are high energy and hence local) and can be absorbed into
the definition of renormalized couplings. There are however leftover effects in the amplitudes
from long distance propagation which are distinct from the local Lagrangian and which are
the quantum predictions of the low energy theory.

This technique can be used in both renormalizable and non-renormalizable theories, as
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there is no need to restrict the dimensionality of terms in the Lagrangian. (Note that the
terminology is bad: we are able to renormalize non-renormalizable theories!) One example,
which is amusing to describe to die-hard loyalists who insist on the renormalizable paradigm,
is Heavy Quark Effective Theory [7]. Here we have a perfectly good renormalizable field
theory (QCD), yet we choose to turn it into a non-renormalizable effective field theory by
a field redefinition which isolates the most important heavy quark degree of freedom. This
is the effective thing to do because the properties of heavy quarks become readily apparent
and the difficult parts of QCD are contained in a few universal parameters or functions.
The effective field theory which is most similar to general relativity is chiral perturbation
theory [8], which describes the theory of pions and photons which is the low energy limit of
QCD. The theory is highly nonlinear, with a lowest order Lagrangian which can be written
with the exponential of the pion fields

£ ^Tr (V^f/VC/t) + !-2jZ-Tr (if + rf)

U exp\ %—-^ (2)

with r1 being the SU(2) Pauli matrices and Fx 92.3MeV being a dimensionful coupling
constant. This theory has been extensively studied theoretically, to one and two loops, and

experimentally. There are processes which clearly reveal the presence of loop diagrams. In
a way, chiral perturbation theory is the model for a complete non-renormalizable effective
field theory in the same way that QED serves as a model for renormalizable field theories.

At low energies, general relativity automatically behaves in the way that we treat effective
field theories. This is not a philosophical statement implying that there must be a deeper
high energy theory of which general relativity is the low energy approximation (however,
more on this later). Rather, it is a practical statement. Whether or not general relativity
is truly fundamental, the low energy quantum interactions must behave in a particular way
because of the nature of the gravitational couplings, and this way is that of effective field
theory.

The Einstein action, the scalar curvature, involves two derivatives on the metric field.
Higher powers of the curvature, allowed by general covariance, involve more derivatives and
hence the energy expansion has the form of a derivative expansion. (The renormalized
cosmological constant is small on ordinary scales and so I neglect it, although it could possibly
be treated as a perturbation itself, as the pion mass is treated in chiral perturbation theory.)
The higher powers of the curvature in the most general Lagrangian do not cause problems
when treated as low energy perturbations. [9] The Einstein action is in fact readily quantized,

using gauge-fixing and ghost fields ala Feynman, DeWitt, Faddeev, Popov[4]. The
background field method used by 'tHooft and Veltman[5] is most beautiful in this context
because it allows one to retain the symmetries of general relativity in the background field,
while still gauge-fixing the quantum fluctuations. The dimensionful nature of the gravitational

coupling implies that loop diagrams (both the finite and infinite parts) will generate
effects at higher orders in the energy expansion[10]. The one and two loop counterterms
for graviton loops are known[5,ll] and go into the renormalization of the coefficients in the
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Lagrangian. However, these are not really predictions of the effective theory. The real action
comes at low energy.

How in practice does one separate high energy from low? Fortunately, the calculation
takes care of this automatically, although it is important to know what is happening. Again,
the main point is that the high energy effects share the structure of the local Lagrangian,
while low energy effects are different. When one completes a calculation, high energy effects

will appear in the answer in the same way that the coefficients from the local Lagrangian
will. One cannot distinguish these effects from the unknown coefficients. However, low

energy effects are anything that has a different structure. Most often the distinction is that
of analytic versus non-analytic in momentum space. Analytic expressions can be Taylor
expanded in the momentum and therefore have the behavior of an energy expansion, much
like the effects of a local Lagrangian ordered in a derivative expansion. However, non-
analytic terms can never be confused with the local Lagrangian, and are intrinsically
nonlocal. Typical non-analytic forms are yj—q2 and ln(—q2). These are always consequences of
low energy propagation.

A conceptually simple (although calculationally difficult) example is graviton-graviton
scattering. This has recently been calculated to one-loop in an impressive paper by Dunbar
and Norridge[12] using string based methods. Because the reaction involves only the pure
gravity sector, and Rßv 0 is the lowest order equation of motion, the result is independent
of any of the four-derivative terms that can occur in the Lagrangian (R2 or RßvR'"J)[5\. Thus
the result is independent of any unknown coefficient to one loop order. Their result for the
scattering of positive helicity gravitons is

A(+A^++) 8ttG^-{1
stu

+ £[ (tln(^)ln(^) + Wln(y)ln(^) + sln(^)ln(^))

+ ln(-)fa(t~M) (341(i4 + u4) + I609(t3u + u3t) + 2566iV)
u 60sb v '

+ ^2(1) + ^ tu(t + 2u)(u + 2t) ^ + 2ui + 2t,u + 2uH _^
+ —-j (l922(t4 + Tt4) + 9143(t3u + u3t) + 14622tV) ] } (3)

where s (pi + p2)2, t (pi — p3)2, u (pi — pf)2, (s +1 + u 0) and where I have used S

as an infrared cutoff. One sees the non-analytic terms in the logarithms. Also one sees the
nature of the energy expansion in the graviton sector - it is an expansion in GE2 where E
is a typical energy in the problem. I consider this result to be very beautiful. It is a low

energy theorem of quantum gravity. The graviton scattering amplitude must behave in this
specific fashion no matter what the ultimate high energy theory is and no matter what the
massive particles of the theory are. This is a rigorous prediction of quantum gravity.

The other complete example of this style of calculation is the long distance quantum
correction to the gravitational interaction of two masses. Again the result is independent of
any unknown coefficients in the general matter and gravity Lagrangian, because the effect
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of such analytic terms is to lead to a short range delta-function interaction[3,13]. Only the

propagation of massless fields can generate the nonanalytic behavior that yields power-law
corrections in coordinate space[2,3]. Since the low energy couplings of massless particles are
determined by Einstein's theory, these effects are also rigorously calculable. Besides classical

corrections[14], one obtains the true quantum correction as quoted in the introduction above.

Note that this calculation is the first to provide a quantitative answer to the question as to
whether the effective gravitational coupling increases or decreases at short distance due to
quantum effects. While there is some arbitrariness in what one defines to be Ge//, it must
be a universal property (this eliminates from consideration the Post-Newtonian classical
correction which depends on the external masses) and must represent a general property of
the theory. The diagrams involved in the above potential are the same ones that go into
the definition of the running coupling in QED and QCD and the quantum corrections are

independent of the external masses. If one uses this gravitational interaction to define a

running coupling one finds

Geff(r) G
135 + 2NV Gh

307T2
(4)

The quantum corrections decrease the strength of gravity at short distance, in agreement
with handwaving expectations. (In pure gravity without photons or massless neutrinos,
the factor 135 + 2NV is replaced by 127.) An alternate definition including the diagrams
calculated in [6] has a slightly different number, but the same qualitative conclusion. The
power-law running, instead of the usual logarithm, is a consequence of the dimensionful
gravitational coupling.

These two results do not exhaust the predictions of the effective field theory of gravity.
In principle, any low energy gravitational process can be calculated[15]. The two examples
above have been particularly nice in that they did not depend on any unknown coefficients
from the general Lagrangian. However it is not a failure of the approach if one of these
coefficients appears in a particular set of amplitudes. One simply treats it as a coupling
constant, measuring it in one process (in principle) and using the result in the remaining
amplitudes. The leftover structures aside from this coefficient are the low energy quantum
predictions.

The effective field theory techniques can be applied at low energies and small curvatures.
The techniques fail when the energy/curvature reaches the Planck scale. There is no known
method to extend such a theory to higher energies. Indeed, even if such a technique were
found, the result would likely be wrong. In all known effective theories, new degrees of
freedom and new interactions come into play at high energies, and to simply try to extend
the low energy theory to all scales is the wrong thing to do. One needs a new enlarged
theory at high energy. However, many attempts to quantize general relativity ignore this
distinction and appear misguided from our experience with other effective field theories.
While admittedly we cannot be completely sure of the high energy fate of gravity, the
structure of the theory itself hints very strongly that new interactions are needed for a
healthy high energy theory. It is likely that, if one is concerned with only pure general
relativity, the effective field theory is the full quantum content of the theory.
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It is common to hear that gravity is different from all our other theories because gravity
and quantum mechanics do not go together, that there is no quantum theory of gravity.
This is not really the case, as there is no conflict between gravity and quantum mechanics

at low energy. We also expect that all of our other theories, despite being renormalizable,
are modified by new interactions at high energy. Nevertheless, we are content to make

predictions with them in the region where they are valid. While gravity at low energies has

a somewhat different structure than other theories, it is not that a quantum theory does not
exist. Rather the more accurate statement is that the quantum theory of gravity reveals

itself as an effective field theory at low energies and signals that we need a more elaborate
theory at high energies.
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