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Abstract. The main motivation for this work comes from a formula giving the splitting between

the first two eigenvalues for a Schrödinger operator with a symmetric double wells potential, in the
semi-classical limit. To give a natural spectral interpretation for this result, we prove some trace
formulas for Dirichlet and Neumann problems on large boxes, as the size of the boxes increases to
infinity. This gives a natural definition of some relative determinants.

1 Introduction

Let Q : Rn —> R, be a smooth function converging sufficiently fast to some real number to

as |x| —> oo. More precisely, let us suppose that:

\Q(x) -u>\ < C(x)~5 for some <5 >n (1.1)



Hq -Ax + Q(x

Hu -Ax+to.

D
Q.T and H°T
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Here (x) (1 + \x\).

Associated to Q and w, we consider the Hamiltonians

(1.2)

(1.3)

and we denote by

(1.4)

their Dirichlet realizations in the box If =: It x It x x IT, where It =] — T/2,T/2[. In
the same way, we denote by

H%]T and H»T (1.5)

the operators HqT and Hwj respectively, with Neumann boundary conditions in If.
It is well known (see, for example, [18]) that the spectrum of Hq is consisting of a finite

number of eigenvalues
Ai < A2 < < Ap < uj

counted with their multiplicity and of a continuous spectrum part in [w,+oo).

On the other hand, for any fixed T, HqT (resp: H*T) (X D, N) has an orthonormal
base of eigenfunctions gfT (resp: gfT) associated to an increasing sequences of eigenvalues

(A^r)ieN (resp:((^T)jeN).

Let a < Ai (Ai is the bottom of the spectrum of Hq) and let / be an analytic function
defined on the sector

Ae {zeC; \lmz\ < e(Rez - a)} (1.6)

satisfying the following estimate : there exist n > 0, c > 0 such that

\f(z)\<c(z)1-^-", Vz£As. (1.7)

The purpose of this paper is to prove the following formula:

„lim tr(/(H*T) - f(H*T)) tr(f(HQ) - f(Ha))

E?=i/(A,) + L+°°S(A)/'(A)a-A
(1.8)

where s(X) is the spectral shift function associated to the pair (Hq,Hu). In the particular
case when n 1, a > 0 and f(z) ln(z), (1.8) gives the following formula for the generalized
determinant:
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This formula was suggested to one of the authors (V.S.) by Y. Colin de Verdière. Formulas
âet( Hx)

involving the limit, as T —» +00, of the quotient -—,TTY. often appears in physics literature
det(H£)

and came out applying a kind of stationary phase theorem to path integrals (see, for example:
[3], [13], [15], [16]). In particular, in [23], one of the authors (V.S.) has shown that the Helffer-
Sjöstrand's formula ([12]) for the splitting of the two low-lying eigenvalues of a semiclassical
one-dimensional Schrödinger operator

h2 d2

with symmetric non-degenerate double wells at ±a, can be rewritten as:

Xi(h) - X0(h) hl'2(Go + 0(h))e~^, (1.10)

where

Go 2Âivfclim fn MhY¦ (1-11)
v2tt' T^+co\j>2pT(V"(y)))

Here u> V"(±a) > 0, y(t) is an instanton joining the wells {—a} and {a} i.e. the solution of
the Newton equation y"(t) V'(y(t)) with y(0) 0 and limt^ioo y(t) ±a, So is the square
of the L2-norm of the instanton. Moreover pJ(V"(y)) (resp:pj(u>)) are the eigenvalues of

d2 d2
the Dirichlet realization Hqj of Hq =: — — + V"(y(t)) (resp: H^,t of Hw =: --to + w) in

CLL- CLL

the interval It =] — T/2,T/2[. We remark that this result agrees with the heuristic formula
contained in [3].

The results of the present paper allow to rewrite (1.11) as follows :

Let us remark here that Ai 0 is a simple eigenvalue. We shall see in Section 3 that (1.12)
follows from (1.9). Moreover, in [23] it is shown that a formula similar to (1.12) holds even
for the splitting of the two low-lying eigenvalues of a semiclassical Schrödinger operator in
arbitrary dimension n. Such a formula involves the eigenvalues of a system of Schrödinger
operators with Dirichlet boundary conditions. We shall consider this case in a forthcoming
paper.

2 Trace class operators

In this section we prove some relative trace formulas for slow increasing functions in the one
dimensional case and also for n 2,3. (arbitrary n-dimensional case will be considered in
Appendix)
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Let us consider the curve V in picture. 1

3z

spect ra
R(z

picture

Since Sp(HqT) USp(#Q)uSp(.r7*T)USp(.fL) C (a, +00) the curve T in the picture does

not intersect Sp(H^T) U Sp(HQ) U Sp(#*T) U Sp(flw) for X D or X N.

Il z £ (a, +00), we will denote by IZ(z) (resp: TZ0(z),TZt(z),TZot(z)) the resolvent of
tfQ (resp: Ha,H^T,H^T)

Let us start by proving that, if (^4, B) is one of the pair (HqT, H*t) or (Hq, Hu) then
a formula like

tr(f(A) - f(B)) JL jf tr((A - z)"1 - (5 - z)"1)/^-
is true. More precisely we prove the following proposition:

(2.1)

Proposition 2.1 Let us assume that 1 < n < 3 and f is an analytic function satisfying
(1.7). Then we have:

1. f(Ho) — f(HJ) is a trace class operator in L2(Rn) and

tv(f(HQ) - f(Hu)) ± /r tr(K(z) - Tlo(z))f(z)dz. (2.2)

2. For any positive T > 0, f(HnT) — f(H^T) is a trace class operator in L2(lf) and

tr(/(#£r) - /(fl£r)) ~ j^fäi*) ~ KT(z))f(z)dz
OO

£(/(*&¦) - /(/&))• (2-3)

Proof :

1) Let us begin by proving that the integral on the RHS of (2.2) converges. We are going to
prove that there exists C > 0 such that

\\n(z) - Ko(z)\Ur < c(i + |z|)t-2, Vz g r.
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Here and in the following ||.||tr denotes the trace norm, \\.\\hs the Hilbert-Schmidt norm,
and i.| the operator norm in C(L2,L2).

We can write, for z G Y, \z\ large enough,

7t0(z) - U(z) Ilo(z)(Q - lo)TZ(z) 7t0(z)(Q - w)7c0(z)(/ + (Q - lo)IZo(z))-1

Hence

\\Ko(z) - R(z)\\tI < \\K0(z)(Q - uy/2\\„s\\\Q - ^2TZo(z)\\HS ¦

.||(/ + (Q-W)7e0(z))-1||

(Here (Q - tufi2 sgn(Q - u)\Q - of/2).

The Hilbert-Schmidt kernel of 7t0(z) in the case n 1 is explicitly given by the Green
function

exp (iJz — wis — t\)
G(s,t;z)= *\V ]J, (2.4)

2iVz — w

and it is easy to check that:

\\1lo(z)(Q-uyl2\\2HS \\Tlo(z)\Q-^ ]iHS/2II2.S

C
J\G(s,t;z)\2\Q(t)-u\dsdt<-(l+|z|)3/2'

for some constant C" > 0 independent of z G Y.

For n 2,3 using Lemma B.l with p 2, k 1, p 6/2 we get

^(^(g-c^n^^c'a + izDf-2

for some constant C" > 0 independent of z G Y.

Here and in the following we choose the determination of \/z — u) with positive imaginary
part.
If / is rapidly decreasing, the identity between tr(/(Hg) — f(Hu)) and the integral on the
RHS of (2.2) is an easy consequence of the Cauchy formula and of the spectral theorem. On
the other hand, for a general function / satisfying (1.7) we have, for any e > 0,

tr(/,(A) - MB)) ± jf tr((A - z)"1 - (B - z)-')fc(z)dz, (2.5)

with fe(z) e~czf(z). Taking the limit for e —> 0 and applying the dominate convergence
theorem we obtain (2.2).

The proof of the part 2 of the proposition is analogous to 1. Actually, the Hilbert-Schmidt
kernel of Ti-oT ^s given in the case n 1 by the Green function:

cosh (i(y/{z - u)(T -\s- tj)) + S*cosh (i(y/{z - u)(a + tj)
Gt(s,v, z) — / -, ; =t (2,bJ

2isJ(z - w)sinh (TisJ(z - w)J
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where Sx -1 for X D and Sx 1 for X N.

Hence, arguing as before

lKT(z)-7e£(z)||tr < [\nxT(z)\Q-uj\ll2\\2HS\\(I+(Q-u/)Tla(z))-'\
< Ci||7t0*T(z)|Q-H1/2|ßs

|2/ Gx(s,t;z)\'\Q(t) -u)\dtds

C2

(l + |z|)3/2'

for some constant C\, C2 > 0 independent of z G Y. This gives easily the first part of (2.3).
For n 2,3, using estimate (B.3) in Appendix B, with k 1, p 2, we get easily

||^r(z)-^(z)||tr<C7(z)t-2.
On the other hand, for fixed T, let F^ be the curve in picture 2 with ak $ Sp(Hq T)USp(HxT)
and ak —> +oo.

3z

ak
Ht(z

rpicture

Using the residue theorem we obtain:

tr(f(HQ}T) - f(HUiT)) lim ± [ tr(TlT(z) - ft0,r(z))/(z)dz
fc-»+oo Z1T JTk

OO

lim £ /(A&0- E /(*&) £(/(*&¦)-/(*&)).
\fT<ak ßfiT<a.k 3-1

and this ends the proof of Proposition 2.1. I
The main result of this section will be the following:

Proposition 2.2 Let us assume 1 < n < 3 (see appendix for n > 4). Then for every
analytic function f satisfying (1.7), we have

lim tr(/(Hc3,r) - f(Hu,T)) tr(f(HQ) - f(Ha))
T—f+oo

(2.7)
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Proof :

We have to prove that:

lim ± j tr(7cT(z) - 7t0,r(z))/(z)dz

^Jrtr(K(z)-1lo(z))f(z)dz. (2.Ì

Let us consider

Pt : L2(R) -» L2(IT), pT(u) uVt
and

r2/r \ r2/n-.\ / w.\ f U(X) for £ € ir
nT : L2(IT) - L2(R), (**«)(*) | J> ^ % £ ^

Since p^wr 1l2(/t) we have, for z G T,

tr (ttt(7Z£(z) - ^{z))f>r) tr (ft£(z) - ft£T(z))

Hence:

2^ jf tr ((ft£(z) - nxT(z)j) - tr (7t(z) - Ko(z))) f(z)dz

± jf tr (7TT(7ef (z) - 7e0¥T(z))PT - (7e(z) - n0(z))) f(z)dz

Lemma 2.3 Let us assume that 1 < n < 3.

Then, for zeY, TZ0(z)(x)-6/2 and 7rT7eoYT(z)(ï)-ê/2pT, with X D or X N', are Hilbert-
Schmidt operators and, in particular,

||7t0(z)(*)-s/2||„5 + Uttt^z)^)-6/2!!^ < C(l + Izl)?"1. (2.9)

Moreover there exists e g]0, 1[ and a constant C > 0, independent of z and T, such that, for
T large enough and z G T, we have

\\^TnxT(z)(x)-^pT - H0(z)(x)-V2\\HS < CT-^2(l + Izl)?-1. (2.10)

Proof : See Appendix A for an elementary proof for n 1 and Lemma B.2 for n 2, 3.1

Using Lemma 2.3 we can obtain :

Lemma 2.4 For 1 < n < 3, there exist C > 0, T0 > 0, e > 0 such that

||7TT(7t*(z) - nxT(z))pT - (7c(z) - ft0(z))||tr < CT-*(1 + |z|)?"2, (2.11)

for any z G Y and T >T0.
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Proof :

Using the resolvent identity, we can estimate
||7TT(7e^(z) - KxT(z))pT - (K(z) - 7c0(z))||tr as:

||ttt(7c*(z) - TZxT(z))pT - (K(z) - n0(z))\\tt
\\ttt-R4(z)(Q - uj)1Zxt(z)pt - Tl(z)(Q - u))Uo(z)\\tT

< hrTlxT(z)(Q - u/)nxT(z)pT - Tlo(z)(Q - w)7c0(z)||tr

+ ||7rT7c£(z)(Q - lj)TIxt(Q - lü)TIXt(z)pt

-K(z)(Q - u/)Ko(z)(Q - u,)7c0(z)||tr =1 + 11.

We have:

I lkT<T(z)(Q-w)1/2pT(WT|Q-a;|1/XT(z)pT-|Q-a;|1/2^o(z))||tr

+ || (7TT7e£T(z)|Q - u>\"2pt - Uo(z)\Q - uj^2) (Q - uj)1'2R0(z)\\tY

< (||7rT7e^(z)|Q - uj^ptWhs + \\\Q- ^2R0(z)\\Hs)

x || (7rT7c£T(z)|Q - u/\l'2pT - Tlo(z)\Q - of/2) \\HS,

where (Q - wf2 (sign(Q - w)) \Q - u]1'2. Since \Q - of/2 < c(x)~6'2, using (2.9) and

(2.10), we obtain

/<^(l + |z|r2.

On the other hand,

// < ||7r^(z)(Q-W)7eoYr(z)pT(WT(g-o;)^T(z)pT-(Q-W)^o(z))||tr

+ || (nTnx(z)(Q - uj)nxT(z)pT - K(z)(Q - lu)TZo(z)) (Q - ü,)7c0(z)||tr

III + IV.

We have:

III < \\nTTlx(z)pT\\\\irT(Q-u)KT(z)pT\\HsX
\\nT(Q - u>)TIXt(z)pt -(Q- to)TZ0(z)\\HS.

The spectral theorem gives, on Y,

hTnx(z)pT\\<c(\z\ + i)-1

Using (2.9) and (2.10), we obtain

m<^(i + |z|)?-2.
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On the other hand

IV < \\nTTZx(z)pT(nT(Q-u;)-RxpT-(Q-Lo)na(z))(Q-u>)TZ0(z)\\tr

+ || (^7t*(z)pT - TZ(zj) (Q - lo)1Z0(z)(Q - o;)7e0(z)||tr V + VI.

As before, we have

V < \\7rTnx(z)pT\\\\MQ-^)^TpT-(Q-oj)n0(z)\\HS\\(Q-io)Tlo(z)\\HS

Let us consider two cutoff function x, X such that

Bupp(x)C [-1/4,1/4], x l on [-1/8,1/8]
supp(x)C [-3/8,3/8], x l on [-1/4,1/4]

and

Xt(x) x(x/T), xt(x) x(x/T)
We have XX X- Let us write now

VI < \\(nTTZx(z)pT-IZ(z))(l-XT)(Q-u;)n0(z)(Q-ui)no(z)\\tI
+ 11(1 - Xt)tttRt(z)ptXt(Q - cü)TZ0(z)(Q - oj)n0(z)\\tI

+ II (xTnTTZx(z)pT - IZ(zj) xt(Q - w)7c0(z)(Q - (o)Uo(z)\\tT

VII + VIII + IX.

Using (2.4) and Lemma 2.3, it is easy to prove that

VII + VIII < (||(^r7c*(z)pT|| + ||7c(z)||)x

x ||(l-XT)(Q-^o(z)lks||(Q-w)7c0(z)||„s
+ hTnx(z)pT\\\\XT(Q - uj)n0(z)\\HS\\(Q - (ü)Tlo(z)(l - Xt)\\hs

< ^(i + H)f-2-

On the other hand

ix < \\{xT^Tnx(z)pT-n(z))xT\\\\(Q-u/)no(z)\\HS\\(Q-uj)no(z)\\Hs

< C(l + |z|)?-2|| (xTnTTZx(z)pT - TZ(zj) xr||.

Observe now that

(xt^tR-tÌzÌPt - R-(z)) Xt Xt^tR-t(z)PtXt ~ R-(z)xt

TZ(z)(HQ - z)xttttTZt(z)ptXt ~ K(z)xt
TZ(z)[A,xtUt'R-t(z)ptXt

=«w (-^*zs _ mMnA „rKr(2)(W
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Hence

Il (xt^tR-t(z)pt - n(zj) xt\\ < y
for some constant C. This ends the proof of Lemma 2.4.

End of the proof of Proposition 2.2:
Proposition 2.2 follows easily from Lemma 2.3, and Lemma 2.4. I

Now we want to separate, in the above trace formula, the discrete spectrum and the
continuous spectrum. For that purpose let us consider the curve Ti and Y2 in picture 3.

Mz)

discret' ;

spec"
continuous spectrum

**t(z)

picture. 3

We have:

Corollary 2.5 For 1 < n < 3, we have :

lim T-»+oo 2tt ir^tr(7eT(z)-7e0,T(z))/(z)dz

ÈHXj) + f / tr(^) - Ro(z))f(z)dz.
vI3=1

(2.12)

Proof :

We can write

± Jrtr(R(z) - TZ0(z))f(z)dz =(/+/) tr(«(z) - Uo(z))f(z)dz

An application of the residue theorem gives

£ / tr(7e(z) - n0(z))f(z)dz E/(A,). (2.13)
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Proposition 2.2 and (2.13) gives (2.12). 1

Remark 2.6 Using the arguments of [6] (see also [23]) it is possible to prove that, in the

case n 1,

XfT X3+ Ö^V^)
asT —> +00, for j 1, ..,p.

Here f Ö(e~at) means that, for any S > 0, / Os(eA"-6)t) as t -> +oo

In particular:
lim XfT Xj

T—*+oo J

for j l,..,p.

3 The Birman-Krein formula

Using the Birman-Krein formula [1], it is possible to write tr(/(i7g) — f(Hu)) in terms of
the discrete eigenvalue of Hq and of the spectral shift function s (A) of the scattering matrix
S(X) associate to the pair (HQ, HJ, (i.e. detS(A) e-2nlsW, for A > uj).

Theorem 3.1 For f satisfying (1.7), we have:

lim tr(/(H*T) - f(HxT)) E /(A,) + / s(X)f'(X)dX (3.1)
J=l

where s(X) is the spectral shift function of the scattering matrix associate to the pair (Hq, HJ).

Proof :

As above we assume here 1 < n < 3 (For n > 4 the proof is done in Appendix B). Using
Corollary 2.5 we get

lim tr(f(HxT) - f(HxT)) £ /(A,) +f / tr(7t(z) - TZ0(z))f(z)dz (3.2)

The Birman-Krein formula (see [1]) gives, for z G Y

tr(7c(z) - n0(z)) -£ (fr^dA- (3-3)

Let us recall that, for A < lo, s(X) is defined as the number of eigenvalues of Hq smaller than
A. So we have

tr(TZ(z) - TZo(z)) E ^~ ~ T 7T^dA <3-4)
1<3<P 3 - Z Jw \A - Z)
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i LtT{n{z) - *«<*»'«*=-h LfÄdA/(z)^ (3-5)

Hence

Jr2 x y uv "JK ' 2irJr2Jùj (A — z)2

Since s(X) 0(Xn/2~1) as A -+ +00 (see, for example, [4], [5], [9], [10] [19]) and s(X) 0

for A < a, we can change the order of integration in (3.5) to get finally

iJTHn(z)-^(z))f(z)dz -±/;/r2^£L^(A)o-A
/*oo

/ s(A)/'(A)dA,

and this ends the proof of Theorem 3.1. I
Remarks:
i) Trace formulas for tr(f(Ho) — f(Hw)) with the spectral shift function s(X) and suitable
functions / are well known (see [2, 22, 24]). Here we want to put emphasis on the limit for
large intervals and the transition between the discrete spectrum in the box ]—T,T[ and the
continuous spectrum in the whole space R. We do not know other reference for a rigorous
proof concerning this limit.
ii) The contour integration approach used in Sections 2 and 3 is well known (see for example
[8], ch.IV). We could use the more general results on the spectral shift function ([24]). Here

we have chosen a more direct and more explicit approach.
iii) For the interpretation of the spectral shift function as the average of the quantum process,
see [14].

Now we come back to our main application, the computation of the splitting in the double
well problem.

Corollary 3.2 Let G0 the number defined in the introduction by (1.10) and (1.11). Then

we have

Proof :

For b > 0, let us consider the pair of Hamiltonians (Hu+b, Hq+i,) with Q(t) V"(y(t)). Let
us recall that Ai 0 is a simple eigenvalue; so we can clearly apply the above results with
0 < a < b and f(z) log(z) and we get

_ (vT>
lim

T/+00 £log(4^ì=£log(AJ+&)+r^AM \pAuJ + b)J i<7<P J"+b x

where Sj is the scattering phase for (Hu+b, Hq+i,). Then using
lim p\(Q) Ai, we get

X^+oo

1- E log (^4) E log(A, + b) + r S-^dX (3.6)
T/+0O^2 \Pj(" + t>)J 2t<r L+h A
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Now in (3.6) we can go to the limit 6 \ 0 and taking the exponential we get the corollary
using the formula (1.11) for G0 |

A APPENDIX: Proof of Lemma 2.3 for n=l
Since (2.9) and (2.10) are proved along the same lines, let us prove only (2.10).
Notice that, we can rewrite GxT(t, s; z), (t, s) G (It)2 as

Gx(t,s;z) _"P(-Ml*-li)
2/i

exp(—pT') /cosh(pt) cosh(ps) s'mh(pt) smh(ps)^
2p \ cosh(pT') sinh(pT') J

if X D, and

^xu „. ^ _ exp(-p\t-s[
Ctji [t, S] Z) — —

2/x

exp(-pT') fcosh(pt) cosh(ps) smh(pt) smh(ps)\
2p V smh(pT')

+
cosh(pT') J

if X N, with T' T/2 and p —iy/z — w. Hence, we need to estimate the following two
integrals :

tt exp(-2M|5-t|) (1+e)
J JjR>\n 4p2 w v '

-IL c7f(M;z) + -exp("M|s"f|)

\4 <±P2

2

(i}-(1+e)dt ds (A.2)

It is sufficient to consider |z| large enough and z G Y. Let us recall that y/z — lo is the
determination such that 0 < arg(z — w) < 2ir. So we see easily that it exists c G]0,1] such

that
c\p\ < Rep, for z G Y, |z| large enough

Let us denote Rep r and \p\ d. We have :

h<I[ + I'(

where

/Î \ f f exp(-2cd|s-t|)(i)-(1+E)dsdi
4a2 J\t\>T' JR

7'i i/, /exp(-2cd|S-i|)(i)-(1+E)dtdS.
4^ J\s\>T' JR

Then

^i(i^-Hi)*)(Lr^)<^d3'
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Using Peetre inequality (t)-(1+£) < 2(1+e)/2{s)-(1+e>(s - i)(1+E> for I'{, we obtain

o(l+e)/2 r rI" < —- / / exp(-2cd|s - t[)(s - tj1+£)(s)-(1+e)dt ds
4d2 J\s\>T' Jn

and I" can be estimated in the same way as I[.

For I2 we have clearly:

/2 < 86Xp(~4rT,) / exp(2r(t + s))(t)'(-1+cUtds
d2 J[a,T'Y

< 4exp(-2rr) ^'ex (1+E)rft
e dó Jo

for T sufficiently large.

rV rT'/2 rT'
Splitting the integral / / + / we get easily

Jo Jo Jt'/2

rT'/2 pT'

"/2

I2 < I'2 + I2

with

/;<4^exp(-rn i?<^.
This proves (2.10) in the case n 1.

B APPENDIX: The n-dimensional case

Let us remark that for n > 4 TZ0(z)(x}^p is not in the Hilbert-Schmidt class but in the
more general Schatten class <Sp on the Hilbert space L2(Rn), 1 < p < +00. (See [8] for the
definitions and properties of these classes of operators). For p 2, it coincides with the
Hilbert-Schmidt class. The usual operator norm for T G Sp is denoted by ||T||p. We need in
particular the following lemmas

Lemma B.l Let us consider a pseudodifferential operator in the Weyl quantization,
aw(x, D), defined for u G <S(Rn) by

a(x, D)u(x) (2n)~n [ e^-^<a((x + y)/2, tf)u(y)dydZ
JR2"

For every p, 1 < p < +00 it exists a real j(n,p) and an integer N(n,p) such that if
(97a G IACR2") for \j\ < N(n,p) then aw(x, D) is in Sp and the following estimate holds

\]aw(x,DWp<f(n,p) E [ J&>a{z)\*dz
\y\<N(n,p)-
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sketch of proof :

For p +00 the result is the Calderon-Vaillancourt theorem. For p 1 the estimate is

proved in several places, for example in [20]. The general case comes easily by complex
interpolation [8]. I

Lemma B.2 Let fc € IN, k > 1, n G N, n > 1 and real numbers p, p such that p > £¦,
pp > n Then there exists C > 0 such that, for z G T, we have

||^)(*rilp<C7(z}ft-*. (B.l)

Proof :

We get easily (B.l) by computing the Weyl symbol of 7to(z)(x)_p |
Concerning the resolvent estimates in boxes, using the spectral decomposition, we have

ll«T)*(z)||p< (E l^+^-zrA" (B.2)

Hence, for kp > |, there exists C such that for z G Y, we have

\\(nxT(z))%<C(l + \z\)%-k. (B.3)

For n > 3 TZ0,t(z) — Ti-o(z) is not in the trace class but we shall see that
(TZ0it(z))n — (lZo(z))N is in the trace class, for N large enough.

Lemma B.3 Let us assume that n > 1 and p > -. Then for z G Y, 1Zq(z)(x)~p and

tttCR-otY'(z)(X)~PPt, with X D or X N, are in the Schatten class Sp, for kp > ^. In
particular, there exists C such that for z G Y we have

\\(Tlo(z))k(x)-»\\p + \\nT(TZxT(z))kPT(x)-"\\P < C(l + \z\)%~k. (B.4)

Moreover there exists e G]0, 1[ and a constant C > 0 independent of z and T such that for
T large enough and z G Y we have

||7rr«T(z))fc(x}-"pT - (Tlo(z))k(x)-% < CT-%1 + |z|)t"fc. (B.5)

Proof : The first inequality comes from (B.l) and (B.3).
Let us introduce the cut-off functions x € C0X>(/11) such that x(x) 1 for a: G Iy2 and

Xt(x)=x(§)-
Using (B.4) we have, with 6 > n, 0 < e < p — -,

\\nT(TlXT)k(z)(l - XT(mx)-6l2PT - (Tlo)k(z)(l - Xt(x))(x)-S/% < C

T-E(l + |z|)£-fc. (B.6)
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By a standard computation on resolvents, we have

^tFLo,t(z)xtPt - Ko(z)xt (7co(z) - TrTnxT(z)pT)[XT, A]ft0(z). (B.7)

But we have [xt, A] -^Ax(f) - |Vx(f )V. So the estimate follows for k 1.

For fc > 1 we use the same argument. Taking (fc — 1) derivatives in z, we get

MK.tWxtPt - (Ko(z))kXT

E^=^((7co(z))J - 7TT(7toV(z)pT)[xr, A](7e0(z))* (B.8)

where the Cjte are numerical constants. The estimate follows.

I
Proof of Theorem 3.1 for n > 4 :

We have to modify the statement of the Proposition (2.1). Let us start with the functional
calculus formula, for / satisfying (1.7),

f(HQ) - f{HJ) ~ jjK(z) - TZ0(z))f(z)dz

and integrate N — 1 times in z, with N > | — 1,

f(HQ) - f(Hu) (-lf-\N - l)lJL J^n(z)N - R0(z)N)f^-N\z)dz (B.9)

where /("fc>(z) is such that £zf<--k)(z) f(z) and f^k)(z) 0((z}fc+1-§-")

Proposition B.4 Let us assume that n > 4 and f be an analytic function satisfying (1.7).
Then we have:

1. f(HQ) — f(HJ) is a trace class operator in L2(Rn) and for N > | — 1 we have

tr(f(HQ) - f(Hu))

(-lf-\N - i)!J. [ tr(R(z)N - n0(z)N)fV-N\z)dz
Lit Jt

tz

2. For any positive T > 0, f(HQT) — f(HxT) is a trace class operator in L2(If) and

tT(f(Hx>T) - f(HxT))

(_!)"-!(# - 1)!Ì. jTtr(nx(zf - KxT(z)N)f^-N\z)dz
OO

E(/(A£r) - /(/&))¦ (B.10)
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Proof :

1) Let us begin by proving that the integral on the RHS of (B.10) converges by proving that

||^(z)'v-7eow(z)||tr<C7(l + |z|)-w-1+S.

We can write, for z G Y, \z\ large enough,

Tl0(z) - K(z) n0(z)(Q - w)K(z).

Taking N — 1 derivatives in z, we get

TZ^(z)-TZN(z)= E c^o(z)(Q-u>)Tlk(z).
k+j=N+l

But we have (Q — to) (x)~s/pa(x)(x)~6/q, where a(x.) is uniformly bounded. The Holder
inequality in Sp gives

||7c0(z)(Q-a,)7cfc(z)||i < \\KÌ(z)(x)-s<%-\\n(z)k(x)-s?%

Let us write down lZ(z)k !Z0(z)k(Hw — z)klZ(z)k hence, using uniform ellipticity of Hq — z,
we can see that it exists Ck > 0 such that

IKH^ - z)kTZ(z)k\\ < Ck, VzGF

Choosing p > 1, q > 1 such that - + - 1, jp > |, kq > %, using (B.4) and j + fc N + 1,

we get easily

||7e(z)w-^(z)||tr<C(l + |z|)-w-1+?

This finishes the proof of the first part of the proposition. The proof of the second part is

analogous to the case n 1 so we omit the details. |
Let us state now the extension of Lemma 2.4 for n > 3

Lemma B.5 There exist C > 0, e > 0, T0 > 0 such that for z £Y,T>T0 and N > \ - 1

we have

|kT(7c*(z))N - (KxT(z))N)pT - ((Tl(z))N - CRo(z))N)\\« < ^(1 + M)?"""1 (B.ll)

Proof :

The proof is similar to the proof of Lemma 2.4 using the resolvent identity, taking derivatives
in z and using the above estimates in <Sp-norms. |

Now we can finish the proof of Theorem 3.1. By applying Proposition B.4, Lemma B.5
and Lemma B.3 we get a proof of Proposition 2.2 for n > 4 and hence a proof of Theorem
3.1 for n > 4. ¦
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