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Pair Creation and Evolution of Black Holes in Inflation

By Raphael Bousso and Stephen W. Hawking

DAMTP, University of Cambridge, Silver Street, Cambridge CB3 9EW, England

Abstract. We summarise recent work on the quantum production of black holes in the inflationary
era. We describe, in simple terms, the Euclidean approach used, and the results obtained both for
the pair creation rate and for the evolution of the black holes.

Introduction One usually thinks of black holes forming through gravitational collapse,
and so it seems that inflation is not a good place to look for black holes, since matter is
hurled apart by the rapid cosmological expansion. We will show, however, that it is possible
to get black holes in inflation through the quantum process of pair creation [1, 2]. There are
two physical motivations that might lead us to expect this: First of all, quantum fluctuations
can be very large during inflation, which leads to large density perturbations. Secondly, in
order to pair create any objects, whether particles or black holes, one needs a force to pull
them apart. Think of electron-positron pair creation: unless there is a force pulling them
apart, the virtual particles will just fall back and annihilate. But if they are in an external
electric field, the field pulls them apart and provides them with the energy to become real
particles. Similarly, whenever one pair creates black holes, one needs to do it on a background
that will pull them apart. This could be, for example, Melvin’s magnetic universe, where
oppositely charged black holes are separated by the background magnetic field, or a cosmic
string, which can snap with black holes sitting on the bare terminals, pulled apart by the
string tension. For the black holes we shall consider, the necessary force will be provided by
the rapid expansion of space during inflation. So this expansion, which we naively thought
would prevent black holes from forming, actually enables pair creation.

Inflation In quantum cosmology, one expects the universe to begin in a phase called chaotic
inflation. In this era the evolution of the universe is dominated by the vacuum energy V' (¢)
of some inflaton field ¢. V starts out at about the Planck value, and then decreases slowly
while the field rolls down to the minimum of the potential. During this time the universe
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behaves like de Sitter space with an effective cosmological constant Aeg =~ V. Like the scalar
field, A.g decreases only very slowly in time, and for the purposes of calculating the pair
creation rate, we can take A to be fixed [1].

Instanton method An instanton is a Euclidean solution of the Einstein equations, i.e.,
a solution with signature (++++). Instantons can be used for the description of non-per-
turbative gravitational effects, such as spontaneous black hole formation. What follows
is a kind of kitchen recipe for this type of application. We must consider two different
spacetimes: de Sitter space without black holes (i.e., the inflationary background), and
de Sitter space containing a pair of black holes. For each of these two types of universes,
we must find an instanton which can be analytically continued to become this particular
Lorentzian universe. The next step is to calculate the Euclidean action I of each instanton.
According to the Hartle-Hawking no boundary proposal 3], the value of a wave function
¥ is assigned to each universe. In the semi-classical approximation ¥ = e~/ neglecting a
prefactor. P = |W|? = ¢~ ig then interpreted as a probability measure for the creation
of each particular universe. (Note that P depends only on the real part of the Euclidean
action.) The pair creation rate of black holes on the background of de Sitter space is finally
obtained by taking the ratio I' = Py /Pp,pn of the two probability measures. One can also
think of I' as the ratio of the number of inflationary Hubble volumes containing black holes
to the number of empty Hubble volumes.

de Sitter We begin with the simpler of the two spacetimes, an inflationary universe without
black holes. In this case the spacelike sections are round three-spheres. In the Euclidean
de Sitter solution, the three-spheres begin at zero radius, expand and then contract in

Euclidean time. Thus they form a four-sphere of radius 1/3/A. The analytic continuation
can be visualised as cutting the four-sphere in half, and then joining to it half the Lorentzian
de Sitter hyperboloid, where the three-spheres expand exponentially in Lorentzian time. The
real part of the Euclidean action for this geometry comes from the Euclidean half-four-sphere
only: IR, = —3n/2A. Correspondingly, the probability measure for de Sitter space is

3T
PnoBH = €exp (K‘) . (1)

Schwarzschild-de Sitter Now we need to go through the same procedure with the
Schwarzschild-de Sitter solution, which corresponds to a pair of black holes immersed in
de Sitter space. The spacelike sections in this case have the topology S! x S%. This can be
seen by the following analogy: Empty Minkowski space has spacelike sections of topology R3.
Inserting a black hole changes the topology to S? x R. Similarly, if we start with de Sitter
space (topology S?), inserting a black hole is like punching a hole through the three-sphere,
thus changing the topology to S' x S%. In general, the radius of the S? varies along the
S'. The maximum two-sphere corresponds to the cosmological horizon, the minimum to the
black hole horizon. Clearly, the black hole may not be larger than the cosmological horizon.

What we need is a Euclidean solution that can be analytically continued to contain this
kind of spacelike slice. It turns out that such a smooth instanton does not exist in general
for the Lorentzian Schwarzschild-de Sitter spacetimes. The only exception is the degenerate
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case, where the black hole has the maximum possible size, and the radius of the two-spheres is
constant along the S'. The corresponding Euclidean solution is just the topological product
of two round two-spheres, both of radius 1/v/A [4]. It can be analytically continued to the
Lorentzian Schwarzschild-de Sitter solution by cutting one of the two-spheres in half, and
joining to it the 2-dimensional hyperboloid of 1 + 1 dimensional Lorentzian de Sitter space.
In the Lorentzian regime the S! expands exponentially, while the two-sphere just retains its
constant radius. Thus the Euclidean approach predicts the size with which the black holes
will be nucleated:

1
TBH = K (2)
The real part of the Euclidean action for this instanton is given by IXg = —7 /A, and the
corresponding probability measure is
2m
Ppy = exp (T) - (3)

Pair creation rate Now we can take the ratio of the two probability measures, and obtain
the pair creation rate:

' =exp (—-j{-) . (4)

Let us interpret this result. The cosmological constant is positive and no larger than order
unity in Planck units. This means that black hole pair creation is suppressed. When A =1
(early in inflation), the suppression is week and one can get a large number of black holes.
However, by Eq. (2), they will be very small (Planck size). For smaller values of A (which
are attained later in inflation), the black holes would be larger, but their creation becomes
exponentially suppressed. This result, which was obtained from the no boundary proposal,
is physically very sensible.

Tunnelling proposal According to Vilenkin’s tunnelling proposal [5], the wave function
is given by e, rather than e~!. If we tried to apply this prescription to our problem, the
signs would get reversed in all the exponents, and we would get the inverse result for I'. Thus
black hole creation would be enhanced, rather than suppressed. Even worse, the bigger the
black holes were, the more likely they would be to nucleate. As a consequence, de Sitter
space would be catastrophically unstable. This prediction is obviously absurd. Thus, the
consideration of cosmological black hole pair creation provides strong evidence in favour of
the no boundary proposal.

Classical evolution What happens to black holes that have been pair created during
inflation? In the above instanton solution they would just retain their constant size rpg =
1/v/A. But in this case it is important to take into account that during inflation, the effective
cosmological constant isn’t fixed, but decreases slowly. With this correction, the black hole
radius during inflation is given by 7py = 1/v/Aeg. As the inflaton field rolls down, A
decreases, and the black hole grows slowly, becoming quite large by the end of inflation.
This growth can be explained by the First Law of black hole mechanics, which states that
the increase in a black hole’s horizon area, multiplied by its temperature, is equal to four
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times the increase in its mass. The mass increase comes from the flux of energy-momentum
of the inflaton field across the black hole horizon, as the field rolls down.

Quantum evolution There are some quantum effects on the evolution which we have not
yet taken into account. It is well known that both the black hole and the cosmological horizon
emit radiation. The temperature of each horizon is approximately proportional to its inverse
radius. In the instanton solution the radii of the two horizons will be equal, and, therefore,
also their radiation rates. The black hole loses as much mass due to Hawking radiation as
it gains from the incoming cosmological radiation, and it would seem to be stable. Because
of quantum fluctuations, however, the radius of the two-spheres will vary slightly along the
one-sphere. Then the black hole will be smaller and hotter than the cosmological horizon.
- It starts to lose mass and evaporates. Only if it was created very late in inflation would it
be massive and cold enough to grow classically and survive into the radiation era. But such
black holes are highly suppressed. The tiny, hot black holes created early in inflation will all
evaporate immediately. Therefore there will be no significant number of neutral black holes
after inflation ends.

Magnetically charged black holes There also are instantons that correspond to the
creation of magnetically charged black holes. Such black holes cannot evaporate altogether,
because there are no magnetically charged particles they could radiate. Therefore they are
still around today. A detailed calculation shows, however, that they are so suppressed, and
so strongly diluted by the inflationary expansion, that there won’t even be a single charged
primordial black hole in the observable universe. (This is a sensible prediction, since we don’t
observe any.) In dilatonic theories of inflation, however, their number could be significantly
larger; this is currently being investigated.

Summary Semi-classical calculations indicate that tiny black holes are plentifully pro-
duced at the Planck era. The creation of larger black holes is exponentially suppressed.
During inflation, the black holes can grow classically, but will mostly evaporate due to quan-
tum effects. Magnetically charged black holes cannot evaporate, but their number today is
exponentially small. Generally, in the context of cosmological pair creation of black holes,
the no boundary proposal gives physically sensible results, while the tunnelling proposal does
not seem to be applicable.
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