Zeitschrift: Helvetica Physica Acta

Band: 69 (1996)

Heft: 3

Artikel: A decrumpling model of the universe
Autor: Khorrami, M. / Mansouri, R. / Mohazzab, M.
DOl: https://doi.org/10.5169/seals-116928

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 30.11.2025

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-116928
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Helv Phys Acta 0018-0238/96/030237-04$1.50+0.20/0
Vol. 69 ( 1996) (c) Birkhauser Verlag, Basel

A Decrumpling Model of the Universe

By M. Khorrami

Department of Physics, Tehran University, North-Kargar Ave. Tehran, Iran, and Institute
for Advanced Studies in Basic Sciences, P.O.Box 159, Gava Zang, Zanjan 45195, Iran

R. Mansouri !

Universitaet Potsdam, Mathematisches Institut, Kosmologie Gruppe, PF 60 15 53, 14415
Potsdam, Germany

and M. Mohazzab

Physics Department, Brown University, Providence RI. 02912, USA

Abstract.  Assuming a cellular structure for the space-time, we propose a model in which the
expansion of the universe is understood as a decrumpling process, much like the one we know from
polymeric surfaces. The dimension of space is then a real dynamical variable. The generalized
Friedmann equation, derived from a Lagrangian, and the generalized equation of continuity for
the matter content of the universe, give the dynamics of our model universe. This leads to an
oscillatory non-singular model with two turning points for the dimension of space.

The picture we are proposing for the space-time is a generalization of polymeric or teth-
ered surfaces, which are in turn simple generalizations of linear polymers to two-dimensional
connected networks [1,2]. Visualizing the universe as a piece of paper, then the crumpled
paper will stand for the state of the early universe [3]. As we are not going to develop yet
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a statistical mechanical model for our decrumpling universe, the dynamical model we are
proposing in this paper could as well be interpreted as a generalization of fluid membranes
[4]. In this case we can visualize the universe as a clay, which can be formed to a three
dimensional ball, to a two dimensional disc, or even to a one dimensional string. In each
case the effective dimension of the universe is a continuous number between the dimension of
the embedding space and some Dy which could be 3. To study the crumpling phenomenon
in statistical physics one needs to define an embedding space, which does not exist in our
case. Therefore, we assume an embedding space of arbitrary high dimension D, which is
allowed to be infinite. This is necessary, because the crumpling is highly dependent on the
dimension of the embedding space.

Now, imagine the model universe to be the time evolution of a D-space embedded in a space
with arbitrary large, maybe infinite, dimension D. To model the crumpling, we assume the
D-space to be consisted of cells with characteristic size of about the Planck length, denoted
by 6. The cells, playing the role of the monomers in polymerized surfaces, are allowed to
have as many dimensions as the embedding space. Therefore, the cosmic space can have
a dimension as large as the embedding space, like the polymers in crumpled phase. The
radius of gyration of the crumpled cosmic space will play the role of the scale factor in a
FRW cosmology in D + 1 dimensional space-time, where D is the fractal dimension of the
crumpled space in the embedding space and could be as high as D. The expansion of space
is understood now as decrumpling of cosmic space. In the course of decrumpling the fractal
dimension of space changes.

To formulate the problem we write down the Hilbert-Einstein action for a FRW metric in D
space dimension. This is along the same line as the formulation of homogenous cosmologies
using the minisuperspace. Now in our toy model not only the scale factor a, but also the
dimension D of space, are dynamical variables. The above mentioned cell structure of the
universe brings in the next simplification which is a relation between @ and D. It turns
out that these generalized field equation admits the FRW model as a limit. For the sake of
simplicity we confine ourselves to the flat, k£ = 0, case.

Let us begin with a D + 1 dimensional space-time M x R, where M is assumed to be
homogeneous and isotropic. The space-time metric is written as

ds? = —di® + a*(1)byda’ds?  Q,j=1,..,D (1)

The gravitational part of the Lagrangian, assuming D to be a constant, becomes
1 a\? p
Lg = “%D(D - 1)(5) a”, (2)

where a is the volume of M, and we have used the homogeneity of the metric to integrate
the Lagrangian density.

To couple this Lagrangian to the source we use the well-known procedure in general relativity:
write first the matter Lagrangian as

1
Ly = 59“1}9“1;, (3)

where
0% = p:= pa®, (4)
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and . ..
0 = p6 = paP=26Y. (5)
Now for the complete Lagrangian we obtain
i @\ 2 p pDa?
L=—-—DD-1)(-)a" - = i 6
5 DD -1)(5) "+ (- 5+ ) (6)

We have to vary this Lagrangian with respect to a, considering g and p as constants. There-
fore just one equation of motion is obtained. The continuity equation for the matter content
of the cosmological model is the other one which we are going to use. It can be shown that
these two equations give us the familiar 2 Friedmann equations.

To implement the idea of dimension as a dynamical variable, we assume a cellular structure
for space: the universe consists of N Dy-dimensional cells. To make them eligible to con-
struct higher dimensional configurations, we assume our cells to have an arbitrary number
of extra dimensions, each having a characteristic length scale 6. Then the following relation
holds between the D- and Dy-dimensional volume of the cells:

volp(cell) = volp, (cell) §2~Po (7)
Now, taking a as the radius of gyration of our decrumpling universe[5|, we may write
a” = N volp(cell) 6°~P° = N volp,(cell) 6720 = gP0§P~Do, (8)

or
(_)D = eC’ (9)

where C is a constant. Here Dy is a constant dimension which could be assumed to be 3, and
ag is the corresponding length scale of the universe, i.e. the present radius of the universe.
Now, we go on to start with the Lagrangian (6), letting the dimension D to be any real
number. It is then seen that the Lagrangian (6) suffers from the fact that its dimension
is not a constant. To obtain a Lagrangian with a constant dimension we multiply (6) by
at*~P. Now, for our general case of variability of the space dimension, the constant part of
this factor, ag®, can be omitted. Therefore, we finally arrive at the Lagrangian|6]

D(D-1) /a p pDa®
== (2n )(g)z(&%)D+(‘g+pza)’ 1)
where
P i= p(a%)D ,and p:= pa_Q(i)D. (11)

Variation of this Lagrangian with respect to a and D leads to a field equation for ¢ and
one for D. But there is also the constraint equation (9). Taking this into account we arrive
finally at the equations

(D-1) (%*[%‘1“%?12—:3] (3)2)4—5;0(1—%):0 (12)
and
i D

— = . 1
e C Lo
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The field equation (12) is not sufficient to obtain a. A continuity equation, and an equation
of state, are also needed. A dimensional reasoning leads to the following generalization of
the continuity equation [6]:

(PaD 0" D)+p (aD " 7)) =0, (14)

d a\bD d,a\D
7P | +rg ()" =0 0

The dynamics of our model universe is defined through (12), (13), (15), and an equation
of state. This is a difficult system to be solved analytically. However, a first integral of
motion can be derived which helps us to understand our model universe qualitatively. It
leads to a potential which can be written for a radiation-like equation of state in the large
D limit in the form

or

U(D) ~ f(g —C(g]) B (16)

Similarly, for D near zero, assuming the pressure to remain finite (nonzero), it is obtained
to be

U(D) ~—-ClnD, (17)
that is, U grows unboundedly to infinity at D — oo, as well as D — 0. It can be shown that
the point D = 2C is the point where the potential attains its minimum[6]. This means that
there are two turning points, one above D = 2C, the other below it. The above discussion
is valid, provided T > 0. However, the kinetic term (32) changes sign at D = 1. Therefore,
to have two turning points, the constant F := U + T must be sufficiently low to make the
lower turning point greater than 1.

A study of the behavior of our model near the lower turning point shows that to have
any effective change in the space dimension one has to go back in time as much as about
some multiple of the currently assumed age of the universe, and that there is no sensible
deviation from FRW models up to the Planck time.
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