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Representation Theory of Deformed Oscillator
Algebras

By Christiane Quesne ! and Nicolas Vansteenkiste 2

Physique Nucléaire Théorique et Physique Mathématique, Université Libre de Bruxelles,
Campus de la Plaine CP229, Boulevard du Triomphe, B-1050 Brussels, Belgium

(16.1Iv.1996)

Abstract. The representation theory of deformed oscillator algebras, defined in terms of an ar-
bitrary function of the number operator N, is developed in terms of the eigenvalues of a Casimir
operator C. It is shown that according to the nature of the N spectrum, their unitary irreducible
representations may fall into one out of four classes, some of which contain bosonic, fermionic
or parafermionic Fock-space representations as special cases. The general theory is illustrated by
classifying the unitary irreducible representations of the Arik-Coon, Chaturvedi-Srinivasan, and
Tamm-Dancoff oscillator algebras, which may be derived from the boson one by the recursive
minimal-deformation procedure of Katriel and Quesne. The effects on non-Fock-space representa-
tions of the minimal deformation and of the quommutator-commutator transformation, considered
in such a procedure, are studied in detail.

1 Introduction

Since the pioneering works of Arik and Coon [1], Kuryshkin [2], Biedenharn [3], and Mac-
farlane [4], many forms of deformed oscillator algebras have been considered and played an
important role in the construction of g-deformed Lie algebras (see e.g. [5, 6]). They have
found various applications to physical problems, such as the description of systems with
non-standard statistics [7, 8|, the construction of integrable lattice models [9], the algebraic
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treatment of quantum mechanical exactly solvable systems [10, 11], of pairing correlations
in nuclear physics [12], and of vibrational spectra of diatomic and polyatomic molecules [13],
as well as the search for nonlinearities due to high-intensity electromagnetic fields [14].

The necessity to introduce some order in the rich and varied choice of deformed commu-
tation relations did however appear soon and various classification schemes were therefore
proposed [15, 16, 17, 18]. More recently, a unifying recursive procedure was introduced,
generating at appropriate steps all the familiar deformed oscillators, along with some mul-
tiparametric generalizations [19]. Each iteration consists in a minimal deformation of a
commutator into a quommutator, followed by a transformation of the latter into a new
commutator, to which it is equivalent within the corresponding Fock space.

As it was already observed in Ref. [19], the equivalence between quommutators and cor-
responding commutators, which is a central ingredient of the recursive minimal deformation
procedure, is not valid any more in the additional non-Fock-space representations, which are
known to exist in general for deformed oscillator algebras. Although various works have been
devoted to determining such representations for some particular algebras [20, 21, 22, 23],
there still remains a need for a general theory.

The purpose of the present paper is twofold: first to fill in this gap by discussing the
representation theory of general deformed oscillator algebras; then to illustrate both the
effects of minimal deformation and of the quommutator-commutator transformation on the
non-Fock-space representations by studying some selected examples.

The recursive minimal deformation procedure is briefly reviewed in Sec. 2. The repre-
sentation theory of general deformed oscillator algebras is then developed in Sec. 3, and
illustrated on some examples in Sec. 4. Finally, Sec. 5 contains the conclusion.

2 Recursively Minimally-Deformed Oscillators

Let us consider a given oscillator algebra A, generated by the operators N = NT, af,

i Ty . .
a = (a‘l) , satisfying the commutation relations

[Nal] = a',  [N,a=-q, (2.1)
la,af] = fo(N), (2.2)

for some function fo(N) = (fo(N))'. The algebra A, will serve as a starting point for a
recursive procedure, wherein other oscillator algebras will be generated [19].

Let us assume that at the kth step, we have obtained an algebra Ay, still generated by
N, a, a, and satisfying Eq. (2.1), but with Eq. (2.2) replaced by

la,af] = fu(V), (2.3)
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where fu(N) = (fr(N ))]L Then the next minimal deformation Ay of this algebra is defined
by Eq. (2.1) and

la,af] = fi(V), (2.4)
Qr+1

where g1 is some real parameter, and the left-hand side of Eq. (2.4) is a quommutator,

defined by [a, aT] = aa' — g1a'a.

Tk+1

The minimally-deformed relation (2.4) implies that in the bosonic Fock-space represen-
tation, i.e., with respect to the eigenvectors |n) of the number operator N, corresponding to
the eigenvalues n =0, 1, 2, ..., the operators a' and a satisfy the relations

alln) = P+ 1) ln+1),  aln) = /Fema(n) In — 1), (2.5)

where the vacuum state |0) is assumed to fulfil the condition

al0) = 0, (2.6)
and the function Fyi1(n) is defined by
n—1
Fipa(n) = Z C.I}c+1fk.(” — L=} (2.7)
i=0

In Eq. (2.7), 327 = 0 so that F3;1(0) = 0 in accordance with Eqs. (2.5) and (2.6). The
corresponding function of the number operator Fj;(/V), which satisfies the equation

Firi(N +1) — e Fia(N) = fi(N), (2.8)

is referred to as the structure function of the algebra Aj.

It follows that the algebra Ay, defined by Eq. (2.1) and

|2, @] = fen (), (2.9)

where
Ferr(N) = (fera (V) = Fepa (N +1) = Foa(N), (2.10)

is equivalent to A in such a Fock-space representation. In other words, both algebras A
and Ay, have the same structure function Fjyq(N).

By iterating the transformations A, — Ap — Agy1, one gets a sequence of deformed
oscillator algebras depending upon an increasing number of parameters.

Both A, and .A; have a nonvanishing central element or Casimir operator, defined
by [19, 24]
Cy = Fx(N) — ala, (2.11)

and
Cr = ity (Fen (V) — a'a) = i Cun, (2.12)
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respectively, which may be used to characterize their irreducible representations. As in the
Fock-space representation, F'(N)|0) = a|0) = 0, it follows from (2.11) and (2.12) that Cj
and C} have a vanishing eigenvalue in such a representation.

In Sec. 4, we shall consider as examples the first few iterations obtained by starting from
the standard boson oscillator algebra, for which

fo(N) =1, Fo(N) =N, Cy =N —dla. (2.13)

In such a case, the first minimal deformation A, is the Arik-Coon oscillator algebra [1; 2],
for which

la,a] =1, (2.14)

q1
Its structure function and Casimir operator are given by

A | ~ 1—gqrV
Fy(N)=[N],, = ‘;—_1 Go="—"_ _ g Mala, (2.15)

respectively. The Fock-space equivalent algebra A; corresponds to the Chaturvedi-Srinivasan
oscillator [25], for which

[a, aT] =g, Fi(N) = [Nlg, C; = [N], — d'a. (2.16)

The second minimal deformation A; is the Chakrabarti-Jagannathan two-parameter os-
cillator algebra [26], for which [a, aq = ¢V. It has two important special cases: the
qz

Biedenharn [3] and Macfarlane [4] oscillator algebra, corresponding to g = ¢i ', and the
Tamm-Dancoff oscillator algebra [27], for which ¢, = ¢4, and

[Cl,, a'T] = Q‘{VJ F2(N) = q{V_1N7 C“%’1 = ql_lN - ql_Na’Ta" (217)
q1

Many more examples can be found in Ref. [19].

3 Representation Theory of Deformed Oscillator Al-
gebras

In the present section, we shall review some general properties of the unitary irreducible
representations (unirreps) of the deformed oscillator algebras considered in the previous one.
For such purpose, it is enough to consider the case of A, as that of A, can be obtained
from it by restricting the gr+1 values to gx+1 = 1. For simplicity’s sake, we shall define the
algebra commutation relations by Eq. (2.1) and

[a,a'], = F(V) = (F(V)', (3.1)
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and denote the corresponding structure function and Casimir operator by F(N) and C,
respectively. From (2.7) and (2.12), the latter satisfy the relations

F(N+1)—gF(N) = f(N), C=q(F(N)—adla), (3:2)
from which it follows that
dla=F(N)-¢"C, aal=F(N+1)-1C (3.3)

We shall classify the unirreps of this algebra under the assumption that the spectrum of N
is discrete and nondegenerate.

Let us start with a normalized simultaneous eigenvector |c, vp) of the Casimir operator C,
defined in (3.2), and of N, corresponding to the eigenvalues ¢ and v, respectively,

Olci VO) = ClC, VU)) N'Ca VO) = V0|C’ U0>7 (Ca V(]lC, VO) =1 (34)

>From (2.1), it results that the vectors

H)" if n=1,2
a') |e,v) ifn=12,...,
oty = | (@) 1o (35)
a~"|e, vo) i1 = =1 —=2 sy
are also simultaneous eigenvectors of C and N,
Cle,vo +n) =cle,uo+n),  Nle,wp+n) = (vo +n)le,vo +n), (3.6)

as long as they are nonvanishing. In (3.5), we use a round bracket instead of an angular
one to denote unnormalized states. Definition (3.5) can be extended to n = 0 by setting
le, o) = |e, ).
Eq. (3.3) implies that
alalc, v 4+ n) = Mylc, v + 1), aalle, vp +n) = walc, vo +n), (3.7)
where
A = F(vp+n) — ¢, pn=Fp+n+1) - gt ec= . (3.8)
As eigenvalues of a positive operator, only those )\, that are positive or null are admissible
in a unitary representation. In particular, the condition
do = F(1p) —¢*°c>0 (3.9)

restricts the possible values of ¢ and vy.

So it is straightforward to derive the following unitarity conditions:

Proposition 1 If there exists some my € {—1,—2,-3,...} such that A, <0, and A, >0
forn=0, —1, ..., my+1, then an irreducible representation of a deformed oscillator algebra
can be unitary only if A\,, = 0 for some ny € {0,—1,...,my + 1}. If there exists some
my € {2,3,4,...,} such that A, <0, and A\, >0 forn=0, 1, ..., mg — 1, then it can be
unitary only if A,, =0 for some ny € {1,2,...,my — 1}.
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Proof. In the first part of the proposition, we must have |c, v + m;) = 0 as otherwise a'a
would have a negative eigenvalue. This implies that alc, 9 + m; + 1) = 0, which can be
achieved in two ways, either |c,vp +m;+ 1) =0, or |¢,vp+m; + 1) # 0 and Ay 41 =0. In
the former case, we can proceed in the same way and find that at least one of the conditions
Amit2 =0, Ang43 =0, ..., A1 =0, or |¢,»p — 1) = 0 must be satisfied. But the last one is
equivalent to A\g = 0, since |c, 1) # 0 by hypothesis. This concludes the proof of the first
part of the proposition. The second part can be demonstrated in a similar way by using aaf,
and p, = A,y instead of a'a, and \,.

According to Proposition 1, the unirreps may belong to one out of four classes. If there
exists some ny € {0,—1,—2,...} such that A\,, =0,and A, >0forn=n;+1,n+2, ...,
0,1, 2, ... then |¢, vy + ny) satisfies the relation alc, vy + n1) = 0, and is an eigenvector of
a'a and N with eigenvalues \,, = 0 and #% = vy + n;. By repeating construction (3.5) with
lc, o), vo, Ao replaced by |c, ), T, Ao = 0, respectively , we obtain for the corresponding
normalized states

n N\ =172
le, Do + n) = (H /\i) (a*) e, Do), we= 1, 1% ey (3.10)
i=1

where A, = Atny, = F(Do +n) — ¢"F(¥%), and the Casimir operator eigenvalue c is en-
tirely determined by 7, through the relation ¢ = ¢~ F(i%). The states (3.10) carry an
infinite-dimensional unirrep, characterized by a lower bound 7 (bounded from below or
BFB unirrep). In basis (3.10), the generators are represented by

ale,jg+mn) = VA le, P +n — 1), alle, o +n) = v Ans le, Do + n + 1),
Nle,ip+n) = (Jo+n)le, o+ n). (3.11)

In the special case where 7, = 0, we obtain a bosonic Fock-space representation of type (2.5),
wherein the spectrum of N is {0,1,2,...}, and ¢ = F(0) = 0.

If, on the contrary, there exists some ny € {1,2,3,...} such that A,, =0, and A, > 0
forn =ny,—1, ny—2, ...,0, =1, =2, ..., then |c,1y + ny — 1) satisfies the relation
alle, vo + ng — 1) = 0, and is an eigenvector of aa! and N with eigenvalues p,, 1 = ):nz =0
and g = vy +mny — 1. If we repeat construction (3.5) by starting from |c, %), Do, flo = A1 =0,
instead of |¢, vy), Vo, o = A1, we obtain for the corresponding normalized states

n|—1

-1/2
|C)ﬁO+n> = ( H S‘—i) a_nlc?ﬁ(]), n= 01_17_21"'7 (312)
=0

where \,, = Anins—1 = F(Ug+n) — ¢" 1 F(Dy + 1), and ¢ is again determined by i through
the relation ¢ = ¢ *~'F(y + 1). Such states now carry an infinite-dimensional unirrep,
characterized by an upper bound 7 (bounded from above or BFA unirrep). The represen-
tation of the generators in basis (3.12) is still given by (3.11), but where n now takes the
values indicated in (3.12), instead of those shown in (3.10).

3In Eq. (3.10), we assume that H?=1 = 1. A similar convention is used in subsequent formulae too.
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It may also happen that there exist both n; € {0,-1,-2,...},and ny € {1,2,3,...} such
that Ay, = A, =0,and A\, >0forn=n;+1,n,+2,...,-1,0,1,...,n3 —2, ny — 1. The
corresponding unirrep is then finite-dimensional (FD unirrep), and may be characterized by
its lower and upper bounds, 7y = vy +n, and Dy +ny —ny; — 1 = vy + ny — 1, or alternatively
by 7y and p = ny — ny — 1. 1t is spanned by the d = p + 1 normalized states

n _1/2
le, 7 + n) = (H )\i) ((LT) e, Do), n=20,1,...,p, (3.13)
i=1

where A, = Apyn, = F(P+n) — ¢"F(i%), and ¢ = ¢~ F(i%) = ¢ %P~ F(5 +p+1). They
still satisfy Eq. (3.11), but we note that now

allc, 9 + p) = 0. (3.14)

The unirrep is an order-p parafermionic Fock-space representation if ¢ = 7y = 0. It is
fermionic in the special case where p = 1.

Finally, if A, > 0 for n € Z, we get an unbounded unirrep (UB unirrep), which may be
characterized by ¢ and by the fractional part g of »y (i.e., vy = [vo]+, where 0 < 7 < 1, and
[vo] denotes the largest integer contained in 14), as different values of [vp] lead to equivalent
unirreps. Its representation space is spanned by the states

n -1/2
|C,170+TL) = (H ;\1) (GT)nIC,Do), n=0,1,2,...,
i=1

|C,170+TL> = ( H )\-z) CL_n|C,I70>, n = —1,—2,..., (315)

=0

where A, = An—[v)> and the generators are still represented by Eq. (3.11).

4 Some Selected Examples

In the present section, we shall apply the theory developed in the previous one to some of the
deformed oscillator algebras considered in Sec. 2. The results are summarized in Tables 1,
2, and 3.

As explained in Sec. 2, the starting algebra Ay of the recursive procedure considered here
is the boson oscillator algebra, defined by Egs. (2.1), (2.2), and (2.13). It is worth empha-
sizing that contrary to the Heisenberg algebra for which the number operator is defined as
N = a'a, the boson oscillator algebra has some non-Fock-space representations. From (3.8)
and (3.9), we indeed obtain that

An =V +n—c, where 15 > c, (4.1)
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may become negative for n < ¢ — 1. Hence unitarity imposes that there exists some
n € {0,—1,—2,...} such that A,,, = vy+n;—c = 0. The algebra has therefore BFB unirreps,
characterized by

I;{) =1 -+ ny =g )\n =1, (42)

where Iy may take any real value. For 7y = ¢ # 0, such representations are non-Fock-space
unirreps.

We shall successively review the cases where 0 < ¢ # 1, and g < 0. The latter is omitted
in most studies, because the corresponding algebras are considered as deformations of the
fermion oscillator algebra, instead of the boson one. It is worth noting however that in some
definitions of deformed oscillator algebras [16], both a commutation and an anticommutation
relations are assumed. We chose here to keep only one of them. As explained in Refs. [24, 28],
such a modified definition leads to the existence of a Casimir operator. Considering negative
g values for the minimally-deformed oscillator algebras is therefore in some way equivalent to
selecting anticommutation relations instead of the commutation ones associated with positive
q values.

Note that for ¢ < 0, except when otherwise stated, we shall restrict vy to integer values
so that g0 is well defined.

4.1 The Arik-Coon Oscillator Algebra

4.1.1 Positive Values of the Deforming Parameter

For the Arik-Coon oscillator algebra Ay [1, 2], defined by Egs. (2.1) and (2.14), we find from
(2.15), (3.8), and (3.9) that for ¢ > 0

1 1 l—qg™

Ap=|———c|g®"™ - ——, where ¢ < _q_} (4.3)
g—1 g—1 qg—1

may be an increasing, constant or decreasing function of n according to the values taken by ¢

and c. To classify its unirreps, we have to distinguish between the cases where 0 < g < 1

and ¢ > 1.

Whenever 0 < ¢ < 1, we note from Eq. (4.3) that the Casimir operator eigenvalue may
satisfy either of the conditions ¢ < (g —1)"% or (g— 1)t <ec< (1 —¢ ™) /(¢ —1). In the
former case, A, > 0 for any n € Z, so we obtain UB unirreps, whereas in the latter case, A,
may become negative for some negative n values, so we get BFB unirreps, characterized by

" 1— g% =
Uy = vy + 1y, B = ——q—, An = [1]q- (4.4)
g—1
Here [n], is defined as in Eq. (2.15), and n; € {0,—1,—-2,...}, so that J; may take any real
value. Note that for ¢ = (¢ — 1)™!, the UB unirrep degenerates into a unirrep for which

dla=aa' =(1-¢q)" (4.5)
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Whenever ¢ > 1, we always have ¢ < (1 —q¢™) /(g — 1) < (g — 1)"%. Since A, may
again become negative for some negative n values, we obtain BFB unirreps, similar to those
defined in (4.4).

In the limit where ¢ — 1~ or 1%, the only surviving unirreps are the BFB ones, which
go over into those of Ay, defined in (4.2). The UB unirreps, which diverge for ¢ — 17, are
referred to as classically singular representations [29)].

Our results do agree with those previously derived by Kulish [20] by a similar type of
approach. The method used here, as well as in Ref. [20], contrasts with that of Chaichian
et al. [22]. Indeed the latter do not postulate the existence of a number operator, hence
of Eq. (2.1). Their unirrep classification is therefore not performed in terms of a Casimir
operator C, but in terms of some noncentral element K = aa' — a'a, whose sign cannot
change in a given unirrep. Whenever K # 0, they set |K| = ¢™, where the operators M, al,
and a satisfy some relations similar to Eq. (2.1). The connection between their approach *
and ours is easily established by noting that K can be rewritten in terms of our operators N
and C as K = ¢V(1+(1—¢)C). Hence K >0, K = 0, and K < 0 correspond to ¢ > (g—1)~"
fo0<g<lorc<(g—1)tifg>1l,c=(g—-1)ande< (g—1)"i0<gqg <1,
respectively, and for K # 0, one may set M = N +log, |1 + (1 — g)c|.

4.1.2 Negative Values of the Deforming Parameter

>From Eq. (4.3), it is obvious that for any negative g value, and ¢ = (¢ — 1)7?, there exists
a degenerate UB unirrep, for which Eq. (4.5) is valid, and which may be characterized by
any iy such that 0 <y < 1.

Assuming now ¢ # (g — 1)™! and vy € Z, Eq. (4.3) becomes

1
(=1) 1+ |q| 4 1+ g
where
v _ ]
< ML ez
1+ |q|
g~ %]
g - if vy € 2Z + 1. (4.7)
1+ |q|

For successive n values, A, oscillates around the positive constant (1+ |g|)~*. To classify the
unirreps, we have to distinguish between the cases where 0 < |g| < 1, |¢| > 1, and |¢| = 1.

Whenever 0 < |g| < 1, |A,| decreases from +oo to (1 + |g|)~". Hence if (—1)*((1 +
lg])~* + ¢) > 0, A\, may become negative for some negative even n values. Unitarity then

41t is worth noting that Chaichian et al. call any BFB unirrep a Fock-space representation, whereas we
do reserve this name for a very specific BFB unirrep.
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Table 1: Unirrep classification for the Arik-Coon oscillator algebra. The cases where ¢ = 1

and ¢ = —1 correspond to the boson and fermion oscillator algebras, respectively.
q Type Characterization
g>1 BFB i € R, c = ¢ ™[]y, An = [1]q
g=1 BFB i eR,c=iy A\p=n

0<g<l BFB e, c=qg®D,, \= [}q
UB 0<pp<lec<(g—1)"
~-1<g<0 BFB €Zc=q o[o]q,S\n []q
UB 0<ip<l,c=(g—1)"" Y =(1-¢q)"
g=—1 FD 5 €2Z,p=1,¢=0, A =(1-(-1)")/2
FD €2Z+1,p=1,¢c=—-1, A, =(1—-(=1)")/2
UB =0 -1<c<-1/20r -1/2<c <0,
Ay = (—1)"He+ (1 - (-1)") /2
UB 0<ip<l,c=-1/2 X =1/2
g< -1 BFA € Z,c=q " i+ 1]y dn=[n— 1],
UB 0<ip<lc=(g—1)" X \=(1-q)"

imposes that there exists some n; € {0, —2,—4,...} such that
)\nl_z < 0, )\nl = 0, )\n1—11 /\'n1+11 Anﬁ,g, —1 A (48)

corresponding to m; = n; — 2 in Proposition 1. We therefore obtain BFB unirreps, charac-
terized by

- g~ 1 : _ 1+ (=1)™*g"
Dy =g+ ny €24, c= ———, Ay = , 4.9
o 1+ |q| 1+q| (*9)
if vg € 2Z, or
—bg 1 _ 1 =] n+1l| |n
170=v0+n1€22+1, C:—M-i‘, n = +( ) |q| ) (410)

1+ q| 1+ q|

if g € 2Z + 1. If, on the contrary, (—1)*°((1 + |g|)™* + ¢) < 0, A, may become negative
for some negative odd n values. This shows that Eq. (4.8) must be satisfied for some
ny € {—1,-3,-5,...}. Hence, we again obtain BFB unirreps, but this time the i, c,
and \, values that characterize them are given by Eq. (4.9) or (4.10) according to whether
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vp € 2Z + 1 or vy € 2Z. The results obtained in the various cases can be put together by
writing that for 0 < |g| < 1, there exist BFB unirreps specified by
—by __ 1 R
heZ, c= q—im 3 = [0l (4.11)
—q

where the 7y value is arbitrary.

Whenever |g| > 1, |A,| increases from (1+|q|) " to +00, so that A, may become negative
for some positive even or odd values, according to whether (—1)*((1+|q|)~*+c) is positive or
negative. Unitarity now imposes that there exists some n, € {2,4,6,...} orngy € {1,3,5,...}
respectively, such that

An2+2 <0, )\nz =0, )\n2+1, )\nz—la Ang—Z, ...>0, (412)

corresponding to my = ny + 2 in Proposition 1. By proceeding as in the case where 0 <
lg| < 1, we conclude that there exist BFA unirreps, characterized by
q—Dg—l _ 1 _
i € Z, 6=, An = [0 — 1]q, (4.13)
—q

for any 7y value.

Finally, for |q| = 1, corresponding to the fermion oscillator algebra, Eq. (4.6) becomes

A, = (_1)V0+ﬂ+1 (C 5 l) + 1, (414)

2 2
where ¢ < 0 or ¢ > —1 according to whether vq € 2Z or vy € 2Z + 1. In the former case,
we obtain that for ¢ = 0, A,, = 0 for any n € 2Z, while A, = 1 for any n € 2Z + 1, thereby
showing that there exist FD unirreps, characterized by p = 1 and any & € 2Z. For iy = 0,
this is the standard fermionic Fock-space representation. For ¢ = —1, A, = 1 forany n € 2Z,
while A, = 0 for any n € 2Z + 1. So we again get FD unirreps characterized by p = 1,
but this time %y € 2Z + 1. They can be derived from the previous ones by interchanging
the roles of a! and a. For —1 < ¢ < —1/2 or —1/2 < ¢ < 0, A, is always positive, hence
the corresponding unirreps are UB ones. Similar results are obtained by starting from any
vp € 24 + 1.

4.2 The Chaturvedi-Srinivasan Oscillator Algebra

4.2.1 Positive Values of the Deforming Parameter

For the Chaturvedi-Srinivasan oscillator algebra .4; [25], defined by Egs. (2.1) and (2.16),
we find from (3.8) and (3.9) that

qu0+n -1 v 1

Ay, = —c, where ¢ <

, (4.15)

q =1 g—1
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1s an increasing function of n for any positive q.

Whenever 0 < g < 1, A, increases from —oo to (1 —~¢q)™! — ¢, which is a positive constant

as it follows from Eq. (4.15). Hence, we only get BFB unirreps, characterized by
I;O =1 + mni, c= [ﬂO]q) Xn = qﬁo [n]l;n (416)
where n, € {0,—1,-2,...}, showing that &y may take any real value.

Whenever g > 1, A, increases from —(q — 1)™! — ¢ to +oo, and we have to distinguish
between the cases where —(q — 1)™! < ¢ < [w],, and ¢ < —(¢ — 1), In the former, A, may
become negative, so that we obtain BFB unirreps similar to those defined in (4.16). In the
latter, on the contrary, A, is always positive, hence we get UB unirreps.

In the limit where ¢ — 17 or 1%, the UB unirreps again diverge so that we are only left
with the BFB ones, which go over into those of Ay, as it was the case for the Arik-Coon
algebra.

Comparing now the .4; unirreps with those of /io, we note that only the Fock-space
representations of these algebras do coincide since they are both characterized by vy = ¢ = 0,
and A, = [n],- The remaining BFB unirreps are however different and, more strikingly, the
classically singular representations appear for different ¢ values, namely 0 < ¢ < 1 for Ao
and ¢ > 1 for A;.

Table 2: Unirrep classification for the Chaturvedi-Srinivasan oscillator algebra.

q Type Characterization

g>1 BFB & € R, ¢ =[]y, An = ¢[n],
UB 0<ip<l,e<—(g=1)"" \a=[h+n],—c
0<g<1l BFB & cR,c= [k, ‘=g,
~1<qg<0 BFB i€ 2Z,c=[i)y M= q?[n],
g=—1 D e2Z, p=1,¢=0, A = (1—(-1)")/2
UB =0,c<0, A =—c+(1—(=1)")/2
g<—1 BFA iy €2Z+1,c=[tp+1],, A = ¢*tn 1],
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4.2.2 Negative Values of the Deforming Parameter

For negative q values and vy € Z, Eq. (4.15) becomes

o = c where ¢ < L= (=1)%lg*
’ — 1+l

For successive n values, A, oscillates around the constant (1 + |g|)™" — ¢, which is positive
for vy € 2Z, but may be positive, null, or negative for vy € 2Z + 1. To classify the unirreps,
we have to distinguish between the cases where 0 < |q| < 1, |¢| > 1, and |g| = L.

)\nz - V0+n+1|q o _
YT T

(4.17)

Whenever 0 < |g| < 1, |\.| decreases from +oo to [(1 + |g|)™! — ¢|. If vy € 2Z, A,
may become negative for some negative even n values. Unitarity then imposes that there
exists some n; € {0,—2,—4,...} such that Eq. (4.8) be satisfied. We therefore obtain
BFB unirreps, characterized by

_1—|ql™

. 1 _ (_1)1L’q|n
Vg =1+ n €24, g = ; ;
1+ |q]

1+ ]
If vy € 2Z + 1, c must satisfy the stronger condition ¢ < (1 + |g|)~!. Then A, may become

negative for some negative odd n values. Hence, Eq. (4.8) must be fulfilled for some n; €
{-1,-3,-5,...}, so that we get BFB unirreps specified by (4.18) again.

A = gl (4.18)

Whenever |g| > 1, |\,| increases from |(1 + |g|)™! — ¢| to +oco. Similar arguments show
that Eq. (4.12) must be fulfilled for some n, € {2,4,6,...} or n; € {1,3,5,...} according to
whether vy € 2Z or vy € 2Z + 1. We therefore obtain BFA unirreps, characterized by

. 1 — |g|*? < ez L+ (=1)"g]*
=vy+ny—1€2Z+1, c= ————, A, = gl
0 0 2 I, |ql |f1| 1+ |q|

(4.19)

Finally, for |g| = 1, hence for the oscillator algebra defined by (2.1) and [a, (LT] = (-1)¥,

Eq. (4.17) simply becomes
1 vo+n
Ao =2 (1 (-1 —¢, (4.20)

where ¢ < 0, or ¢ < 1, according to whether vy € 2Z, or vy € 2Z + 1. By reasoning as in
Sec. 4.1.2, we find two types of unirreps, namely FD unirreps characterized by ¢ =0, p = 1,
and any Iy € 2Z, and UB unirreps specified by &y = 0, and any negative ¢ value.

4.3 The Tamm-Dancoff Oscillator Algebra

4.3.1 Positive Values of the Deforming Parameter
For the Tamm-Dancoff oscillator algebra .A; [27], defined by Egs. (2.1) and (2.17), we find
from (3.8) and (3.9) that

A = ¢t Y1y + 0 — qo), where ¢ < ¢ i, (4.21)
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may become negative for n < gc — vy, and any positive g value. Hence, in the present case,
we only get BFB unirreps, characterized by

Uy = vy + na, c=q i, A = ¢t g, (4.22)

where ny € {0,—1,—2,...}, and therefore 7y € RR.

Such unirreps were already found before [27]. The fact that lim, 4o A = 0, for 0 < ¢ <
1, explains the name given to the algebra, and referring to the idea of a high-energy cutoft
proposed in the context of field theory [30].

Table 3: Unirrep classification for the Tamm-Dancoff oscillator algebra.

q Type Characterization

0<q 7& 1 BFB i,€eR,c= q“lﬁo’ Ap = q130+n—1n

4.3.2 Negative Values of the Deforming Parameter

For negative g values and vy € Z, Eq. (4.21) becomes
A = (=1)" g™ (o + n + glo), (4.23)

where ¢ < —15|g|™? or ¢ > —wlq|™! according to whether vy € 2Z or vy € 2Z + 1. Since
An can vanish for at most one integer n value, and it oscillates around zero in the intervals
(—00, —vg — |qle) and (—vy — |g|e, +00), it is obvious that the conditions of Proposition 1
cannot be fulfilled so that no unirrep can exist for negative ¢ values.

We have therefore established that contrary to the remaining deformed oscillator algebras
considered in the present paper, the Tamm-Dancoff oscillator algebra has a single class of
unirreps.

5 Conclusion

In the present paper, we developed the representation theory of deformed oscillator algebras,
defined in terms of an arbitrary function of the number operator N. We showed that the
classification of their unirreps can be most easily performed in terms of the eigenvalues
of a Casimir operator C. Under the assumption that the spectrum of N is discrete and
nondegenerate, we proved that the unirreps may fall into one out of four classes (BFB,
BFA, FD, UB) according to the nature of that spectrum, and that bosonic, and fermionic or
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parafermionic Fock-space representations may occur as special cases of BFB and FD unirreps,
respectively.

We did also carry out the unirrep classification in detail for some deformed oscillator
algebras, which can be derived from the boson one by the recursive minimal deformation pro-
cedure of Katriel and Quesne [19], namely the Arik-Coon [1, 2], Chaturvedi-Srinivasan [25],
and Tamm-Dancoff [27] oscillator algebras. For all of them, we considered both positive and
negative values of the deforming parameter, which constitutes a distinctive feature of the
present study as compared with some previous ones [20, 21, 22, 23].

We showed that all the known unirreps, in particular the bosonic Fock-space representa-
tions, can be recovered in our classification scheme, and that in addition, many new unirreps
make their appearance. We actually provided some examples for each of the four unirrep
classes, although in the FD case, only two-dimensional unirreps were encountered. Higher-
dimensional FD unirreps do however arise for some known deformed oscillator algebras [11].

We also illustrated both the effects of minimal deformation and of the quommutator-
commutator transformation of the recursive procedure on non-Fock-space representations.

Applications of deformed oscillator algebras have been restricted up to now to their Fock-
space representations. Whether non-Fock-space representations, such as those constructed
in this paper, may have some useful applications remains an interesting open question.
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