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Abstract. The main motivation for this work comes from a formula giving the splitting between
the first two eigenvalues for a Schrédinger operator with a symmetric double wells potential, in the
semi-classical limit. To give a natural spectral interpretation for this result, we prove some trace
formulas for Dirichlet and Neumann problems on large boxes, as the size of the boxes increases to
infinity. This gives a natural definition of some relative determinants.

1 Introduction

Let @ : R" — R, be a smooth function converging sufficiently fast to some real number w
as |z| — oo. More precisely, let us suppose that:

1Q(z) —w| < Clz)™®  forsomed >n Fly
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Here (z) = (1 +|al).

Associated to @ and w, we consider the Hamiltonians

Hq = —A;+Q(z) (1.2)
H, = —-A;+w. (1.3)

and we denote by
HJ; and HD;p (1.4)

their Dirichlet realizations in the box I% =: Iz X It X ... X Iy, where It =] —T/2,T/2[. In
the same way, we denote by

HJ; and H)p (1.5)
the operators Hgr and H,, r respectively, with Neumann boundary conditions in I7.

It is well known (see, for example, [18]) that the spectrum of Hg is consisting of a finite
number of eigenvalues
)\1<)\2$....£)\p<w

counted with their multiplicity and of a continuous spectrum part in [w, +00).

On the other hand, for any fixed T', Hj 1 (resp: H)7) (X = D, N) has an orthonormal
base of eigenfunctions ng (resp: §fT) associated to an increasing sequences of eigenvalues
(A7) jen (resp:((17)jeN)-

Let a < A; (A; is the bottom of the spectrum of Hg) and let f be an analytic function
defined on the sector

A.={z2€C; |lmz| < ¢(Rez — a)} (1.6)
satisfying the following estimate : there exist n > 0, ¢ > 0 such that
F(2)] < ¢ ()13, Yz € A,. (L.7)
The purpose of this paper is to prove the following formula:

lim tr(f(Hgr) ~ f(Hr)) = tr(f(Hq) — f(Hy))
SELFOG) + [ s/ (N)dx
where s(A) is the spectral shift function associated to the pair (Hg, H,). In the particular

case whenn =1, a > 0 and f(2) = In(z), (1.8) gives the following formula for the generalized
determinant:

(1.8)

det(HX +o0
limT—.+oo( i Q’T)) dei Hg) it

det(HX ;) ZMZ(jglkj)exp(L AN (1.9)
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This formula was suggested to one of the authors (V.S.) by Y. Colin de Verdiere. Formulas

; ; . det(HX

involving the limit, as T — +o00, of the quotient #HE‘; often appears in physics literature
€ w

and came out applying a kind of stationary phase theorem to path integrals (see, for example:

(3], [13], [15], [16]). In particular, in [23], one of the authors (V.S.) has shown that the Helffer-

Sjostrand’s formula ([12]) for the splitting of the two low-lying eigenvalues of a semiclassical

one-dimensional Schrodinger operator

with symmetric non-degenerate double wells at +a, can be rewritten as:

A(h) = Xo(h) = AY2(Go + O(R))e™ T, (1.10)
where .
550 1 . H;‘r(w) :

Go = 2(27r) \/aTgl}—loo (jlgz pI(V'(y)) (1.11)

Here w = V"(+a) > 0, y(t) is an instanton joining the wells {—a} and {a} i.e. the solution of

the Newton equation y”(¢) = V'(y(t)) with y(0) = 0 and lim; 4+ y(t) = %a, Sp is the square

of the L?-norm of the instanton. Moreover ul (V"(y)) (resp:u](w)) are the eigenvalues of
d? d?

the Dirichlet realization Hg 7 of Hg =: o + V"(y(t)) (resp: H,r of H, =: ~ I +w) in

the interval Iy =] — T'/2,T/2[. We remark that this result agrees with the heuristic formula

contained in [3].

The results of the present paper allow to rewrite (1.11) as follows :

oS0 (2 3 1 +eo 5(A)
GO—Z(QW) (j];[2)\j) exp (—2[) ) d)\). (1.12)

Let us remark here that A\; = 0 is a simple eigenvalue. We shall see in Section 3 that (1.12)
follows from (1.9). Moreover, in [23] it is shown that a formula similar to (1.12) holds even
for the splitting of the two low-lying eigenvalues of a semiclassical Schrodinger operator in
arbitrary dimension n. Such a formula involves the eigenvalues of a system of Schrodinger
operators with Dirichlet boundary conditions. We shall consider this case in a forthcoming

paper.

2 Trace class operators

In this section we prove some relative trace formulas for slow increasing functions in the one
dimensional case and also for n = 2,3. (arbitrary n-dimensional case will be considered in
Appendix)
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Let us consider the curve I' in picture.1

3(z)
g a ' R(z)
picture.l(

Since Sp(H 1) USp(Hq) USp(HZ 1) USp(H.,) C (a,+o0) the curve I in the picture does
not intersect Sp(Hy z) U Sp(Hg) U Sp(H ) USp(H,) for X =D or X = N.

If z ¢ (a,400), we will denote by R(z) (resp: Ro(z), RF (2), Rir(2)) the resolvent of
Hg (resp: H,, Hjr, HYr)

Let us start by proving that, if (4, B) is one of the pair (H 4, H7) or (Hg, H,) then
a formula like

(f(4) - (B)) = o [tr((A=2)7" = (B - 2)")f()d (2.1)

is true. More precisely we prove the following proposition:

Proposition 2.1 Let us assume that 1 < n < 3 and f is an analytic function satisfying
(1.7). Then we have:

1. f(Hg) — f(Hy) is a trace class operator in L*(R") and

tr(f(Ho) - f(HL)) = 5= [ (R(2) — Rol2) f(2)d. (2.2)

2. For any positive T > 0, f(HgT) — f(HZX}) is a trace class operator in L*(IF) and
3
w(f(HEr) ~ f(HED) = 5= [ e(RE () = REp(2))f(2)de

= SO - f(ue) (2.3)

Proof :
1) Let us begin by proving that the integral on the RHS of (2.2) converges. We are going to
prove that there exists C > 0 such that

IR(2) — Ro(2)|le < C(1 +|2)372, VzeT.
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Here and in the following |||t denotes the trace norm, ||.||zs the Hilbert-Schmidt norm,
and ||.|| the operator norm in £(L?, L?).

We can write, for z € I, |z| large enough,

Ro(2z) = R(z) = Ro(2)(Q — w)R(2) = Ro(2)(Q — w)Ro(2)(] + (Q — w)Ro(2)) ™"

Hence

IRo(2) = R(2)llex < [Ro(2)(Q = )2l sl|Q — w]*Ro ()]s -
NI +(Q — w)Ro(2)) |

(Here (Q — w)? = sgn(Q — w)|Q — w|?).
The Hilbert-Schmidt kernel of Ry(z) in the case n = 1 is explicitly given by the Green

function
exp ( iz — |3 — t|)
2i\/2 —

G(s,t;z) = (2.4)

and it is easy to check that:
IRo(2)(Q = w)?l&ts = [IRo(2)|Q — w]?hrs

[ 165, 1:2)P 1Q() — wlds dt < —

(1+[2)%%

for some constant C’ > 0 independent of z € T.
For n = 2,3 using Lemma B.1 with p=2, k=1, p = §/2 we get

IRo(2)(Q — w) 2|55 < C"(1 +|2)% 72
for some constant C” > 0 independent of z € T".

Here and in the following we choose the determination of v/z — w with positive imaginary
part.
If f is rapidly decreasing, the identity between tr(f(Hg) — f(H,)) and the integral on the
RHS of (2.2) is an easy consequence of the Cauchy formula and of the spectral theorem. On
the other hand, for a general function f satisfying (1.7) we have, for any € > 0,

r(fe(4) = fuB) = — [ (A= 2" - (B 2 fule)d, (25)

with f.(z) = e™**f(z). Taking the limit for ¢ — 0 and applying the dominate convergence
theorem we obtain (2.2).

The proof of the part 2 of the proposition is analogous to 1. Actually, the Hilbert-Schmidt
kernel of RﬁfT is given in the case n = 1 by the Green function:

CX (s.1:2) :_cosh (z’(w( w)(T |s—t|)) +SXcosh( (z—w)(s+t ) (26)
22\/(z — w)sinh (Tz\/ (z —w )
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where SX = —1 for X = D and SX =1 for X = N.
Hence, arguing as before

IRS2(2) — R7 (2)lex IRG2(2)1Q — wl* |55l (I + (Q — w)Ro(2)) 'l
C‘1||Rng(z)|Q - WP””?{S

/ ’G%(s,t; z)’2 |Q(t) — w|dtds

< &

T (L)

IA A

i

for some constant Cy,Cy > 0 independent of z € I'. This gives easily the first part of (2.3).
For n = 2,3, using estimate (B.3) in Appendix B, with £ = 1, p = 2, we get easily

IRz (2) = RE(2)ler < )52

On the other hand, for fixed T, let T be the curve in picture 2 with a;, & Sp(Hg 1) USp(H 1)
and ax — +oo.

picture.

Using the residue theorem we obtain:

tr(f (Hor) = F(Har)) = lim_ o= [ tx(Re(2) — Raz(2)f(z)d

k—+4oo 27
o o]
kETm > f )\fT Z f( N]T Z(f()\fT) - f(#f:r)):
A)1('_1"<‘-".'c .UvJ T(Clk j=1
and this ends the proof of Proposition 2.1. |

The main result of this section will be the following:
Proposition 2.2 Let us assume 1 < n < 3 (see appendiz for n > 4). Then for every
analytic function f satisfying (1.7), we have

lim tr(f(Hor) — f(Hor)) = tr(f(Hg) — f(H.)) (2.7)

T—+o00
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Proof :
We have to prove that:

fim [ #(Rez) = Ro(2)) £ ()2

T—+4co 270 /
= o= [ tr(R(z) = Ro(2))f(2)dz. (2:8)

Let us consider
pr : L*(R) — L*(Iy), pr(u) = v
and

e L)~ PR), (a0 ={ 0 R

Since prmr = lz2(z,) we have, for z € T,
tr (7r(R (2) — Rz (2))or) = tr (R¥(2) — Rip(2) .-

Hence:

5% o (REG) = REn(2))) =t (R(=) — Rola))) S (2)d

— % frtr (TrT(’Rz}f(Z) — Ror(2))pr — (R(z) - Ro(Z))) F(2)dz.

Lemma 2.3 Let us assume that 1 <n < 3.
Then, for z € T', Ro(2)(x) %% and me R (2){x) = 2pp, with X = D or X = N, are Hilbert-
Schmaidt operators and, in particular,

IRo(2) () **llrs + ImrREp(2)pr (@) *Pllas < C(1 + |2)) 37 (2.9)

Moreover there exists € €]0, 1] and a constant C > 0, independent of z and T', such that, for
T large enough and z € I', we have

ImrREp(2) () 0r = Ro(2)(@)~llus < OT /(1 + |2l)3 (2.10)

Proof : See Appendix A for an elementary proof for n = 1 and Lemma B.2 for n = 2,3.1

Using Lemma 2.3 we can obtain :

Lemma 2.4 For 1 <n <3, there ezist C >0, Ty > 0, € > 0 such that
lrr(R7(2) = Rir(2))pr = (R(2) — Ro(2)) e < CT (1 +|2[)272, (2.11)
foranyz el and T > Tj.
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Proof :
Using the resolvent identity, we can estimate

Imr(RE(2) = REp(2))pr — (R(2) — Ro(2) s as:
Imr(RE(2) - RH2))pr — (R(2) = Ro(2)) e
= |7 RE (2)(@ - w)REr(2)pr — R(2)(@ = w)Ra(2)]u
< 2 REH)(Q — w)RE(2)pr — Ro(2)(@ = w)Ro(2)ls
+lmrRE (2)(Q — WY REHQ — w)REp(2)pr
~R(2)(Q — w)Ro(2)(@ — w)Ro(2)llw = I +IL.

We have:

I = [mRER(2)(@Q — w)pr (1r]Q — w|*RE(2)pr — |Q — w[*Ro(2)) le
+ || (mrRER(2)|Q — w[*?pr — Ro(2)|Q — w]?) (Q — w)"/*Ro(2) e
< (ImeRE2(2)Q — w|prlas + 1Q — w|/2Ro(2) | ms)
x || (7rRE7(2)|Q — w[2pr — Ro(2)|Q — w|?) |lus,

where (Q — w)/? = (sign(Q — w)) |Q — w|"/2. Since |Q — w|*? < ¢(x)~%/2, using (2.9) and
(2.10), we obtain

C n_o
1< =i+ 232

On the other hand,

I < |mREE(Q - w)Riz(2)er (n2(Q — w)Ri(2)er = (Q = w)Ro(2)) llu
+ || (rrRE(2)(@ = w)REr(2)pr = R(2)(Q — w)Ro(2)) (@ = w)Ro(2)
= JII+IV.
We have:

11 < |=rR7 (2)prlllnr(Q — w)Ror(2)erllas X
I72(Q — w)Ryr(2)pr — (@ — w)Ro(2)| s

The spectral theorem gives, on T,
lnrRT (2)prll < C(l2| +1)7

Using (2.9) and (2.10), we obtain

C B
IIT < s (1+ 2)
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On the other hand

v < |lneR¥ (2)pr (7r(Q — w)RE pr — (Q — w)Ro(2)) (Q — w)Ro(2) e
+ | (7rRF (2)pr — R(2)) (Q — w)Ro(2)(Q — w)Ro(2)lee = V + VI

As before, we have

V< |lnrR7 (2)erlllmr(Q — w)R7 pr — (Q — w)Ro(2)[lasll (@ — w)Ro(2)| s

. O -
< gepl+la)2™

Let us consider two cutoff function y, ¥ such that
supp(x) C [-1/4,1/4], x=1 on[-1/8,1/8§]
supp(X) C [~3/8,3/8], k=1 on[-1/4,1/4]
and
xr(z) = x(z/T), xr(x) = X(z/T)
We have xx = x. Let us write now
VI < | (mRE(2)or - R() (1 - x0)(@ - w)Ro(2)(@ — w)Ro(2)les
(1 = x7)7rRF (2)prxr(Q — w)Ro(2)(Q — w)Ro(2) ler

| (xrmrRE (2)pr = R(2)) x2(Q — w)Ro(2)(Q = w)Ro(2) |
VII+VIII+IX.

I+ + IA

Using (2.4) and Lemma 2.3, it is easy to prove that
VII+VIIT < (|(rrRE(2)prll + [R(2)]])
x (1= xr)(Q — w)Ro(2) || usll(Q — w)Ro(2) || us
+ [lmeR7 (2)prllllxr(Q — w)Ro(2) | ws(Q — w)Ro(2)(1 — X1)ll s
£

C n_
T+,

On the other hand

IX < || (kerrRE(2)pr — R(2)) x7 (@ — @) Ro(2)l| sl (Q — w)Ra(2) | s
< C+ 237 (krrrRE (2)pr — R(2)) xrll-

Observe now that

(;‘(TWT’R¥(Z))OT — R(2)) xr = XrmrRr(z)prxr — R(2)XxT
=R(z)(Hq — z)xrmrRr(2)prxr — R(2)XT
= R(2)[A, xT|mrRr(2)prXT

=R(2) (_ (A)E%’Ej/T) - Q(V)Z;(m/T) V) TrRr(2)prXT-
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Hence o
| (xrnrRE (2)pr = R(2)) xrll < 7
for some constant C. This ends the proof of Lemma, 2.4. [ |
End of the proof of Proposition 2.2:
Proposition 2.2 follows easily from Lemma 2.3, and Lemma 2.4. [ ]

Now we want to separate, in the above trace formula, the discrete spectrum and the
continuous spectrum. For that purpose let us consider the curve I'; and I'; in picture 3.

3
/
| continuous spectrum

h m | w R(z)

picture.3

We have:

Corollary 2.5 For1 < n < 3, we have :
) 1
lim ool f tr(Rr(z) — Ror(2)) f(2)dz
mJr

= if()\j) $e= frz tr(R(z) — Ro(2))f(2)dz. (2.12)

ot 2

Proof :

We can write

= [ (R(z) - Ro() S = ( [, + ) tx(R(2) — Ro(2)) f (2)dz.

An application of the residue theorem gives

= [, (R - Re(a) ez = 3 ) (213)
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Proposition 2.2 and (2.13) gives (2.12). [ |

Remark 2.6 Using the arguments of [6] (see also [23]) it is possible to prove that, in the
casen =1,

XN =X +0(eTVe)
as T — 400, for j=1,..,p.
Here f = @(e‘”‘t) means that, for any § > 0, f = Os(e > ast — +oo
In particular:

. x . ‘
lim A = A;

T—+o0

ferj=1,.,p. |

3 The Birman-Krein formula

Using the Birman-Krein formula [1], it is possible to write tr(f(Hg) — f(H,)) in terms of
the discrete eigenvalue of Hg and of the spectral shift function s(A) of the scattering matrix
S(A) associate to the pair (Hg, H,) (i.e. detS(\) = e 2N for A > w).

Theorem 3.1 For f satisfying (1.7), we have:

+0o0
lim r(f(HE7) = FOHED) = Y FO0) + [ s()f/ (N)dA (3.)

T—4o0 :
Jj=1

where s(A) s the spectral shift function of the scattering matriz associate to the pair (Hg, H,,).

Proof :
As above we assume here 1 < n < 3 (For n > 4 the proof is done in Appendix B). Using
Corollary 2.5 we get

o ;
im0 x) = () = 2 ) + o L (R ~Ro(2)f )z (32)
The Birman-Krein formula (see [1]) gives, for z € T’

tI‘(R(Z) - RO(Z)) = /{;oo ()\5(_)2)2

. (3.3)

Let us recall that, for A\ < w, s()) is defined as the number of eigenvalues of Hg smaller than
A. So we have

w(R() ~Ra@) = ¥ 5~ [ 52 (3.4)

155¢p Ni (A —z)?
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Hence

d fr r(R(2) = Ro(2))f(2)dz = ‘ fr 2 f:’ (;(_Ai)zdxf(z)czz. (3.5)

o om
Since s(A) = O(A"/?71) as A — 400 (see, for example, [4], [5], [9], [10] , [19]) and s(X) =0
for A < a, we can change the order of integration in (3.5) to get finally

i e )
%frz 6r(R(2) — Ro(2)) f(2)dz = —é?fw frz o s
_ fw TS F(N)dA,
and this ends the proof of Theorem 3.1. [ |

Remarks:

i) Trace formulas for tr(f(Hg) — f(H,)) with the spectral shift function s(\) and suitable
functions f are well known (see [2, 22, 24]). Here we want to put emphasis on the limit for
large intervals and the transition between the discrete spectrum in the box | — T, T[ and the
continuous spectrum in the whole space R. We do not know other reference for a rigorous
proof concerning this limit.

ii) The contour integration approach used in Sections 2 and 3 is well known (see for example
[8], ch.IV). We could use the more general results on the spectral shift function ([24]). Here
we have chosen a more direct and more explicit approach.

iii) For the interpretation of the spectral shift function as the average of the quantum process,
see [14].

Now we come back to our main application, the computation of the splitting in the double
well problem.

Corollary 3.2 Let Gq the number defined in the introduction by (1.10) and (1.11). Then
we have .
Sot (2 T2 1 pteo s(A)
@, = 2(=08 A e f A ).
=20t () e (5[5

Proof :

For b > 0, let us consider the pair of Hamiltonians (H, s, Hgys) With Q(t) = V"(y(t)). Let
us recall that A\; = 0 is a simple eigenvalue; so we can clearly apply the above results with
0 <a<band f(z) =log(z) and we get

Tl/i*rfoo 3 log (M) = Y log(A;+b)+ foo Sbg\)\)dz\

> #i (w+b) 155<p wtb

where s; is the scattering phase for (H,44, Hg4s). Then using
. T _
Tlflliloo p1 (Q) = A1, we get

o0 Sb()\)
A

Tl/igmglog (%—I—g) = Y log(}; +b)+/ d\ (3.6)

H; 2<<p wtb
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Now in (3.6) we can go to the limit & ™, 0 and taking the exponential we get the corollary
using the formula (1.11) for Gy [ |

A APPENDIX: Proof of Lemmma 2.3 for n=1

Since (2.9) and (2.10) are proved along the same lines, let us prove only (2.10).
Notice that, we can rewrite G r(t, s;2), (t,5) € (Ir)? as

—plt — s|)
GX(t.5:7) = _exp(—pl
X152 -
exp(—uT") (cosh(,ut) cosh(us) N sinh(pt) Sinh(us))

24 cosh(pT") sinh(pT")
if X =D, and
—ult — s|)
Ctsn = B
X(t5:7) ”

_exp(—pT") (cosh(ut) cosh(us) 1 sinh(pt) sinh(us)
20 sinh(pT") cosh(uT")

if X =N, with T/ =T/2 and p = —iy/z — w. Hence, we need to estimate the following two
integrals :

exp(=2uls = t]) 1\ —(14e)
= € Al
I f /R?\I,; 442 () ds dt (A1)
2
X exp(—pls — t|) —(14€)
I /fj% Gr(t,s;2) + 2 (t) dt ds (A.2)

It is sufficient to consider |z| large enough and 2z € I'. Let us recall that v/z —w is the
determination such that 0 < arg(z — w) < 27. So we see easily that it exists ¢ €]0, 1] such
that

clu| < Rep, forz el |z| large enough
Let us denote Rep = r and |u| = d. We have :

L<h+1

where
1
P o —9¢cd|s — t]) )"+ ds dt
o= 0@ L Jo o(2els = )=+ s
1
"= — — {8y~ A+ gt ds.
B o= @ [ fee2eds = i) .

Then

1 C
f—— = =gt ) < .
L Y7 (fnexp( ZCd\rl)dr) (/ItIZT'(t) ) < T
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Using Peetre inequality (¢)=U+e) < 2042)/2(g)=(+) (s — 4}(142) for [?) we obtain

I 2(1+E)/2 (1+£) (1+s)d d
<~ /tsPT’/eXp ~2ed]s — t]){s — 1)+ (s)= O+t ds

and IY can be estimated in the same way as I].
For I, we have clearly:

exp(—4rT") _ires
I, < 87——— ./[O,T’P exp(2r(t + s)){t) ") dt ds

exp(—2rT") T

—(14¢)
4 pyr ./0 exp(2rt)(t) dt

for T sufficiently large.
T T'/2
Splitting the integral ] f / , we get easily
T/2 /

L<L+ 1
with - &
4 ! "
B = 4cd3exp(—TT), E = o

This proves (2.10) in the case n = 1. |

B APPENDIX: The n-dimensional case

Let us remark that for n > 4, Rg(z){z) ? is not in the Hilbert-Schmidt class but in the
more general Schatten class S, on the Hilbert space L2(R"), 1 < p < +o0. (See [8] for the
definitions and properties of these classes of operators). For p = 2, it coincides with the
Hilbert-Schmidt class. The usual operator norm for T € S, is denoted by ||T||,. We need in
particular the following lemmas

Lemma B.1 Let us consider a pseudodifferential operator in the Weyl quantization,
a(xz, D), defined for u € S(R") by

a(e, Dyu(e) = (20 [ P 4a((@+4)/2 Ouly)dyde

For every p, 1 < p < 4oo it exists a real y(n,p) and an integer N(n,p) such that if
d%a € LP(R*™) for |y| < N(n,p) then a*(z, D) is in S, and the following estimate holds

la”(z, D)Ip <v(np) 3. [, 107a(2)Pdz

<N (np)
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sketch of proof :

For p = 400 the result is the Calderon-Vaillancourt theorem. For p = 1 the estimate is
proved in several places, for example in [20]. The general case comes easily by complex
interpolation [8]. |

Lemma B.2 Let k € N, k > 1, n € N, n > 1 and real numbers p, p such that p > 7,
pp > n . Then there exists C > 0 such that, for 2 € T, we have

IR§(2) (), < Cfz) 5 (B.1)

Proof :
We get easily (B.1) by computing the Weyl symbol of RE(z)(x)~" ' ]

Concerning the resolvent estimates in boxes, using the spectral decomposition, we have

I(Re:)* (2l < ( > lMﬂz tw-— Zl_k") : (B.2)

a€N™ T2
Hence, for kp > %, there exists C such that for 2 € I', we have
(R 7(2)*ll, < CA + |2) 7. (B.3)

For n > 3, Ror(z) — Ro(z) is not in the trace class but we shall see that
(Ror(2))Y — (Ro(2))" is in the trace class, for N large enough.

Lemma B.3 Let us assume that n > 1 and p > 2. Then for z € T, RE(2)(z)™" and
mr(R§7)*(2)(z) " pr, with X = D or X = N, are in the Schatten class S, for kp > %. In
particular, there exists C' such that for z € I' we have

1(Ro(2))¥(@) 7 llp + 7R3z (2))For(z) *llp < C(L+ |2)) . (B:4)

Moreover there exists € €]0,1[ and a constant C > 0 independent of z and T' such that for
T large enough and z € I we have

Imr(Ree(2)¥ (@) "pr = (Ro(2))(a) *llp < CT*(1 + |2|) &, (B-5)

Proof : The first inequality comes from (B.1) and (B.3).
Let us introduce the cut-off functions x € C§°(I7') such that x(z) = 1 for z € Ij), and

T

xr(@) = x(F).
Using (B.4) we have, with § >n, 0 <e < p— o

72 (RE2)*(2)(1 = xz()){x) " pr — (Ro)*(2)(1 — xr()) (=) /||, < C
T=5(1+ |2])2 . (B.6)
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By a standard computation on resolvents, we have

mrRor(2)xrPr — Ro(2)xr = (Ro(2) — mrRr(2)pr)[XT, AlRo(2). (B.7)
But we have [xr, A] = —7aAx(%) — 2Vx(£)V. So the estimate follows for k = 1.
For k£ > 1 we use the same argument. Takmg (k — 1) derivatives in z, we get
mr(Rr(2)) xror — (Ro(2)) xr =
> i+e=kCe((Ro(2)) = mr(Riz) (2)pr)[xr, Al(Ro(2))* (B.8)

where the c;, are numerical constants. The estimate follows.

Proof of Theorem 3.1 for n >4 :
We have to modify the statement of the Proposition (2.1). Let us start with the functional
calculus formula, for f satisfying (1.7),

i

o fr‘(R(Z) — Ro(2)) f(z)dz

f(Hq) — f(H,) =
and integrate N — 1 times in z, with N > & — 1,
£(HQ) = F(HL) = ()N = )i~ [(RE)Y = Ro(a)V)f O M)tz (B9)

where f(~*)(z) is such that dkf( B)(z) = f(z) and fP(2) = O({2)*+1-3-7)

Proposition B.4 Let us assume that n > 4 and f be an analytic function satisfying (1.7).
Then we have:

1. f(Hg) — f(H,) is a trace class operator in L*(R") and for N > 2 —1 we have

| tr(/ (Ho) — f(HL)) =
(—1)M-Y(N = 1)% fF r(R(2)Y = Ro(2)¥) F1~N(2)dz

2. For any positive T > 0, f(H3 ) — f(HXy) is a trace class operator in L2(1%) and

tr(f(H();)(,T) - f(Hu))(,T?)
= (DN = D [ e(REE)Y - R (M) ()d

mJr
(%)

= > _(f( )\fT P"],T))' (B.10)

=1
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Proof :
1) Let us begin by proving that the integral on the RHS of (B.10) converges by proving that

IR(2)" = Ry (2) lur < C(L+ [2]) V15,
We can write, for z € T, |z| large enough,
Ro(z) — R(2) = Ro(2)(Q — w)R(2).
Taking N — 1 derivatives in z, we get

RY(2) -RY(z) = Y, cuRI(2)(Q - w)RM(2).

k+j=N-+1

But we have (Q — w) = (z)~%Pa(z)(z)~%/9, where a(z) is uniformly bounded. The Holder
inequality in S, gives

IR3(2)(@ = w)R ()1 < IR(2) (=)l - IR(2)" (=)=l

Let us write down R(2)* = Ro(2)*(H,, — z)*R(2)* hence, using uniform ellipticity of Hg — 2,
we can see that it exists C} > 0 such that

I(H, — 2)*R(2)*]| < Cx, VzeT

Choosing p > 1,q > 1 such that $ + - =1, jp > 3, kg > }, using (B.4) and j + k=N +1,
we get easily
IR(2)Y = Ry ()]l < C(1+[2)™ 712

This finishes the proof of the first part of the proposition. The proof of the second part is
analogous to the case n = 1 so we omit the details. [ ]

Let us state now the extension of Lemma 2.4 for n > 3

Lemma B.5 There exist C >0, € > 0, Ty > 0 such that for z €T, T > Tp and N > 5 — 1
we have

Imr(RE (=) ~ (RN )or ~ (RENY ~ (Ro(2))lle < (14 |23 (B.11)

Proof :
The proof is similar to the proof of Lemma 2.4 using the resolvent identity, taking derivatives
in z and using the above estimates in S,-norms. ]

Now we can finish the proof of Theorem 3.1. By applying Proposition B.4, Lemma B.5
and Lemma B.3 we get a proof of Proposition 2.2 for n > 4 and hence a proof of Theorem
3.1 for n > 4. ]



Robert and Sordoni 175

References

[1]

2]

3]
[4]

[5]

[9]

[10]

[11]

[12]

[13]

[14]

[15]
[16]

M.S. Birman, M.G. Krein, On the theory of wave operators and scattering operators,
Dokl.Akad.Nauk.SSSR 144 (1962), pp. 475-478.

M.S. Birman, D. Yafaev, The Spectral Shift FPunction. The work of M. G. Krein and its
further development, St. Petersburg Math. J., Vol.4, pp.833-870 No.5 (1993).

S. Coleman, The use of instantons, Proc. Internat. School of Physics, Erice (1977).

Y. Colin de Verdiére, La matrice de scattering pour l'opérateur de Schridinger sur la
droite réelle, Séminaire Bourbaki (1979/80), pp.246-257.

Y. Colin de Verdiere, Une formule de traces pour l'opérateur de Schrodinger dans R?3,
Ann. Scient. E.N.S. 14 (1981) pp.27-39.

M. Dauge, B. Helffer, Eigenvalues variation I. Neumann problem for Sturm-Liouwille
operators, J. of Diff. Equations 104 (2) (1993), pp.243-262.

S.Yu.Dobrokhotov, V.N. Kolokol’tsov, V.P. Maslov, Splitting of the lowest energy levels
of the Schrédinger equation and asymptotic behavior of the fundamental solution of the
equation hu, = h*Au/2 — V(z)u, (translated from Teor.Math.Phys. 87(3) (1991)).

I.C. Gohberg, M.G. Krein, Opérateurs linéaires non autoadjoints dans un espace hilber-
tien, Dunod, Paris (1971).

L. Guillopé, Asymptoetique de la phase de diffusion pour Uopérateur de Schrodinger dans
R", Séminaire Bony-Sjostrand-Meyer (exposé n.V) (1984/85).

L. Guillopé, Asymptotique de la phase de diffusion pour l'opérateur de Schrodinger avec
potentiel, C.R.Acad.Sc.Paris (293) (1981), pp.601-603.

B. Helffer, Semiclassical analysis for the Schrédinger operator and applications, Lecture
Notes in Math. 1336, Springer Verlag (1988).

B. Helffer, J. Sjostrand, Multiple wells in semiclassical limit I, Comm. in PDE, 9(4)
(1984), pp.337-408.

M. Kac, Integration in function spaces and some of ils applications, Lezioni Fermiane,
Acc.Naz.Lincei (1980).

Ph. Martin, Time-delay of quantum scattering process, Acta Phys. Austriaca, Suppl.
XXIIT (1981), pp. 157-208.

G. Parisi, Statistical fields theory, Frontiers in Physics, Addison Wesley Inc. (1988).

R. Rajaraman, Solitons and instantons, North-Holland, Amsterdam (1984).



176 Robert and Sordoni

[17] S. Levit, U. Smilansky, A theorem on infinite products of eigenvalues of Sturm-Liouville
type operators, Proc. of the AMS, 65(2) (1977), pp-299-302.

[18] M. Reed,B. Simon, Methods of modern mathematical physics, Academic Press (1979).

[19] D. Robert, Asymptotique ¢ grande energie de la phase de diffusion pour un potentiel,
Asymptotic Analysis (3), IV, (1991), pp.301-320.

[20] D. Robert, Autour de l'approzimation semi-Classique, Birkhauser, Progress in Mathe-
matics, Vol. 68 (1987)

[21] B. Simon, Trace Ideals and their Applications, Cambridge (1979).

[22] A.V. Sobolev, Efficient bounds for the spectral shift function, Ann. Inst. H. Poincaré,
58A, pp. 55-83 (1993).

[23] V. Sordoni, Instantons and splitting (preprint, University of Bologna) (1995)7

[24] D. Yafaev, Mathematical Scattering Theory, AMS, (1992).



	Trace formulas and Dirichlet-Neumann problems with variable boundary : the scalar case

