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Vavilov-Cerenkov Radiation in a Finite
Region of Space

By G.N.Afanasiev, Kh.M. Beshtoev

Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna,
Moscow District, 141980, Russia

and Yu.P. Stepanovsky

The Institute of Physics and Technology, Kharkov, Ukraine

(29.1.1996)

Abstract. Exact expressions are found for the electromagnetic field arising from the instant accel-
eration of a charged particle, its subsequent motion with the velocity exceeding the light velocity
in the medium and the instant transition into the state of rest. It turns out that these expressions
have definite advantages over the usual ones grounded on the use of the Fourier transform. In
particular, they clearly show when and where the Cerenkov radiation should be observed in order
to discriminate it from the bremsstrahlung.

1 Introduction

The Vavilov-Cerenkov effect (VCE) is a well established phenomenon widely used in physics
and technology. Its nice exposition may be found in the Frank book [1]. In most text-books
and scientific papers the VCE is considered in terms of the Fourier '_components. To get
an answer in the physical space, the inverse Fourier transform should be performed. The
occurring divergent integrals obscure the physical picture. As far as we know, there are only
few attempts in which the VCE is treated without making the Fourier transform. At first,
we should mention Sommerfeld’s paper [2] in which the hypothetical motion of the extended
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charged particle in the vacuum with the velocity v > ¢ has been considered. Although the
relativity principle prohibits such a motion in the vacuum, all the equations of [2] are valid in
the medium if we identify ¢ with the light velocity in the medium. Unfortunately, due to the
finite dimensions of the charge, equations describing the field strengths are so complicated
that are not suitable for the physical analysis. The other reference treating the VCE without
recourse to the Fourier transform is the Heaviside book [3] where the superluminal motions
of the point charge both in the vacuum and infinitely extended medium were considered.
Yet Heaviside was not aware of Sommerfeld’s paper (2] as well as Tamm and Frank [4,5] did
not know about the Heaviside’s investigations. It should be noted that Frank and Tamm
formulated their results in terms of Fourier components. The results of Heaviside (without
referring to them) were translated into the modern physical language in ref. [6]. A similar
motion of the charge with finite dimensions has been considered in ref. [7]. The charge had
zero dimensions in the direction normal to the velocity and the Gauss distribution along the
velocity. It was shown there that the singular Cerenkov shock wave did not arise in this
case. Instead, the field strengths had a finite maximum at the Cerenkov angle. It is the
goal of present investigation to investigate electromagnetic effects arising from the point-like
charged particle motion in the finite medium.

2 Mathematical Preliminaries

Let a charged point particle moves inside the medium with the polarizabilities € and y along
the given trajectory £(¢). Then, its electromagnetic field (EMF) at the observation point
(7,t) is given by the Lienard-Wiechert potentials

1 - 4 .
o(Ft) =% = A1) = % N 0,/Z;,  (divA + %@ ) (2.1)

Here %; = (d€/dt)|s—s,, Zi = |F — E(t:)| — T:(F — €(t;))/cn and c, is the light velocity inside
the medium (c, = ¢//€x). The summing in (2.1) is performed over all physical roots of the
equation

et — ') = |7 — €(t')] (2.2)
To preserve the causality, the time of radiation t’ should be smaller than the observation
time . Obviously, t' depends on the coordinates 7,t of the point P at which the EMF is
observed. Let a particle move with the constant velocity v along the z axis: £ = vt — 2z
Then, Eq.(2.2) has two roots

cat — Bn(z + 20) - P
1 - p2 11— G2

Here r,, = \/(z+ zo —vt)2+p2(1 - 62), p* =2*+9y* [, = v/c, In what follows we
need also ¢, (t — t') which is given by

el =

(2.3)

vt — 2 — 2z P
t—t) =0, +
el =) =1 Fim

(2.4)
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We shall denote t' corresponding to the upper and lower signs in (2.3) and (2.4) as t; and
th, resp. It is easy to check that

calt — 1) (t — &) r=[(z+ 2 — vt)® + ]2 (2.5)

252_1T’

Consider a few particular cases.

3 Particular Cases

3.1 The Uniformly Moving Charge With the Velocity v < ¢,

It follows from (2.5) that ¢t — ¢} and ¢ — ¢}, have different signs for 3, < 1. As only positive
t — t' correspond to the physical situation, one should choose the plus sign in (2.4) that
corresponds to the upper signs both in (2.3) and (2.4). For the electromagnetic potentials
one obtains the well-known expressions

ed = i: A, = eﬁ—'u; ()6 = U/C) (31)

Tfn Tm

It follows from this that the uniformly moving charge carries the EMF with itself.

3.2 The Uniformly Moving Charge With the Velocity v > ¢,

This section briefly reproduces the contents of ref. [6]. It follows from (2.5) that for the
treated case (t — t}) and (t — ¢}) are of the same sign which coincides with the sign of the
first term in (2.4). It is positive if

t>(z+2)/v (3.2)
The two physical roots are
o Cnt'—)@n(z'*'zo) i’l"m
S ST

The positivity of the expression staying under the square root in 7, requires

M=vt—2—2—p/m>0 (Wm=4F2—-1) (3.3)

. As this inequality is stronger than (3.2), one may use only (3.3) which shows that the EMF
is enclosed inside the Mach cone given by (3.3). For the electromagnetic potentials one gets

ed = Q_EG(M), A, = 2epf

Tm T'm

o(M) (3.4)
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Figure 1: Cerenkov shock wave propagating in the infinite medium. There is no EMF in
front of the Mach cone. Behind it there is EMF of the moving charge. At the Mach cone
itself there are singular electric £ and magnetic H fields. The latter having only the ¢
component is perpendicular to the plane of figure.

(the factor 2 appears because there are two physical roots meeting (2.2)). The electromag-
netic strengths (ﬁ = ¢k, E = —grad® — Ale, B=uH-= curl.»zf) are given by

_ 2epp 2e3
Hff’ - ,Yglrgne(M) + ’anmé(ML
~ 2er 2ef3 -
el = —m'ﬂw " @(M) + T . 6(M)ﬂ,m (35)

Here n, = (pfi,+ (2420 —vt)fi,)/r is the unit radial vector directed from the current position
of the charge inside the Mach cone and 7,, = 7,/8, — f,/On¥ is the unit vector lying on
the surface of the Mach cone (fig.1). The é-function terms in these Eqgs. correspond to the
Vavilov-Cerenkov radiation. They are different from zero only on the surface of the Mach
cone.

We observe that both terms in £ and H are singular on the Mach cone (as ,,, vanishes
there). On the other hand, according to the Gauss theorem, the integral from E taken over
the sphere surrounding the charge should be equal to 4me. The integrals from each of the
terms entering into E are divergent. Only their sum is finite (take into account their different
signs). This was explicitly shown in ref.[6].

The observer at the (p,z) point will see the following picture. There is no EMF for
et < Ryy (R = (24 20 + p/71n)/0Br). At the time ¢,t = R,, the Cerenkov shock wave
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reaches the observer. At this moment, the actual and retarded positions of the charged
particle are: z, = 2+ p/, and z, = z — pv,,, resp. For ¢,t > R, the observer sees the EMF
of the charged particle originating from the retarded positions of the particle lying to the
left and right from z,.

At large distances the terms with the © functions die out, and for the Cerenkov radiation
field one gets

= 2 n — 7 2 —
B = 2P 6(M) - Tl, H= 0 6(M) - iy
The Poynting vector is equal to
S ExH=—/- M
B x = L2 2R s
Here 7iy, = n,/BnYn+n. /By is the unit vector normal to the surface of the Mach cone (fig.1).

The observer being placed at the p, z point will detect the Cerenkov photon at the moment
t = (2+ 20+ p/vn)/v. The beam of charged particles propagating along the z axis with the
velocity v > ¢, produces the continuous Cerenkov radiation in the 7L direction with the
electric vector in the 7,, direction.

3.3 The Uniform Motion With v < ¢, On a Finite Space Interval

Let the charged particle rest at the point z = —z, for time ¢ < 0. During the time interval
0 < t < 2zp/v the particle moves with the constant velocity v < ¢,. For ¢ > 2z/v the
particle again rests at the point z = 2;. The electromagnetic potentials are equal to

229 2
ed = —6-6-(1“1 — cut) + E(—)(cnt —— =71+ —e~®(cnt — 1"1)@(—ﬁ + 73 — cat),
™ T2 ﬁ'n Tm n

4, = Pt — )O3R 41y = et) (3.6)
TTTL 1871

where we have put for brevity 7, = [p*+(2420)2]Y2, ry = [p*+(2—2)%"/2. The particular
terms of Eq.(3.6) have a simple interpretation. The information on the beginning of the
particle motion has not reached the points for which ¢,t < 1 . At these points there is a
field of the charge resting at = = —z, ( first term in ®). The information on the motion
ending has passed through the points for which c¢,t > 22y/0, + r2. At those space-time
points there is a field of the charged particle resting at z = z (second term in ®). Finally,
at the space-time points for which r; < ¢t < 225/, + r there is a field of the uniformly
moving charge (last term in @ ). The electromagnetic field strengths are equal to

eB(1 = B2)p 2z eBp  d(cat —11) efp O(cnt — 12 — %ff)
Hy = ——2"6(c,t—7r)0(— —cpt - :
¢ y (¢ 71)O( 3, +ry—cat)+ vy 15— fide + %) v T Bl — i)
ek = s 7, O(r1 — )Jrgw_(?_f‘l)‘d B(cnt—71)0 (% -I-?“z—Cnt)—i——n O(cnt — ;0 —19)+
1 m n 1
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+ep5(cnt —71) On A1 epd(cpt — 1o — %?) B =2 (3.7)
1 r1— Bz +20) ° T2 re — Bulz — 20) .
Here 7i;, 7p, 72 and 72 are the radial and polar unit vectors lying on the spheres S; and
Sy with their centers at the points z = —zy and z = zy, resp.:

iy = (pit, + (2 + 20)7i;) /11, 71y = (p(2 + 20) = 7Lup) /71

iy = (pity + (2 — 20)fi.) 12, Ty = (Up(2 — 20) — Tap) /72
The observer at the (p, z) point will detect the radiation arising from the particle’s instant

acceleration and deceleration at the moments ¢t = r; and ¢,t = re + 220/, resp. For the
distant observer the radiation field is given by

Bnp 8(cut — 1) - iy — ]
ri(ri = Bu(z + 20))  ra(re = Balz — 20))
— (S nt - 6 'n,t - - 2 n
7 = fige8] (et —r1) (et — 72 — 22/6n)
ri(ri — Balz +20))  Ta(rz — Bu(z — %))
The total Poynting vector is equal to the sum of energy fluxes emitted at thez = +2z; points:

¢E =

§(cnt — ro — 220/ Bn) - Tig

S§=8+85,
Cc [E eBpbled—m) o 4 @ c [F eBpblct—ra=220/8)n
S1= /= o, Sa=_—y= |- i,
dr Ve “ri(ry — Bu(z + 2)) AV € ro(re — B(z — 20))
Here i, = (pni, + (2 + 20)7,)/r1 and 72 = (pri, + (2 — z0)7.) /T2 are the unit vectors normal

to S; and S,. It turns out that the vector S describes divergent spherical waves emitted at
the z = zp and z = —z; points.

3.4 The Uniform Motion With v > ¢, on a Semifinite Space In-
terval

a) The charge particle motion begins from the state of rest (fig.2).

Let the particle rest at the point z = —z; up to the moment ¢’ = 0. For ¢’ > 0 it moves
with the velocity v > ¢,. For the observer being placed at the point (p, z) the condition for
the particle to be at rest is ¢,t < r;. The condition t' > 0 for the particle motion to start is
different for upper and lower signs in (2.3) (see the Appendix). The solution corresponding
to the upper sign exists only if 2 > py, —zp and R, < c,t <711 (R, = (24 20+ p/ )/ Bn).
The solution corresponding to the lower sign exists both for z < pv, — 20 and z > py, — 2o:

et >7ry for z<py,—2z and c,t >R, for z>py,—2

The electric scalar and magnetic vector potentials are given by

e = E—@(rl — ent) + i@(z + 20 — p1n)O(r1 — €at)O(cnt — Rin)

™ Tm
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Figure 2: The superluminal motion of the charge begins from the rest state at z = —z,. In

the z < pvy, — 2 region the observer sees (consecutively in time) the EMF of the resting
charge, the bremsstrahlung shock wave and the EMF of the moving charge. There is no
Cerenkov radiation in this space region. In the z > pv,, — zp region the observer consecutively
sees the EMF of the resting charge, the Cerenkov shock wave, the EMF from two retarded
positions of the charge, the bremsstrahlung and the EMF from the moving away retarded
position of the charge.
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+ =00 — 20 — 2)O(cat = 71) + —O(2 + 20 — P1)O(cat — Run),

m Tm

1 el

EAZ = T—[@(z + 2p — PYn)O(r1 = cat)B(tnt — Ryp)
+O(py¥n — 20 — 2)O(cnt — 1) + O(2 + 20 — pn)O(cnt — Ron)]

As a result, the observer being placed at the point (p, z) will see the following picture.

Let 2 < py, — 2zo. Then, for ¢,t < r; the observer sees the EMF of the charge resting
at z = —zp. For ¢,t = 1 he will observe the bremsstrahlung originating from the z = —z
point. For c,t > r; the observer detects the EMF of the charge moving with the velocity
v > ¢,,. There is no Cerenkov radiation in this space region.

Let the observer be in the space region where z > pvy, — 2. In this case, for c,t < R,,
the observer sees the EMF of the charge resting at z = —z;. At the time ¢, = R,, the shock
Cerenkov wave reaches him. At this moment the retarded position of the charge particle is
Z' = z — py,. In the time interval R,, < c,t < r; the solution corresponding to the upper
sign gives EMF from the retarded positions of the particle in the interval —zp < 2’ < z — pyn.
At the moment c,t = r; the bremsstrahlung from the z = —2; point reaches the observer.
On the other hand, the solution corresponding to the lower sign for ¢,t > R,, describes the
electromagnetic field from the retarded positions of the charged particle lying on the right of
the 2’ = z — pv,. As time goes the distance between the observation point and the particle
retarded position increases. Correspondingly, the EMF diminishes at the observation point.

For the distant observer only the singular parts of the field strengths survive

eBnpblcat —m1) 2e

EE:“ Ny + ®Z+Z— rlécvtt_an 'ﬁvnv
Bule £ 20) =ty 0+ 5702+ 20 = pmm)d )

) Slet — 2 _

i = [- 2P © 02+ 7 — p1)Slent — Bon)] -

Tl) +
(ﬁn(z + ZO) - Tl)'rl YnTmA/ €
The Poynting vector is equal to S=25+ §C, where

= ¢ [n efpdlcat —11) 5 1 9z ¢ [@ . 2ep 2 o1
51 = —4f—- . = —/=- S) — pYn)O(M)]” -
1 A £ [(lgn(z o Z{)) _ 7"1)7"1] ., 52 An ¥ & [’anm (Z + 2 P ) ( )] L

For the space region z < pv, — 2o the distant observer detects the bremsstrahlung at the
moment ¢,t = ;. There is no Cerenkov radiation in this region of space. For z > pv, —
zp the distant observer detects the Cerenkov radiation at the moment c¢,t = R,, and the
bremsstrahlung at the moment c,t = r;.

b) The charge particle motion ends by the state of rest (fig.3).

Let a particle moves with the velocity v > ¢, up to a point z = z5. After that it rests
there. The condition for the particle to be at rest is ¢,t > 22z¢/8, + r2. The solution
corresponding to the lower sign exists only for z < zp+ py, and R,, < ¢t < 220/8,. + 72 (see
the Appendix). The solution corresponding to the upper sign exists both for z > 29 + pyn
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Figure 3: The superluminal motion ends by the rest state at z = z. In the region z > py,+20
the observer sees no field up to some moment, when the shock bremsstrahlung wave reaches
him. Later he sees the EMF of the resting charge and the EMF from one retarded position
of the charge. In the region z < pv, + 2z, the EMF equals zero up to some moment when
the Cerenkov shock wave reaches the observer. After that he sees EMF from two retarded
positions of the charge up to the moment when the bremsstrahlung shock wave reaches him.
Later, the observer sees simultaneously the field of the resting charge and that of the retarded
positions of the charge.
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if c,t > 22/0, + ro and for z < z5 + pv, if ¢t > R,,. The electromagnetic potentials are
equal to :

ed = ;@(cnt —220/Bn —12) + —e-(-)(z — 20 — PYn)O(cnt — 220/ Bn — T2)

2 m

+Ti(-)(cnt — Rpn)O(20 + pYa — 2)[1 + ©(220/Bn + 2 — cat)],

m

1
EAZ = ﬁi@(z — 20 — PYn)O(cnl — 220/ Bn — T2)

m

+8-=0(ent ~ Run)O(z0 + o = 2)[1 + ©(220/ B+ 72— cut)]

m

For the observer in the z > py, + 2 region there is no EMF for c,t < 2z9/0, + 2. At
the moment ¢t = 22z¢/8, + r2 he detects the bremsstrahlung shock wave. For ¢c,t > 229 + 79
the observer sees the EMF of the charge resting at the z = 2y point and the EMF of the
retarded positions of the particle trajectory lying on the left of the z = 2, point. There is no
Cerenkov radiation in this space region. For the observer in the z < py, + 2o region the EMF
equals zero for ¢,t < R,,. At the moment c¢,t = R,, the Cerenkov shock wave reaches the
observation point. At this moment the retarded position of the particle is 2’ = 2z — py,. For
R, < cpt < 229/, + 7o the solution corresponding to the lower sign gives the EMF emitted
from the points of the charge trajectory lying in the interval (z — py, < 2 < 2z). For the
moment c,t = 2zy/, + T2 the bremsstrahlung from the z = zy point reaches the observer.
After that the lower sign solution gives the EMF of the charge resting at the z = 2, point.
On the other hand, the solution corresponding to the upper sign for ¢,t > R,, gives EMF
from the retarded points lying on the left of z — p7, point. The EMF at the observation
point diminishes as the radiation arrives from more remote points. The field strengths and
Poynting vector in the wave zone are:

s (5(Cnt — T9 — 220/ﬁn) pﬁn -
EF = “Tg et — Hm
ﬁn(z — ZO) — T ) ¢ (Cn )Tm’Yn
i 8(ent — 19 — 220/ 0n) E b= 2

=] 6[ ﬁn(z — 2,’0) — Py Ty T‘mﬁ)’n\/—
S:SQ+SC7 \/_ [ t—r2—2zo/[5’n)ﬁﬁ] 'ﬁz

5n Z—Zo)—TZ T2 v

L L i _N2.gt
sc—Mﬁ - 6(M)B(z0 + p1a = D -

In the space region z > pv, + zo the distant observer detects the bremsstrahlung at the
moment ¢t = 2zy/3, + r2. There is no Cerenkov radiation there. For z < pvy, + z the
observer sees the Cerenkov radiation at the moment c,t = R,, and the bremsstrahlung at
the time c,t = 229/, + 2.

@(mn + zp — 2:) : T_ima

an)] ﬂ’dn
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Figure 4: The superluminal motion begins from the rest state at the point 2 = —2, and ends

by the rest state at the point z = z,. For the finite distances the space-time distribution
of EMF is rather complicated (see the text). The distant observer will see the following
space-time picture. In the region z < pv, — 2 he detects the bremsstrahlung shock wave

from the z = —z; point first and from the z = z; point later. In the z > p, + 2z region these
waves arrive in the reverse order. In the py — 2y < z < (p*v2 + 22/3%)"/? region the observer
consecutively detects the Cerenkov shock wave, bremsstrahlung from the z = —z; point and

bremsstrahlung from the z = 2, point. In the region (p?v2 + 22/82)Y/2 < 2z < py, + 2 the
latter two waves arrive in the reverse order.

3.5 The Uniform Motion With v > ¢, on a Finite Time Interval

Let the charged particle rest at the point 2 = —z; for time ¢ < 0. For the time interval
0 < t < 2z5/v the particle moves with the constant velocity v > ¢,. For t > 2zy/v the
particle again rests at the point z = z, (fig.4). According to refs.[1,8] the physical realization
of this model is, e.g.,a @ decay followed by the nuclear capture.

The observer being placed into the different space-time regions will detect the following
physical situation (see the Appendix).

i) z < pyn — 2.

Then, for ¢,t < r, the observer sees the EMF of the charge resting at z = —z;. At the
moment ¢,t = the bremsstrahlung shock wave originating from z = —zy reaches him. For
71 < cpt < 229/ Bn+12 the observer sees the EMF of the charge moving with the superluminal
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velocity (lower sign in (2.3)). At the moment c,t = 22/, + r» the bremsstrahlung shock
wave originating from the z = 2z, point reaches him. Finally, for c,t > 2z /8, + o the
observer sees the EMF of the charge resting at z = z;. There is no Cerenkov radiation in
this space region despite the observation of superluminal motion.

i) pyn — 20 < 2 < (p*v2 + 23/B8%)1/2.

For c,t < R,, the observer sees the EMF of the charge resting at z = —z,. At the
moment ¢,t = R,, the Cerenkov shock wave reaches him. For R,, < c,t < r; the observer
simultaneously sees the EMF of the charge resting at z = —z; and the EMF of the moving
charge ( both signs give contribution). At the moment ¢,t = r; the bremsstrahlung origi-
nating from the z = —zy point reaches him. For r; < ¢t < 229/, + 73 the observer will
see the EMF of the moving charge (lower sign in (2.3)). At the moment ¢,t = 22y/8, + 72
the bremsstrahlung shock wave originating from the z = z, point reaches him. At last, for
ent > 229/, + 2 the observer sees the EMF of the charge resting at z = 2.

iii) [p%y2 + 22/ B2Y2 < 2 < 25 + PV

For ¢,t < R,, the observer sees the EMF of the charge resting at the z = —z point. At
the moment ¢,t = R,, the Cerenkov shock wave reaches him. For R,, < ¢,t < 2z5/3,+72 the
observer sees the EMF of the charge resting at z = —2; and the EMF of the moving charge
(both signs of Eq.(2.3) give contribution). At the moment 22/, + r» the bremsstrahlung
shock wave originating from the z = z; point reaches the observation point. For 2zy/8, 472 <
cnt < 71 the observer simultaneously sees the EMF of the charge resting at z = —zp, the
EMF of the charge resting at z = 2y and the EMF of the moving charge (upper sign in
(2.3)). At the moment ¢,t = r; the bremsstrahlung from the z = —z; point reaches him.
Finally, for ¢,t > r; the observer sees the EMF of the charge resting at z = 2.

iii) z > zg + pPYn-

For ¢,t < 2zy/ 0, + 72 the observer will see the EMF of the charge resting at the z = —z
point. At the moment c,t = 225/08, + r2 the bremsstrahlung shock wave originating from
z = 2 point reaches him. For 2z5/8, + 3 < ¢,t < r1 he sees the EMF of the charge resting
at the z = £z, points and the EMF of the moving charge (upper sign in (2.3)). At the
moment ¢, t = r; the bremsstrahlung shock wave originating from the z = —2, point reaches
him. At last, for ¢,t > r; the observer sees the EMF of the charge resting at z = 2z5. There
is no Cerenkov radiation in this space region.

The electromagnetic potentials are equal to
1
ed = (I)l + q)z + q)m; —Az = ﬁ(I)m
7

Here

e e 1
D) = —0O(r; —cut), Py=—0(cpt — 13 —220/Bn);, Pm=—0(r; —cpt)
[ T2 Tm
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S

Figure 5: The schematic presentation of the EMF for the superluminal motion on the finite
space interval. The magnetic field of the bremsstrahlung and of the moving charge has only
the ¢ component. The electric field of the bremsstrahlungs has only the § component. The
electric field of the moving charge has singular and nonsingular parts. The singular part E,
lies on the Mach cone. The nonsingular part lies on the radius directed from the particle
actual position towards the Mach cone.

220

10(z0 + p1n — 2)©(2 + 25 — p10)O(Cnt — Rm) + O(2 — 20 — p¥)O(cnt — 7 r2)]+
1 2z
+—9(~52 +r2—cat)[O(20+ p1n — 2)O(2+ 20 — 1) Oent — Ron) +O(pYn — 2= 20)O(cnt — 1))
At large distances the field strengths are (fig.5)
= 6(Cnt - TI)) pﬁn =1 5(Cnt — T — ZZO/ﬁ.n) pﬁn 2
E=- & iy %l Mg+
Bulz+2)—r1 11 " Bu(z —20) =72 T2 ?
+6{(cn,t — Ryp) O(pyn + 20 — 2)O(2 + 20 — PVn) * Tim,

m Jn

A=l bleal = 1m1)  pB i §(cnt — 19) pﬁ |
Bu(z+20) =111 Balz—2) —1a 12 Tm%\/a
The total Poynting vector reduces to the sum of energy fluxes radiated at the z = £z, points
and to the Cerenkov one:

5(Cnt — Rm)] . T_I:¢

§:§1+§c+§2,
5 _ ¢ [ bdlet—r11) pB,

Ju, 6(Cnt_742_220/ﬁn)8é2_ —9
51—47]_- - [ﬁn(z‘l‘zo)—ﬁ r [ ] -

Bulz —20) =79 7o r
5= /B [ 6MB = + 20— p1a)Oz0 + 3 — 2)]? -
dr ¥V € ‘T " m

For the distant observer the radiation field looks differently in various space regions.

P&, &=
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1) 2 < pyn — 2

At the moment ¢,t = r1 the observer detects the bremsstrahlung from the z = — 2, point.

At the later time c,t = 22,/0, + r2 he detects the bremsstrahlung from the z = 2y point.
There is no Cerenkov radiation in this space region.

i) pyn — 20 < 2 < (p*y2 + 28/ 52)V/?

The observer detects (consecutively in time) the Cerenkov shock wave at ¢,t = R,,, the
bremsstrahlung from the z = —zy point at the moment ¢,t = r; and the bremsstrahlung
from the z = z, point at the moment ¢,t = 22,/5, + 2.

iii) (P2 + 22/BE)Y? < 2 < pyn + 20

The observer sees the Cerenkov shock wave at the moment c,t = R,,, the bremsstrahlung
from the z = zy point at the moment c,t = 2z,/3, + r» and the bremsstrahlung from the
z = —zp point at the moment c,t = r;.

iiii) 2 > pyn + 20

At the moment ¢,t = 22,/0,, + r2 the observer fixes the bremsstrahlung from the z = z,
point. At the later moment c,t = r; he detects the bremsstrahlung from the z = — 2 point.
As in case 1) there is no Cerenkov radiation in this space region.

4 Discussion

The bremsstrahlungs from the z = +2; points have maxima at the angles 6; and 6, numer-
ically coinciding with the Cerenkov angle .. One should bear in mind that these angles are
ones between the z axis and the radius-vectors originating from different points. Indeed, 8,
is the angle between the z axis and the radius-vector originating from the z = —z, point, 82
is the angle between the z axis and the radius-vector originating from the z = z; point, while
f. is an angle between the z axis and the radius vector originating from the retarded position
of the charged particle (fig.6). If the distance from the observation point is comparable with
the motion distance 2z, the inclination angles of the radius-vectors (i.e., angles between
the radius-vectors and the z axis) directed from the z = £z, points toward the observer are
certainly different from 6,. This means that this observer will detect the bremsstrahlungs
under the angles different from 6. and for him the Cerenkov radiation will be clearly sepa-
rated from the bremsstrahlungs. On the other hand, if the observer is at the distance much
larger than 2z, the bremsstrahlungs from the z = £z, points and the Cerenkov radiation
reach the observation point almost at the same inclination angle .. In this case, the angular
separation of the Cerenkov radiation and bremsstrahlung is hardly possible. However, if the
intensity of the charged particles is so low that inside the interval (—zp, zo) there is only one
charged particle at each instant of time, the time resolution between the Cerenkov photons
and the bremsstrahlung ones is still possible. We conclude: the description of the Cerenkov
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Figure 6: The observer not very far from the z axis sees the bremsstrahlung at the angle
different from the angle of its (i.e., bremsstrahlung) maximal intensity coinciding with the
Cerenkov angle .. Thus, the angular resolution is possible for him. For the distant observer
the time resolution between the Cerenkov radiation and bremsstrahlung is still possible.

radiation by direct solving of the Maxwell equations greatly simplifies the consideration.
In particular, the prescriptions are easily obtained when and where the Cerenkov radiation
should be observed in order to discriminate it from the bremsstrahlung. This is contrasted
with the consideration in terms of the Fourier components where the discrimination of the
Cerenkov radiation from the bremsstrahlung presents a problem (see, e.g., [1,8-10]). On the
other hand, if the dependence of penetrabilities € and p of the photon frequency is essential,
an analysis via the Fourier method seems to be more appropriate. In this sense, these two
methods complement each other.

Appendix

We consider conditions arising from the inequality 0 < ¢,t’ < 225/, for the upper and lower
signs in (2.3) separately.

Upper sign.
For the upper sign in (2.3) one has

et = V2 {Bu(z + 2) — ot — T} (A1)

Now we impose the condition ¢ > 0. As the sign at r,, in (A.1) is negative, the first
term should be positive. This means that the following two conditions should be satisfied
simultaneously

cnt < Bn(z+2) and (A.2)

Bu(z+2g) —eul > Ty (A.3)
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The latter inequality being resolved WRT c¢,t, gives:

Cnt <Tr (A4)
As a result, one has
et < min{B.(z+ 20), 71}

It is easy to check that 3,(z + z) is greater or smaller than 7; when z is greater or smaller
than pv, — 2, respectively. Thus, c,t < B.(z + z) for z < py, — 20 and ¢, < rp for
z2 > pyn, — 2zo. With the account of (3.3) one gets

R, <cpt < Bu(z+2) for z<py,—2 and (A.5)

R, <cit<ry for z>py,— 2 (A.6)

Eq. (A.5) is satisfied if R, < 8,(2+2). This is possible only if z > py, — 20. This disagrees
with the condition z < py, — 2z under which Eq.(A.5) was obtained. Thus, only Eq.(A.6)
survives and the condition ¢,t’ > 0 reduces to

R, <ect<ry for z>pv,— 2 (A.7)

Now we turn to the condition ¢,t' < 2zy/8,. From (A.1) one gets

2
ﬁ’n(z = ZO) + % - cnt = T (AB)

This inequality is wittingly satisfied if ¢,t > 8,(z — z0) + 220/0,. Taking into account (3.3)
one gets in this case

cnt > maz{B.(z — 20) + 220/, Rn}

As B,(z — 29) + 220/0, is greater or smaller than R,, when z is greater or smaller than
2o + pyn, One obtains

Cut > Bn(z — 20) +220/Bn for z>z+py, and et >R, for z2<z+py (A9)

Now let
ent < Bn(z — 20) + 220/ Bn (A.10)
The following two inequalities stem from (A.8):
2 2
cnt > % + 75 and Cnt < % el ) (A].].)

The second of these inequalities is incompatible with Eq.(3.3) for any 2. Then, combining
(3.3), (A.10) with the first of (A.11) one gets

2%

Bn

maz{Rm, + 12} < ent < Bn(z — 20) + 220/ 5 (A.12)
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As 22y/B, + o always exceeds R,,, inequality (A.12) reduces to

%9 + Ty < ﬁn(z — Zo) + 220/,6.,1 (Al?))

The RHS of this inequality exceeds its LHS only if z > z; + p,,. From (A.13) and (A.9) one
obtains that condition ¢,t' < 224/0, reduces to

2
Eal > % +7ry for z2>2+4+py, and c it >R, for z2<z+ pm (4.14)
n

Combining (A.7) and (A.14) one obtains equations guaranteeing the fulfillment of the in-
equality 0 < cpt’ < 22/0, for the upper sign in (2.3)

R, <cit<ry for py,—2z0<z<py.,+2 and

(A.15)
22()
B’""‘?"z <ept<ry for z>z+ pvn
Lower sign.
For the lower sign one has
et = 1alBalz + 20) = cut + T} (A.16)

Consider at first the inequality c,t’ > 0. It is wittingly satisfied if ¢,t < B,.(z + z). Taking
into account (3.3) one gets
R, < et < Bu(z + 20) (A.17)

It takes place when z > p7y, — 2. On the other hand, if ¢,t > (,.(z + z0), there should be
Cat — Bu(2 — 20) < T
Being resolved, this gives two solutions
¢t < -7 and (A.18)
Cpt > 11 (A.19)
Consider at first (A.18). If it is satisfied, the following inequality should take place

maz{Bn(z + 20), Rm} < cnt < —71 (A.20)

It turns out that (3,(z + 2o) is greater or smaller than R,, when z is greater or smaller than
PY¥n — Zo, resp. Then, for z > py, — 2z one gets B,(z + 20) < cnt < —ry. But for this range
of z the RHS of this inequality is smaller than its LHS. Thus, (A.18) cannot be satisfied for
Z > pyn — %o. For z < pvy, — 2y one obtains

R, <c,t < -1
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The RHS of this inequality exceeds its LHS when the following two Eqs. are satisfied
simultaneously

2+ 2+pm <0 and 7 < —-R,

The second of these Egs. and, as a consequence, inequality (A.18) cannot be satisfied for
any z. Thus, only Eq.(A.19) survives. It is valid only if

cnt > maz{fn(z + z), Rm, 71}
As always r; > R,,, so it remains
eut > maz{Bu(z + %), ™}

Since B,.(z + z) > r; for z > py, — 2z and B,.(z + 20) < 7 for 2 < py, — 2 one gets
et > Bu(z + 2) for z > py, — 29 and ¢t > 11 for z < py, — zp. Combining these Eqs. with
(A.17) one gets the following Egs. realizing the condition ¢,t’ > 0 for the lower sign in (2.3):

et >Ry for z>pv,—2 and ct>r for z < py, — 2 (A.22)

Now we analyze what the condition ¢,t’ < 22y/8, means for the lower sign. It follows from
(A.16) that

Tm < et — Bu(z — 20) — 220/ B, (A.23)
Obviously, this inequality can be satisfied only if

ent > Bn(z — 20) + 220/ 0n (A.24)
Resolving (A.23) gives
2%
ﬁ: —Try < ept < E; + 72 (A25)
Combining this Eq. with (3.3) and (A.24) one arrives at
22 22 22
mazr{—o — 13, Pnlz—z )+——0 R,} <ept < =y
ﬁn ﬂn i3
As always R,, > 2zy/03,, — T2, s0 it remains
22
max{B(z, — z0) + —, Rm} <ct, < —8 4ty (A.25)

B B’n

Noticing that the sign of 8,(z — z) + 220/8, — R coincides with that of (2 — py, — %) one
gets:

By € oyl % ﬁ_ +ry for z<py.,+2 and (A.26)

,6n(2 — ZU) + 2210/6.” & @ul & '"5* + Ty for z > P¥n + 20 (A27)

The LHS of (A.26) is always smaller than its RHS. On the other hand, the RHS of (A.27)
exceeds its LHS only if z < 2z + py,,- This disagrees with the condition (z > z + py,) under
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which the inequality (A.27) was obtained. As a result, only inequality (A.26) survives. It
realizes the condition c,t’ < 229/, for the lower sign. Combining (A.26) with (A.22) one
gets

2z
maz{Ry,, 71} <cpt< Eﬂ +7ry, for z<py.—2 and

T

2
Rm<ct<§+'r2 for py,— 20 < 2 < pYn + 20

As 1 always exceeds R,,, one finds that for the lower sign the condition 0 < c,t' < 22y/0.
reduces to

22’0
r<cit<—+47ry for z<py,—2 and

Br
(A.28)

2
Rm<cnt<ﬁz—0+r2 for py.—20<z<pyn+2

This completes the analysis of the boundary conditions influence on the space-time distri-
bution of the Cerenkov radiation.
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