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The Ground-State Characteristics Of Deuteron Using
Gaussian Potentials

By S.B. Doma, N.A. ElI-Nohy and K.K. Gharib®

Faculty of Science, Alexandria University, Alexandria, Egypt.

(19.V.1995, revised 5.1.1996)

Abstract. The translation invariant shell model is applied to the deuteron nucleus with even number of quanta
of excitations in the range 0 < N < 10. The residual interparticle interactions for this nucleus consist of central,
tensor, spin-orbit and quadratic spin-orbit forces with Gaussian radial dependences. The parameters of these
interactions, are fitted to reproduce good agreements between the calculated and the experimental values of the
deuteron binding energy, mean-square radius, D-state probability, magnetic dipole moment and electric
quadrupole moment.

1. Introduction

In a nucleus, there is no external source to provide a force on the individual nucleon
and, as a result, there is no fundamental one-body interaction. The only one-body operator
in a nuclear Hamiltonian is the kinetic energy operator connected with the motion of each
nucleon. The source of the effective one-body potential is, however, the two-body interaction
between nucleons. On the other hand, it is not possible to rule out three-body and higher
particle rank terms in the nuclear interaction. All the available evidence indicates that such
forces, if present, must be very much weaker than two-body force.

A wide variety of nucleon-nucleon interactions has been used in the shell model
calculations. Since the nucleon-nucleon interaction is not precisely known a large number
of different interactions are available. In addition,the kind of interaction that can be used
is restricted to some extent by the kind of model space used. Finally,unless the model sp~ce
is complete,with a sufficiently large number of bases,the interaction is really only an effective
interaction and cannot be uniquely defined. Moreover,unless one is very restrictive in
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defining the model space,it is necessary to diagonalize large matrices. There will be an
inevitable conflict between the desire to keep a small model space and the hope to find an
effective interaction with a wide range of applicability. In addition to these reasons,which can
to a greater or lesser extent be justified by the physics of the problem,personal preference
and ease of computation also play a role.

The structure of deuteron may well be harder to understand than many other nuclei
because of its large radius and the fact that the tensor force is crucial,accounting for 70%
of the binding interaction in spite of the small D-state admixture.

The nature of the deuteron quadrupole moment,Q, and the ratio of the deuteron’s D-
wave to S-wave asymptotic normalization constants, n(*H),is well explicated by Ericson [9].
Based on the various local,energy-independent potential models of the two-nucleon
interaction,consistent with the experimental effective range and the one-pion-exchange,it has
been proposed that there is a linear relationship between Q, and n(*H)that can be tested
with a higher precision determination of n(*H) [8,10].Based on the successful description of
Q, and %(*H),Ericson and Rosa-Clot suggest that the entire deuteron wave function be
thought of as one-pion-exchange dominated,with the precise value of the deuteron binding
energy set by the short-range part of the two-nucleon interaction,

Amado [1] emphasized that within a given model, the deuteron D-state probability Py
(*H) has a fixed value, but a different dynamical model fitted to the same empirical data will
generally yield a different value of P, *H ). Unitary transformations can be applied to wave
functions and operators that leave observables unaltered but that change P, (*H). This
approach was taken by Friar [11] to show that P, (CH ) depends on the unitary
transformation. Nevertheless, Py, (*H) is a useful parameter that can be used to characterize
a particular two-nucleon interaction.

Weller and Lehman [16] in their work on the manifestations of the D-state in light nuclei
have pointed out that it seems clear that we are still at the threshold of understanding the
importance of the tensor interaction in nuclear physics.

In an approach to tackle the deuteron properties the expansion of the square of the
ratio of the deuteron radius to the triplet neutron-proton scattering length is generalized to
include the D-state component of the deuteron wave function. This approach is recently
applied by Dijk et.al.[3] to estimate the effect of the D-state on the deuteron radius.

The deuteron properties are also studied by using the one -pion exchange potential
truncated at a radius R,with a constant interior potential. Sprung et. al. [14] discussed the
relation of this model to more realistic models of the nucleon-nucleon interaction.

The aim of this work is to construct the ground-state wave function of deuteron and
to evaluate a simple nucleon-nucleon potential that gives acceptable fit to the deuteron
properties.

The methods of expanding the nuclear wave function in terms of a complete set of
orthonormal functions, basis functions, have been used on a large scale. In principle, the
predicted results for the nuclear characteristics should be independent of the particular bases
chosen when the number of terms in the expansion is kept large enough.

In this paper we applied the translation invariant shell model [2,4,7,15]which has
shown good results for the calculations of the ground-state characteristics and some of the
excited-state characteristics of light nuclei [4-7]. Bases of this model with even number of
quanta of excitations in the range 0 < N < 10 are used to construct the ground-state wave
function of deuteron. The residual interparticle interaction is assumed to have central,
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tensor, spin-orbit and quadratic spin-orbit interactions. The central part has symmetric and
Serber forces. The radial dependences of these forces are taken as Gaussian forces which
are suitable for our calculations of the matrix elements of the two-particle operators needed
in our investigations as well as they lead to faster convergences of the series and integrals
in our calculations. The Wigner, Majorana, Bartlett and Heisenberg constants of the central
part of the interaction are taken in agreement with previous works [6,12,13].The central
depth parameter V. is allowed to vary in the range 25 < V. < 55 MeV with a step of one
MeV and the corresponding range parameter r is allowed to vary in the range 1.5 < 1o <
3.0 fm with a step of 10° fm. Each of the tensor, spin-orbit and quadratic spin-orbit parts of
the interaction has one depth parameter, which is assumed to vary in the range from -50.0
to -5.0 MeV with a step of 0.01 MeV. The corresponding range parameter is assumed to
vary in the range from 0.3 to 3.0 fm with a step of 10 fm. The oscillator parameter hw is
allowed to vary in the range 10 < hw< 25 Mev in order to obtain the minimum value of
the ground-state energy eigenvalue of the deuteron nucleus. '
Accordingly, the Hamiltonian matrices for the ground state of the deuteron are
diagonalized with respect to the oscillator parameter hw, from which the binding energies
and the nuclear wave functions are obtained for each set of values of the eight parameters
of the potential, namely: V., 1o, Vi, 17, Vs, 15, Vy and r;. The obtained nuclear wave
functions are used to calculate the mean-square radius, the D-state probability, the magnetic
dipole moment and the electric quadrupole moment of deuteron. The cases which gave

results in good agreements with the corresponding experimental values are given and
discussed.

2. The Hamiltonian Matrix And The Nuclear Wave function

The Hamiltonian H of the two-nucleon system can be written in the form

2 e
1
He=o -3 bl V(-1 2.3

m ;-1 1

By separating the center of mass kinetic energy, the Hamiltonian corresponding to the internal
motion becomes

" @.2)
H=H 4m(§ l?)

By adding and subtracting an oscillator potential referred to the center of mass, the
internal Hamiltonian becomes

A 2 . o
H=—Y "p -— 2+—mo®y (r-R)?
2m§p 4m(,-z=1:l?) 2 ‘Zl:(: )
(2.3)
- 2 . -
+W(|r-r |)—%mwzz (r-R)
12

i=1 i
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This Hamiltonian can be recasted, in terms of the relative coordinates of the two nucleons, in
the form

H=H,+V, 2.4)

where

@-py .- 2.5)
H0=1 LW +-~1~m<;)2(r—r)2 ,
2 2m 2 1 2

is the translation-invariant shell model Hamiltonian of the two nucleon system and

me?

Vi=V(lr-r|)-——@-r}
1 2 1 2 (26)
2
=V -1,
is the residual interaction
The energy eigenvalues and eigenfuctions of the Hamiltonian H, are given by
EQ - (N+%) ho, 2.7
| Nimg,sm gm, > =Ry, (1) ¥y, 0,0) X Tom,» 2.8)

where N=2n+£, in which n is the radial quantum number of the inter-particle distance joining
the two nucleons. The radial wave functions Ry,(r) are given, with the usual notations, by

1
2D((N - 0+2)/2) ety 202 2.9)
T (n+123)2) exp (-p“/2) p L% 9,

Ry () =y \l

where p=rfa, , a,=yWmo

By virtue of the basis functions (2.8) one constructs the ground-state wave function of the
deuteron with j=m;=1 and t=m, =0, in the usual manner as follows

j=m=1,t=m ~0>=Y" Cyy Y. (tm,sm_|11)
N6 mpom-l (2.10)

x | Nim,,sm_00 >,
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where Cy,. are the state-expansion coefficients and (fm,, sm,|11) are Clebsch-Gordan

coefficients of the rotational group R,. In the summation (2.10) N assumes only even integers,
since the ground state of the deuteron has positive parity, so that s=1 and ¢ =0,2. Four
Clebsch-Gordan coefficients occur in equation (2.10), namely:

00,11]11) = 1, (20,11 |11) = ——, 21,10|11) = - ’i, 22,1-1|11) = li.
/10 10 10

Hence, the ground-state wave function of the deuteron, in our model with N < 10, takes the
form

|j=m;=1,t=m,=0> =Cy, |000,1100> + C,; [200,1100>

—|2201100>—l 221, 1000>+.’ |222,1 -100>
10

+C,,400,1100> +C,,

C22

__
F |420,1100> —,l 10 |421,1000> +\ —1—6 |422,1 —100>}
10

+ Cq, |600,1100> +C,, —‘/—:|6201100>—l |621, 1000>+,| |622,1-100>

+Cyy [800,1100> + C,, L|8201100>-,| |8211000>+,I 822,1-100>

/10
+Cy0110,00,1100> + C,q | —— |10,20,1100> - —|10,21,1000>+.'--|10,22,1—100> .
! /10 10 10
2.11)

Here Cy, = Cy,y'® , since s=1 for all bases.

2.2
The matrix elements of the operator

, appearing in equation (2.6), taken over

the basis functions | Nfm,, Im,00> are given by

2.2
<Nom,, 1m 00 | 7 |N'tm], 1m|00> -~———[(2N +3)8Y

14 !
~N-12 [N+ 138}, ~N-CN+T+1 05 , |86 b1 (2.12)
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The Hamiltonian matrix elements of the operator (2.4) calculated with respect to the basis
functions |[N€m,, 1m,00> are, finally, given by

<NiM,,1m 00 |H N’V m/, 1m]00>

-{ [@N+3)8y +JN=1+2 /N+1+3 5}, @.13)

/ /
+\/N—Q\/N+Q+1 5%12] %Tm 5:’+IN2 , N’l’} 5:: 5:: y

where Iy, . are the radial integrals of the operator V(r). The Hamiltonian matrix elements
of equation (2.13) are, obviously, independent of m, and m,.

3. The Residual Interaction And The Radial Integrals

For each two-nucleon-state with orbital-angular momentum £, spin momentum s and
isotopic spin t, our potential assumes the form

V(r) = “XVexp(-r?[re) + VS, exp(-r¥fr})
(3.1)

-

+ Vo(U .s)exp(-r2fra) + V,L,exp (-r¥fr}),

where
5X = Cp+ (-1 Cpy (-1 C+ (-1 Cyy (2]

- - -

$,=3(o0 .n)( o .n)-(o . o),n=r[r
1 2 1 2

L,=(o .o )cz—l{( 6 .0)(o .D+(o .D(o .a)}
1 2 2 i 2 2 1
In equ. (3.2) Cy, Cy, Cg and Cy are the Wigner, Majorana, Bartlett and Heisenberg constants,
respectively. V¢, 1¢e; Vo, 113 Vg, rg and Vy, 1 are the depth and the range parameters for the
central, tensor, spin-orbit and quadratic spin-orbit forces, respectively.
For the symmetric and the Serber forces, the exchange constants satisfy the well known

normalization condition

Cow+Cy+Cy-Cy =-1L.
For the symmetric forces they satisfy the additional conditions

Cy = 2Czand Cy = -2 Cy,
while, they satisfy the conditions

Cy = Cyand C,; = -G,

in the case of the Serber forces. Two sets of values which satisfy these conditions are
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Case-1 (symmetric forces)

Cw = 0.1333, C, = -0.9333, Cy= -0.4667, Cy = -0.2667,
which are known as the Rosenfeld constants [13], and

Case-2 (Serber forces)

Cy = -0.41, Cy= -0.41, C; = -0.09, Cy= 0.09
which are taken in accordance with the Lederer potential [12].

Our potentials are, then, obtained by allowing the depth parameters V¢, Vi, Vgand V
and the range parameters rc, rr, rg and r; to vary in the ranges discussed in section-1, with a

total of 8.36071 x 10** different potentials. The radial integrals I, y/y appearing inequ. (2.13)

are, then, evaluated by using the radial wave functions (2.9) and the potentials (3.1).
Although the ground-state of deuteron has s=1 and t=0, so that the central part of our
potentials assume the form

V() = -V, exp(-rird), (3.3)

for both of the symmetric and the Serber forces, our potentials are written in such form
(equ.(3.1)) so that they can be used in other calculations with light nuclei.

4. The Deuteron Characteristics

Diagonalizing the Hamiltonian matrix, with elements given by equ. (2.13), we get the
deuteron ground-state energy eigenvalues and eigenfunctions for each set of values of the
potential parameters. The resulting nuclear wave functions are used to calculate the different

ground - state characteristics of the deuteron as follows:

(i) The D-state Probability

The D-state probability, Py, is the sum of the squares of the expansion coefficients in the
ground - state wave function of deuteron for which £ =2, so that in our calculations

2 2 2 2 2
Pp=Cy +Cy + Cg + Cygy + Cpy - .1)

(i) The Mean - Square Radius

The mean - square radius, R, is defined as

R = \/r; + < Rfm >, 4.2)
where r, = 0.85 fm is the proton radius and the second term is the mean value of the operator
A
R, =L =1, (4.3)

A* 55 4

The mean value of the operator Ry,, is then obtained by multiplying the matrix element of equ.
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(2.12) by from which the value of R is obtained.

me
(iii)) The Magnetic Dipole Moment

The magnetic dipole moment, u, is defined as the expectation value of the operator [15]
f-p +a,, (4.4)

calculated in a state with m; = j. The spin - isospin dependence operator fi, is defined by

A
Bo = 30 [(By*m) + 20,71, 8] Sy » (4.5)

i=1
where p, and p, are the proton and the neutron magnetic moments, respectively, and t; an s
are the z-components of the isospin and the spin momenta of the ith nucleon, respectively.

Similarly the orbital-dependence operator fi, is defined by

A
o= 5 2 (1726) b “.6)

where £, is the z-component of the orbital-angular momentum operator of the ith nucleon. In
the translation invariant shell model one can prove that

po=nl e w™s e=0,0. “.7)

For the two-nucleon system, the expectation values of the antisymmetric operators p, ' and po™"
vanish and the expectation values of the symmetric operators p, and p become

<Nﬂmi,1msoo p,E,Z]lN’ﬁ’m’ﬂ,lm’soo>

4.8)
/ 9’ Il m,:
[t D o Gl o o0
and
<Nﬂmﬂ ,1m 0o lpff}[,N’ ‘m',,1m' oo )
4.9)
ml m,
--5 D g 8y 8] 8,08
where
T L (4.10)
g = - 3(2ﬂ+1)11ﬂ (10,11 |11) . .

Substituting the values of the Clebsch - Gordan coefficient and the 6j - symbol, the g factors
are then calculated for £=0 and 2 from which the magnetic dipole moment is easily obtained.

(iv) The Electric Quadrupole Moment

The electric quadrupole moment, Q, , of a nuclear state is defined as the expectation value
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of the operator [17]

z
ENE DI ACRAR @.11)

calculated in the substate of maximum m; , so that the electric quadrupole moment of deuteron
is given by
Qd = (j:m].:l, t=m3=0|Qolj=mj=l’t=mt=o> " (4.12)

Substituting from equ. (2.11) into equ. (4.12), we get
Q, =e -35‘- Y {Cys, Cy, {N'o[r*|No) (00 |Yy, |00)
N',N
+ = Cy, (N'o |r?|N2) (00 |Yy, |20)

N'o
V10 4.13)

3
¥ Gt Eo (3 7% |N2)[%(22|Y20|22>+-ia<21 | Yy [21)

1

O<20|Y20|20>]}

Here, we used the fact that r, =r, = ' r. Substituting the values of the matrix elements of the
spherical harmonics Y,, into equ. (4.13) we then get

Qd=ez

NN

+

2
1—‘/; Cyi, Cyy ( N'o|r?|N2)
(4.14)

1
" 55 Cna Cna (N2 |r?|N2)
Hence, the quadrupole moment of the deuteron nucleus is obtained by calculating the two radial
integrals appearing in equ. (4.14).

5- Results And Conclusions

For each value of the depth parameter V. there corresponds a set of values for the other
seven parameters rg,Vr,rIT,Ve,Is, Ve and rp which reproduces good agreements between the
calculated and the experimental value of the deuteron binding energy.

The analysis of the results where the minimum energy eigenvalues are in good agreements
with the deuteron-binding energy show that for values of V. < 36 MeV the values of the mean-
square radius increase while the values of the magnetic dipole moment and electric quadrupole
moment decrease. On the otherhand, for values of V. > 42 MeV the values of the mean-square
radius decrease with the increase in the values of the magnetic dipole moment and electric
quadrupole moment.
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Table-1 Parameters of The Potentials

Potl. I I
Parameter

Ve MeV)| 37 38

2 (fm) 1.937 | 1.910
Vi (Mev) | -11.46 | -11.45
T (fm) 2.912 | 2.912
Vs (Mev) | -18.00 | -16.00
fs (fm) 0.600 | 0.650
Vo (Mev) | -11.00 | -11.50
I, (fm) 1.100 | 1.200

In table-1 we present the parameters of the potentials for which the calculated values of the
deuteron characteristics are in agreements with the corresponding experimental values.

In Fig.1 we present the variation of the range parameter r. with the depth parameter V.
The method of least-squares gives a straight-line relation between rc and V. of the form

rc = - 0.02697 V. + 2.93467 (5.1)

re (fm)

1.86

1.76 1 I 1 1 L I 1 L 1 1 I ! L
a8 37 38 39 40 41 42 43

V¢ (MeV)

Fig.1 Variation of The Range Parameter ro With The Depth Parameter V.
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Table-2 -‘Deuteron Characteristics.

Charac.| B.E. R Py Ka Q, hw | Refer.
“ Case (MeV) (fm) (N.M.)| (e fm?) |MeV
exper. 2.22457 | 1.963 | 0.04-0.07 | 0.8574 | 0.2859 - [17]
Potl-1 2.22450 | 2.0058 | 0.0434 | 0.8550| 0.2868 | 19
Potl-II 2.22447 [ 2.0011]| 0.0428 | 0.8554| 0.2910 | 19
Potl-I11 2.22421 | 1.9966| 0.0425 | 0.8557| 0.2953 | 19
Potl-1V 2.22436 | 1.9932| 0.0422 | 0.8557| 0.2991 | 19
Potl-V 2.22454 | 1.9802| 0.0420 | 0.8559| 0.3006 | 19
Potl-VI 2.22456 | 1.9790| 0.0420 | 0.8559| 0.3050 | 19
OPEP + Core
Vo=0, R=0.0584 2.224575 | 1.9484 | 0.0750 - 0.28652 | - [14]
Vo=-10, R=0.8906 - 1.9366 | 0.0586 - 0.2751 - [14]
Vo=-20, R=0.9096 - 1.9351] 0.0572 - 0.2737 - [14] .
Vo=-50, R=1.0163 - 1.9275| 0.0492 - 0.2650 - [14]
Vo,=-30, R=2.189%4 - 2.0141 | 0.0627 - 0.1609 - [14]
Yamaguchi (central) - 1.934 - - - - [3]
Yamaguchi (with tensor) - 1.943 - - - - [3]
OPEP (with tensor) - - 0.06+0.01 - 0.284 - [10]

In Table-2 we present the calculated
values of the deuteron binding energy
(B.E.),mean-square radius (R),D-state
probability (Pp),magnetic dipole moment
(1) and electric quadrupole moment (Q,) in
the cases of the six potentials together with
the corresponding experimental values [17] e
and the values of the oscillator parameter hw
which give the minimum energy
eigenvalues. In Table-2 we give also
previous results concerning some properties
of deuteron by using other methods.

B.E. (in MeV)
n » [
8 R B

-
[N

In figs. 2-6 we present the variations of
the deuteron binding energy, mean-square
radius,magnetic dipole moment,electric
quadrupole moment,and D-state probability
with respect to the oscillator parameter hw o it eV )
in the case of potential-II. Fig.2 Variation of The Deuteron Binding Energy with hw

L
©

M
]
o

17 18 19 20 21 22
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2.15
208
.=
-
T yesi-
1.85
1.75 1 1 L 1 1 1 Il il L 1
16 17 18 19 20 21 22
ho (in MeV)
Fig.3 Variation of The Deuteron Mean-Square Radius with hw
0.5
0.45
o 04
@
£ oas
o
o
0.3
025
0.2 1 1 1 1 i o 1 1 1 1
16 17 18 19 20 21 22
hw {(in MeV)

Fig.5 Variation of The Deuteron Quadrupole Moment with h

101

0.8¢

0.852| -

0.85 I L 1 L | 1 1 1 L L L
16 17 18 19 20 21 22

ha (in MeV)

Fig.4 Variation of The Deuteron Dipole Moment with hw

0.045

0.044

Po

0.043

0.042

0.041

0.04 i 1 i 1 1 1 1 ! I L 1
16 17 18 19 20 21 22

ha (in MeV)

Fig.6 Variation of The Deuteron D-state probability with he
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2.5

B.E (in MeV)

-

0.5

Fig.7 Variation of The Deuteron Binding Energy with N

In Figs. 7-11 we present the variations of
the same characteristics with respect to the
number of quanta of excitations N.

- 0.86
0.855
oy —_—
E 2 =
£ =z
= £
= 5085
3
18-
0.845
16 1 I I 084 L 1 L
= 4 & s 10 2 4 ] 8

Fig.8 Variation of The Deuteron Mean-Square Radius with N Fig.9 Variation of The Deuteron Dipole Moment with N
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0.5 0.06

0.45 0.055

Py

o4l- 0.05

0.045

Q, (ine. tm?)
o
w
o

63l 0.04

0.25 0.035

0.2 1 L i 0.03 L i 1

Fig.10 Variation of The Deuteron Quadrupole Moment with N Fig.11 Variation of The Deuteron D-State Probability with N

In Table-3 we present the results of calculating the deuteron characteristics by using the
possible superpositions of the different forces of potential-II. It is of interest to notice that any
superposition of forces which does not include the tensor force does not add any thing to the
results obtained by using the central force.

Table-3 Role of The Different Forces in Deuteron Characteristics.
Forces Ve | Vot Vol Vo 4+ Vot | VetV VetVet Exper.
Vs \' V+V,

Character.
B.E. (MeV) |0.3064| 2.2707 2.2679 2.2271 2.22447 2.22457
R (fm) 2.8403| 1.9968 1.9971 2.0009 2.0011 1.963
P, 0.0 | 0.0440 0.0439 0.0429 0.0428 0.04-0.07
e (N.M.) |0.8798] 0.8547 0.8547 (0.8553 0.8554 0.8574
Qs (e fm? 0.0 | 0.2954 0.2952 0.2912 0.2910 0.2859
hew (MeV) 8 19 19 19 19 S

It is seen from Table-2 that all the presented values of the binding energy and D-state
probability of deuteron are in agreements with the corresponding experimental values. T'=
calculated values of the magnetic dipole moment of deuteron are in agreements with the
experimental value. Concerning the mean-square radius and the electric quadrupole mor:ient their
values depend mainly on the choice of the potential parameters as well as on the used nuclear
wave function of deuteron and the improvement of one of them is at the expense of the other.

It is also of interest to notice from Figs. 3 and 5 that the calculated values of the deuteron
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mean-square radius and electric quadrupole moment can be improved by considering values of
the oscillator parameter hw > 19 MeV but this is rejected since we vary hw in order to obtain
the best minimum energy eigenvalues in each case.
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